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Abstract: Remotely sensed data are commonly used as predictor variables in spatially explicit models
depicting landscape characteristics of interest (response) across broad extents, at relatively fine
resolution. To create these models, variables are spatially registered to a known coordinate system
and used to link responses with predictor variable values. Inherently, this linking process introduces
measurement error into the response and predictors, which in the latter case causes attenuation bias.
Through simulations, our findings indicate that the spatial correlation of response and predictor
variables and their corresponding spatial registration (co-registration) errors can have a substantial
impact on the bias and accuracy of linear models. Additionally, in this study we evaluate spatial
aggregation as a mechanism to minimize the impact of co-registration errors, assess the impact of
subsampling within the extent of sample units, and provide a technique that can be used to both
determine the extent of an observational unit needed to minimize the impact of co-registration and
quantify the amount of error potentially introduced into predictive models.
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1. Introduction

Remotely sensed data play an ever-increasing role in characterizing and quantifying landscapes.
These types of data have been used to study our surroundings [1], stratify the terrestrial
environment [2,3], and build a wide range of data products depicting terrestrial characteristics,
such as topography [4], land use and cover [5], vegetative indices [6], vegetation communities [7,8],
fire severity [9], land cover change [10], and temperature [11]. Due to the success and relatively low cost
of using remotely sensed data to depict landscape patterns and changes in those patterns, fields like
landscape ecology [12] and concepts like spatial connectivity and the relationships between patterns
and processes are now at the forefront of many land management and planning endeavors [13–16].

Ideas such as spatial contiguity, patch size, and patch juxtapositioning, and their relationships
to processes and concepts such as forest management, land use planning, and sustainable forestry
have in part fueled the desire to precisely and accurately define existing patterns at fine spatial detail,
across broad extents [17–19]. Coupled with the availability of fine-grained remotely sensed data
(55 m) and advancements in computer-based hardware and software [20], a fine-scaled depiction
of the landscape can now be produced across broad extents relatively quickly, at a low cost [21–23].
At the same time, the fine-grain nature of these types of data provide unique opportunities to relate
measured characteristics of the landscapes for small spatial extents (response variables) to remotely
sensed data (predictor variables).
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Many have capitalized on this point to develop mathematical, statistical, and spatial models that
can be used to create surfaces depicting landscape variables of interest using geo-rectified field and
remotely sensed data [18,22–24]. Generally, this process can be described as: (1) registering both field
and remotely sensed data to a known coordinate system, (2) using the spatial coordinates of the field
and remotely sensed data to link measured values in the field to remotely sensed data, (3) building
a model for the linked variable as a function of variables derived from the remotely sensed data,
and (4) applying the model to remotely sensed surfaces to create a continuous surface of estimated
characteristics. While straightforward, the linking process is subject to error (co-registration error)
owing to the imperfectly identified spatial coordinates of the response and predictors, and this can
have a negative impact on the accuracy of the model estimates (i.e., increased bias and imprecision).
With regression models, predictor variables (Xi) are assumed to be measured without error. Response
variables (Yi) can be measured with error, and this is accounted for within the modeling process, often
by specifying an additive random discrepancy, typically denoted as εi [25]. Take for example a simple
linear model equation:

Yi = β0 + β1Xi + εi, (1)

where β0 and β1 correspond to the intercept and slope, and εi corresponds to model error which
includes any potential error associated with measuring the response variable. When co-registration
errors occur, this amounts to the introduction of error into the ability to measure Xi (e.g., spectral values)
coincident with Yi (e.g., basal area per hectare). Measurement error in Xi is not typically accounted for
in regression models and will cause attenuation bias [25,26], which manifests in estimates trending
towards the global mean of the response variable.

To circumvent the impacts of co-registration errors, analysts have employed a wide variety
of solutions, ranging from rectifying images in a relative manner [27] to ignoring these errors and
assuming them to be of little importance in predictions [28]. Regardless of the precision of measuring
the true or relative surface location, spatial error will always be part of the rectification process and
will have an impact on the underlying predictive model.

Within remote sensing literature, the impact of co-registration error has been recognized, especially
for Light Detection And Ranging (LiDAR) data [29–32], but typically is not directly quantified. Often
studies cite co-registration as an additional source of error that should be minimized, but fall short
in describing the effects of those errors or providing suggestions to minimize the influence of those
errors on predicted values. In this study, we address this knowledge gap by developing techniques to
quantify this source of error and mitigate co-registration errors in applied work. Through simulation
using Landsat 8 and National Agriculture Imaging Program (NAIP) imagery and images created with
specific spatial correlation, based on Landsat 8 and NAIP images, we investigate co-registration errors
and their impacts on the modeling process, and test the hypothesis that co-registration errors can
be mitigated through spatial aggregation. Additionally, given estimates of global spatial continuity
and co-registration errors, we provide recommendations on the size and layout of field observations
with respect to the grain size of remotely-sensed data that will help to minimize the impact of
co-registration errors.

2. Materials and Methods

2.1. Theoretical Background

The impact of co-registration errors on any predictive models should be related to four primary
factors: (1) the horizontal misalignment between response and predictor variables, (2) the spatial extent
of the sample unit, (3) the spatial correlation of predictor and response variables, and (4) the strength
and form of the relationship between response and predictor variables. Prior to performing a study,
researchers typically do not know the spatial correlation of response variables, nor the strength or form
of the relationship between response and predictor variables. To address this lack of information in our
study, remove issues of measurement error, and focus our study solely on the impacts of co-registration
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error, we constrain our predictor surfaces to have a one-to-one relationship with our response variables.
In this scenario, the Y and X surfaces, in the absence of co-registration errors, should exhibit a perfect
linear relationship (i.e., an intercept of 0, a slope of 1, and a coefficient of determination of 1). Also,
where the relationship between X and Y is linear, aggregated values (i.e., averages over multiple
adjacent pixels) will also exhibit the same one-to-one relationship as non-aggregated values. Given
this design, deviations from a one-to-one relationship can be solely attributed to co-registration errors.

Additionally, assuming that co-registration errors manifest as random noise within the regression
models, we anticipate that the proportion of variation in Y explained by X (R2) should follow the
squared geometric relationship between the sample unit size (As) and the area of overlap (Ao) between
the X and Y units, when the X values are distributed independently at random over space (Figure 1,
Appendix A). This can be expressed as follows:

R2 =

(
Ao

As

)2
(2)

In concept, each sample unit’s Y values are related to a combination of the corresponding X values
now attached to an area only partially overlapping with the sample unit (cross-hatched area in Figure 1),
as well as to X values attached to distinct spatial areas that have been falsely aligned with the sample
unit. The latter occurs only because co-registration errors incorrectly identify a spatial match. If the
X values are distributed independently at random over space, then on average the proportion of
information on Y that can be explained by X should correspond to the average amount of area shared
between response and predictor sample units, given the registration errors. Given this assumption,
deviation from this condition in our simulations can be attributed to the spatial correlation within
a landscape, and provide a rationale for using measures like global Moran’s index (GMI) [33] as
predictors, to estimate the proportion of modeling error contributed by co-registration errors.
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Figure 1. Graphical depiction of co-registration error. The global positioning system (GPS) (Y) and Image
(X) sample units represent the same extents located on surface of the earth, but due to co-registration
errors they only share a portion of the same area in projected space (diagonal black lines).

2.2. Overview

All analyses within this study were performed using R [34]. Images created with specified
amounts of spatial correlation (virtual images) were built using the raster [35] and gstat [36,37]
packages. Our simulations use one Landsat 8 [38] and five NAIP [39] images as baseline datasets taken
from varying landscapes (Figure 2, Table 1), to produce nine virtual Landsat images and ten virtual
NAIP images, respectively. To determine the amount of spatial correlation associated with the Landsat
and NAIP baseline images, a uniform random selection of 20 locations were used to extract raster
cell values within a 200 by 200 cell window, and to calculate empirical omnidirectional covariogram
statistics [40].
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Figure 2. Base images used in simulations. Zoomed-in areas illustrate the extent for which images
were subset and summarized to estimate mean digital number, sill, nugget, and range values.

Table 1. Average digital number (MDN), sill, nugget, and global Moran’s index (GMI) and maximum
range (in number of cells) values for Landsat and National Agriculture Imaging Program (NAIP)
imagery. Averages and maximum values were based on all bands within an image.

Name Label MDN Sill Range Nugget GMI

Landsat 8 Coast Coast 7478.1 552,790.7 40.5 180,321.3 0.93
NAIP City City 140.2 1630.3 30.1 348.7 0.93
NAIP Agriculture Ag 115.7 449.3 46.0 161.0 0.97
NAIP Forest Forest 86.3 525.0 31.2 187.4 0.94
NAIP Forest & Agriculture Forest & Ag 119.0 593.9 41.9 78.7 0.97
NAIP Forest & Water Water 88.9 548.3 33.8 113.9 0.96

Cell values within each 200 by 200 cell window were summarized to estimate a mean digital
number (DN) value, as well as sill, nugget, and range values for empirical omnidirectional
covariograms. Mean DN, sill, and nugget statistics from each band were then averaged across
image sources and used as inputs for creating Landsat- and NAIP-based virtual surfaces. To mimic
different degrees of spatial correlation, range values were allowed to vary from 0.5 cells (completely
random image) to the maximum range found among bands within each image source. Together, mean
DN, sill, nugget, and ranges with a spherical spatial model were used to create virtual NAIP and
Landsat surfaces (36,37). A complete listing of the code used to estimate spectral and spatial statistics
and create virtual Landsat and NAIP images can be found in Appendix B.
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After creating each single band virtual images, two simulated sampling experiments were
conducted, using actual and virtual Landsat 8 and NAIP images to evaluate the impacts of
co-registration errors, spatial aggregation, sampling intensity, and spatial correlation on model
prediction. The first set of simulations (stage I) were used to quantify the impacts of spatial aggregation
of individual cells into multi-cell sampling units with regards to model prediction given co-registration
error and defined spatial correlations (Figure 3). To account for potential logistical constraints of
sampling large areas in the field, a second simulation was performed (stage II) that explored the
impacts of alternative subsampling configurations corresponding to varying levels of measurement
intensity and sample unit extent.
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Figure 3. Visualization of Stage I simulations. A total of 200 sample locations (red points) were used to
extract and calculate mean values from an image for different spatial extents around a point before and
after a spatial shift was introduced (yellow and blue squares). Values were then regressed against one
another to determine the impact of co-registration errors. This process was performed for each image
used in the study.

Due to computational limitations associated with calculating range values for the extent of
Landsat and NAIP imagery, we explored using GMI as a surrogate for range. GMI, while different
than range, quantifies spatial correlation as an index value bounded between −1 (negative correlation)
and 1 (positive correlation), with a value of zero corresponding to no spatial correlation (completely
random image). For each band within each image of our simulations, GMI was calculated as follows:

GMI =
N
W

∑i ∑j wij(xi − x)
(
xj − x

)
∑i(xi − x)2 , (3)

With x equal to values within a raster surface indexed by I and j rows and columns, wij representing
a weighted spatial matrix (rook’s case), N being the number of cells, and W being the sum of all weights.
The remainder of this section describes in detail the design and implementation of each simulation
stage within our study and model fitting used to estimate the impact of co-registration errors.
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2.3. Stage I Simulations

Co-registration errors were mimicked based on published NAIP (6 m) [39], Landsat 8 (37 m) [41],
and global positioning system (GPS; 7 m) [42] horizontal errors. For each image, 200 sample locations
(L1) were selected spatially at random and used to extract DN values for sequentially increasing spatial
extents, with side lengths ranging from 1–100 cells (response). Mean cell DN values were calculated
and recorded for the extent of the sample unit size at each L1 location. L1 locations were then randomly
shifted based on co-registration errors between GPS locations and imagery to produce L2 locations.
Random shifts were implemented to the nearest cell by adding random distances and azimuths to
easting and northing coordinates, based on a normal distribution with mean 0 and standard deviation
expressed as the root mean squared error (RMSE) for each source of spatial error. Because Landsat 8
absolute geodetic accuracy is reported at the 90% confidence level, while NAIP imagery is reported
at the 95% confidence level, we adjusted Landsat 8 horizontal error to the 95% confidence level.
For Landsat 8, this transition amounts to an absolute error of 48 m (1.6 cells). The source code used
to perform spatial shifts (function shiftXY), image value extractions (function extractRC), and mean
calculations (function getMeanBlockValue) can be found in Appendix B (jhLib.r).

L2 locations follow the same DN extraction and summarization process as L1 locations (predictor).
Using response and predictor variables for each image, band, and sample unit size, we performed a
simple linear regression using ordinary least squares and recorded RMSE (measured in units of mean
DN value), as well as intercept, slope, and coefficient of variation (R2) fit statistics. To minimize the
effects of sampling variation, this procedure was performed 10 times, and regression results were
averaged across all iterations. Additionally, for each image and band GMI was calculated. Regression
fit statistics and coefficients were then compared across sample unit sizes and spatial correlation to
identify and quantify the impact of co-registration errors and determine an array of suitable field
sampling extents, to evaluate measurement intensity for Stage II of the simulations.

2.4. Stage II Simulations

Preferably, when relating remotely sensed data to field samples, the entire area within a sample
unit would be measured on the ground. However, due to practical limitations related to collecting
field data for sample units with large spatial extents, this is often not economically feasible. This
situation can lead to instances when the only practical way to estimate a mean for a spatial extent
is to use subsampling. To quantify the impact of six common subsampling (subplots) layouts and
various subsampling intensities (area measured) within a given sample unit size (plot), we investigated
multiple plot/subplot layouts. A depiction of plot extents, subplot layouts, and subsampling intensities
are illustrated in Figure 4.

Identical to Stage I simulations, Stage II simulations mimic registration errors for 200 observations
and extract cell values surrounding each plot location for each sample unit size. For the response
variable, the mean values for each sample unit size are calculated based on the spatial extent of
one of six subplot layouts, and subsampling intensities ranging from 0.05 to 0.95 of the plot extent,
by increments of 0.05. Subplot layouts include one subplot located in the center of the plot (One),
four subplots located systematically in the corners of the plot (Sys 4), four randomly located subplots
within the plot (Rnd4), four subplots oriented in a similar fashion as the Forest Inventory Analysis
(FIA) program plot protocol (FIA 4) [43], five subplots systematically placed within the plot extent
(Sys 5), and nine plots systematically placed within the subplot (Sys 9). For predictor variables, mean
values were calculated using all cell values within the extent of the plot (Pall), and for only the areas
within the subplots (Psub). Regression fit statistics and coefficients were then compared with results
from 100% of the sample unit size measured in stage I.
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Figure 4. Subsampling layout and subsampling intensity for varying sample unit sizes. Yellow square
boxes define the spatial extent sampled within an image, while the shifted blue boxes illustrate the
impact of co-registration errors and define a subsampling layout and proportion of area measured
within each yellow extent. Large brown cubes denote iterations for potential sample unit sizes.

2.5. Modelling the Impacts of Co-Registration Error

After preforming each simulation and recording error and fit statistics for each image,
we developed a suite of models to relate those statistics to predictors measuring spatial correlation
in the images (GMI) and the magnitude of spatial co-registration errors (expected proportion of area
overlapped between field plots and corresponding image locations). While the overlap between two
rectangles can be calculated if both the distance and direction of co-registration errors are known,
the direction of co-registration errors is seldom calculated or reported. Therefore, within our iterations
we estimated the expected proportion of overlap (PO) for each sample unit size, given the offsets used
to simulate co-registration errors.

For virtual images with no spatial correlation, we hypothesized a one-to-one relationship between
PO2 and the proportion of variation explained (R2). However, as spatial correlation increases within
images, we anticipate that the ratio between R2 and PO2 will be greater than one and will interact
with spatial correlation metrics. Additionally, we recognize that PO2 would be difficult to calculate in
practice given commonly reported horizontal rectifications. Therefore, when modeling the impact of
co-registration errors on R2 in the presence of spatial correlation, we used only sample unit size and
GMI as predictors and beta regression with a logit link [44]. Similar in concept to logistic regression,
beta regression was developed to work with observations between zero and one, and is typically used
to characterize natural rates or proportions on a continuous scale. Using a logit link, our proposed
model takes the following form:

ln
(

R2

1− R2

)
= β0 + β1 f (|samlpe unit|) + B2g(GMI) + β3 f (|sampleunit|) ∗ g(GMI) (4)

where f () and g() are known transformations of the sample unit size and image GMI, respectively,
and the βk are parameters estimated from the data. Transformations of predictor variables were
determined based on graphical analyses. While we anticipated needing sample unit size, GMI,
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and their interaction to estimate R2, we also evaluated nested models using only sample unit size and
GMI. All beta regression models were compared using Akaike’s information criterion (AIC) [45,46].

3. Results

3.1. Datasets

Estimated mean DN, sill, and nugget and maximum range values varied by image (Table 1).
While most of these characteristics varied substantially by data source due to pixel depth (Landsat
16-bit pixel depth versus NAIP 8-bit pixel depth), range values, measured in cells, were quite similar.
Using the average DN, sill, and nugget and maximum range values of each data source, we created
nine virtual Landsat images and ten virtual NAIP images of varying spatial correlation (Figure 5).
It should be noted that virtual image GMI values were less than actual image GMI values, suggesting
that there was less positive spatial correlation in the virtual images than in the actual images. However,
the range of simulated autocorrelations produced virtual images with a variety of spatial structures
and aggregated patterns that closely resembled patterns found within homogenous patches of actual
images (Figure 2 zoomed-in examples and Figure 5). Generally, the boundaries between patches
representing different DN values within the virtual images were not as sharp when compared to the
base images. However, the patterns created in the virtual images provide an objective way to evaluate
varying levels of spatial correlation.
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3.2. Stage I

Comparisons in stage I indicate that increasing the spatial footprint of a sample unit can mitigate
the effects of co-registration errors on predictive models. On average, horizontal shifts between L1 and
L2 locations were 1.6 and 7.8 cells for Landsat 8- and NAIP-based images, respectively. For all images
and bands analyzed, the extent of the sample unit was strongly related to the magnitude of deviation
from the anticipated one-to-one regression relationship (intercept, slope, and R2 equal to 0, 1, and 1,
respectively). Linear models derived from raster datasets with large spatial correlation, in terms of
range or GMI, produced slope and intercept estimates closer to 1 and 0, respectively (less attenuation),
than raster datasets, with less spatial correlation for both Landsat- and NAIP-based datasets (Figures 6
and 7). While larger sample unit sizes reduced attenuation bias, for spatial correlation ranges above
30 cells, sample unit sizes greater than approximately 9 and 40 cells for Landsat- and NAIP-based
images, respectively, appear to produce only marginal reductions in parameter bias or improvements
in R2. For NAIP-based imagery, this suggests that a field plot with an extent as large as 40 m by 40 m
might be required to mitigate the effects of co-registration errors between NAIP imagery and GPS
locations. Similarly, for Landsat-based images a field plot with an extent as large as 270 m by 270 m
may be required to mitigate model error introduced by co-registration error.Remote Sens. 2019, 11, 222 9 of 22 
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spatial correlation (Range), given an average image registration error of 1.6 cells and an average
GPS navigational unit error of 0.23 cells. Actual Landsat image regression statistics are shown in
Appendix C (Figure A1).
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correlation (Range), given average raster and GPS registration errors of 6 and 7 cells respectively.
Actual NAIP image regression statistics are shown in Appendix C (Figure A2).

3.3. Stage II

Comparisons in stage II had similar trends as found in stage I, and verify that subsampling
intensity and layout also impacted the amount of variation explained by models in the Pall subsampling
scenario. For sample unit sizes between 20 and 50 cells and 5 and 20 cells for NAIP- and Landsat-based
imagery, respectively, larger proportions of the area subsampled within a sample unit consistently
explained more variation within the data, and produced smaller RMSE across all levels of spatial
correlation and data sources. After the proportion of area subsampled reached approximately 80%
of the plot extent (Psub), R2 appeared to differ only marginally relative to the R2 associated with Pall
(Figure 8). This was also the case for RMSE. Across all subsampling intensities and sample unit sizes,
the worst-performing subplot layouts were Rnd 4, FIA 4, and Sys 5. Subplot layouts One, Sys 4,
and Sys 9 produced similar results, especially when the proportion of area measured within the plot
extent was greater than 75%. As expected, Psub generally produced better results than Pall, given that
the response and predictor variables shared the same spatial configurations. However, there was little
difference between Psub and Pall subsampling techniques when greater than 80% of the plot extent
was measured. As one might expect, smaller subsampling intensities (<20% of the sample unit extent)
substantially reduce R2 in our linear models. In some cases, when subsampling intensity and spatial
correlation was small, the reduction in R2, compared to measuring all the area within a plot extent, was
greater than 60%. However, for actual Landsat 8 and NAIP images, which have relatively high levels
of spatial correlation, the reduction in variation ranged from approximately 0.4% to 30%, depending
on the data source, subsampling intensity, spatial correlation, and co-registration errors (Appendix C,
Figures A3 and A4). Similar to stage I simulations, increased amounts of spatial correlation generally
dampened the negative effects of co-registration errors in stage II simulations. Additionally, this same
dampening effect carried over to subsampling intensities when estimating means for all cells within a
sample unit extent of a predictor variable.
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Figure 8. Reduction in the proportion of variation explained (R2) for Landsat 8 and NAIP virtual
images by subsample intensity (Proportion of Extent), sample unit size (in cells), and spatial correlation
(Range) using SYS 4 and Pall subsampling layout. Figures A3 and A4 in Appendix C show actual
Landsat 8 and NAIP image reductions.

3.4. Model Fitting

Regressed mean DN values for L1 and L2 locations in both simulations indicate that co-registration
errors can have substantial impacts on model fit, and can bias DN estimates. Globally, across the extent
of each image, estimates of mean DN were necessarily unbiased. However, local estimates tended to
over- or under-estimate DN values that were respectively smaller or larger than the mean (attenuation).
The degree of attenuation in our models, identified by deviations from theoretical intercept and slope,
was strongly related to both the spatial extent of an observation (sample unit size) and the spatial
correlation of predictor variables (Figures 6 and 7).

For completely independent virtual images, the amounts of variation explained in our linear
models were closely related to PO2 (Table 2, Figure 9). For both Landsat 8- and NAIP-based imagery
with average co-registration errors of 1.6 and 7.8 cells, respectively, R2 and PO2 closely followed a
one-to-one ratio. For images with spatial correlation, exploratory analysis revealed that sample unit
size and GMI did not appear to be linearly related to the logit of R2. However, the natural log of sample
unit size (LSS) and the exponentiation of GMI (EGMI) did appear to be linearly related to R2. Therefore,
we included LSS and EGMI in our suite of models for comparison (Table 3). Our top fitting models
were statistically significant (p-value < 0.001), and included LSS, GMI, and the interaction between LSS
and GMI for both Landsat 8- and NAIP-based images (Table 4). RMSE values for top-fitting Landsat
8 and NAIP models were 0.019 and 0.089, respectively (expressed on the scale of R2). Regression
diagnostics of our top-fitting models are shown in Appendix A, Figure A5. Untransformed, observed
versus predicted R2 followed a one-to-one relationship for both Landsat- and NAIP-based imagery
(Figure 10), and the latter was constrained to fall between 0 and 1, with more variation occurring
within the middle portion of the observed domain, as expected.
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Table 2. Linear regression statistics for 19 independently random images, given the average proportion
of overlap (PO) determined by sample unit size and simulated co-registration errors.

Model Equation Slope R2 RSE F-Stat P-Value

Landsat 8 R2 = 0 + PO2 1.008 0.9984 0.03456 11440 <0.001
NAIP R2 = 0 + PO2 1.035 * 0.9983 0.02364 10330 <0.001

* Statistically different than one at α = 0.01.
Remote Sens. 2019, 11, 222 12 of 22 
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Figure 9. Scatter plot of proportion of variation explained (R2) versus the squared proportion of
overlap between L1 and L2 locations, given various sample unit sizes, independent random surfaces,
and Landsat 8 and NAIP horizontal registration errors. The gray diagonal line is a one-to-one line,
for the purpose of comparison.

Table 3. Suite of potential models and their associated AIC and ∆AIC values. Interaction term denoted
by * specifies a full interaction model.

Model Rank Source Predictors AIC ∆AIC

1 6 Landsat 8 sample unit size −1723.823 −651.018
2 4 Landsat 8 sample unit size + GMI −1920.781 −454.06
3 3 Landsat 8 sample unit size ∗ GMI −1938.580 −436.261
4 5 Landsat 8 ln(sample unit size) −1870.267 −504.574
5 2 Landsat 8 ln(sample unit size) + eGMI −2368.824 −6.017
6 1 Landsat 8 ln(sample unit size) ∗ eGMI −2374.841 0
1 6 NAIP sample unit size −1086.606 −681.595
2 5 NAIP sample unit size + GMI −1469.469 −298.732
3 3 NAIP sample unit size ∗ GMI −1494.508 −273.693
4 4 NAIP ln(sample unit size) −1193.989 −574.212
5 2 NAIP ln(sample unit size) + eGMI −1728.674 −39.527
6 1 NAIP ln(sample unit size) ∗ eGMI −1768.201 0

Table 4. Beta regression coefficients and statistics for top fitting Landsat 8 and NAIP based images
given natural log sample unit size (LSS), exponent of global Moran’s index (EGMI), interaction between
LSS and EGMI, and simulated average co-registration errors.

Model N Intercept + LSS + EGIM + EGMI * LSS + Pseudo R2 [45] P-Value

Landsat 8 304 −3.743 1.089 2.423 −0.085 0.918 <0.001
NAIP 570 −9.364 1.883 3.481 −0.419 0.8255 <0.001

+ Statistically different from zero at α = 0.01.
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associated with Landsat 8 and NAIP imagery and virtual imagery, given various sample unit sizes,
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4. Discussion

Through our simulations, we have documented that spatial co-registration errors produce
attenuation bias in linear models (Figures 6 and 7). For studies that relate field data located using GPS
to geo- or ortho-rectified remotely sensed data, this bias will manifest in regression coefficients biased
toward 0 and regression estimates trending towards the sampled mean value of the variable of interest
(Appendix C, Table A1). While every attempt to minimize the amount of co-registration error should
be taken, technical and financial limitations often make it impractical to completely remove this source
of error. Due to these limitations, we explored the impacts of spatial aggregation of observational units
on model performance when predictor variables have spatial co-registration errors.

Our findings demonstrate that increasing the spatial extent of sample units can help to reduce
the impacts of imperfect co-registration. This result further verifies that larger field plots can mitigate
the effects of co-registration error found by others [29,30,47,48]. However, when choosing the extent
of a field sample unit, one must take into consideration practical issues associated with the costs
of implementation and measurement, as well as the fact that large field sampling units can have a
smoothing effect on spatial variability [29]. Moreover, subsampling within the extent of a field plot,
regardless of the subplot layout, introduces addition variability into the predictive models, and should
be used sparingly when spatially relating field measurements to remotely sensed information.

Given the sample unit sizes, co-registration errors, and spatial correlation we investigated,
we recommend selecting a field plot extent large enough to substantially reduce bias in linear regression,
while also keeping the extent of the field plot as small as possible to retain spatial detail. In the case of
NAIP imagery, this recommendation would correspond to a field plot with an area between 400 m2 and
1600 m2. For Landsat 8 imagery, this recommendation corresponds to a field plot with an area between
8100 m2 and 72,900 m2. Fortunately, most NAIP and Landsat 8 images have a large degree of spatial
correlation, suggesting that the lower end of these recommendations may suffice in mitigating the
impacts of co-registration errors. For other sources of remotely sensed information that have different
co-registration errors, simulations similar to those presented in this study should be completed to help
determine suitable field plot extents and sampling intensities.

If subplots are used to estimate mean values within the extent of a sample unit, it is important
that the subplot layout covers as much of the area within the extent of the sample unit as possible.
For NAIP imagery, we recommend measuring 75% or more of the sample unit area to minimize the
negative effects of subsampling. When it is too costly to measure 75% of the area within a sample unit,
a tradeoff between cost and precision must made. In this situation, collecting more sample units with
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less than 75% of the subsample area measured can help to offset the losses in precision associated with
subsampling (Figure 9). Additionally, when subsampling is used, layouts should be chosen such that
there is no overlap among subplots, such as layout Sys 4 from our study (e.g., Figure 11).Remote Sens. 2019, 11, 222 14 of 22 

 

 

Figure 11. Example of a recommended field plot size and layout for NAIP imagery. 

While Equation 4 and the coefficients from Table 4 can be used to help guide the size of a field 

plot needed to mitigate the negative impacts of co-registration (Table A2), they should be interpreted 

as a best-case scenario. Specifically, our simulations were developed under the premise that there 

was a perfect one-to-one relationship between response and predictor variables. In many applications 

this will not be the case, and co-registration errors will be coupled with model error. To decouple co-

registration errors from model errors, model coefficients can be dis-attenuated [26, 49]. Within that 

context, simulations similar to the ones performed in our study, which use a random sample of the 

predictor variables and regress those values against shifted locations, can be used to estimate a ratio 

adjustment factor for model coefficients, as described by Forest and Thompson [49]. The 

Supplemental Materials B section provides examples of R coding that can be used to simulate co-

registration errors and determine ratio adjustment factors.  

Fortunately, most remotely-sensed images have relatively high levels of spatial correlation, 

which in turn dampens the impacts of co-registration errors. In our study, we evaluated the effects 

of co-registration on model error for levels of spatial correlation that spanned independent random 

landscapes, to those commonly found in terrestrial environments. For all actual landscapes used in 

our study, the minimum spatial correlation found had a GMI value of 0.93. Interestingly, virtual 

images with ranges comparable to actual image ranges had corresponding GMI values that were 

substantially less than those found in the actual images. This is likely due to the dramatic transitions 

found between land use and cover types that can occur within actual landscapes (e.g., a forest 

bounded by grass lands). This further suggests that natural landscapes have more localized spatial 

correlation than our virtual landscapes, and that edges between land use and cover types constitute 

a substantial amount of the overall area within an image. Because these edge areas can make up a 

substantial component of the landscape, it is important that they are included in future investigations 

that use simulated landscapes, and more importantly, model training. Mapping endeavors that omit 

these transition areas from training sets do so at the cost of extrapolating model results to potentially 

large portions of an image. 

5. Conclusions 

In this study, we looked at the impacts of co-registration errors on model prediction. We found 

that increasing field plot size helps to mitigate the negative impacts of co-registration errors by 

reducing attenuation bias. Additionally, we identified that increased positive spatial correlation 

within imagery reduces the negative impacts of co-registration for a given sample unit size. Finally, 

we presented a simulation methodology that can be easily applied to remotely sensed data that both 

quantifies the impact of co-registration on model prediction and can be used to estimate 

Figure 11. Example of a recommended field plot size and layout for NAIP imagery.

The actual extent of a sampling unit should depend on the amount of co-registration error,
the spatial correlation within the imagery, and the amount of model error one is willing to accept.
For readily available Landsat and NAIP imagery, their reported horizontal accuracies, and their
estimated spatial correlations, we can estimate the co-registration error-induced reduction in variation
explained by linear regression for various sample unit sizes (Equation (4) and Table 4). From these
estimates, one can select a sample unit extent that both reduces estimation bias and quantifies error
in predictor variables due to co-registration. For example, if a project was to use NAIP imagery with
a sample unit size of 20 cells (field plot extent of 400 m2) and an estimated GMI of 0.92, then one
would expect the logit of R2 to be approximately 1.744, and the loss in predictive ability associated
with co-registration errors to be 1 − R2 = 0.149.

While Equation (4) and the coefficients from Table 4 can be used to help guide the size of a field
plot needed to mitigate the negative impacts of co-registration (Appendix C, Table A2), they should be
interpreted as a best-case scenario. Specifically, our simulations were developed under the premise
that there was a perfect one-to-one relationship between response and predictor variables. In many
applications this will not be the case, and co-registration errors will be coupled with model error.
To decouple co-registration errors from model errors, model coefficients can be dis-attenuated [26,49].
Within that context, simulations similar to the ones performed in our study, which use a random
sample of the predictor variables and regress those values against shifted locations, can be used to
estimate a ratio adjustment factor for model coefficients, as described by Forest and Thompson [49].
Appendix B provides examples of R coding that can be used to simulate co-registration errors and
determine ratio adjustment factors.

Fortunately, most remotely-sensed images have relatively high levels of spatial correlation, which
in turn dampens the impacts of co-registration errors. In our study, we evaluated the effects of
co-registration on model error for levels of spatial correlation that spanned independent random
landscapes, to those commonly found in terrestrial environments. For all actual landscapes used in our
study, the minimum spatial correlation found had a GMI value of 0.93. Interestingly, virtual images
with ranges comparable to actual image ranges had corresponding GMI values that were substantially
less than those found in the actual images. This is likely due to the dramatic transitions found between
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land use and cover types that can occur within actual landscapes (e.g., a forest bounded by grass lands).
This further suggests that natural landscapes have more localized spatial correlation than our virtual
landscapes, and that edges between land use and cover types constitute a substantial amount of the
overall area within an image. Because these edge areas can make up a substantial component of the
landscape, it is important that they are included in future investigations that use simulated landscapes,
and more importantly, model training. Mapping endeavors that omit these transition areas from training
sets do so at the cost of extrapolating model results to potentially large portions of an image.

5. Conclusions

In this study, we looked at the impacts of co-registration errors on model prediction. We found that
increasing field plot size helps to mitigate the negative impacts of co-registration errors by reducing
attenuation bias. Additionally, we identified that increased positive spatial correlation within imagery
reduces the negative impacts of co-registration for a given sample unit size. Finally, we presented
a simulation methodology that can be easily applied to remotely sensed data that both quantifies
the impact of co-registration on model prediction and can be used to estimate measurement error in
predictor variables. Using our plot size recommendation and components of the simulation techniques
described, estimation bias can be mitigated, which in turn should help managers to precisely define
the complex spatial relationships needed to promote spatially informed decision making.
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Appendix A

The relationship between the proportion of overlapping area between two square sampling units
offset by a specified direction and distance (PO) and Pearson’s correlation.

Let X(p) be the DN value of pixel p in a random raster and X(p) = µ + e(p) where e(p) are offsets
from the mean DN µ with expected value 0 and variance σ2

e . Then let X(b) be the mean DN value of a
block b of pixels. Denote the size (in pixels) of b by |b|. Then

X(b) = |b|−1 ∑
pεb

X(p) = µ + |b|−1 ∑
pεb

e(p) (5)

For blocks selected uniformly at random, the expected value of X(b) is µ and its variance is
|b|−1 σ2

e provided that e(p) are uncorrelated (but var[X(b)] > |b|−1 σ2
e if there is positive spatial

autocorrelation among the e(p)). The covariance between any X(b) and X(b’) is

cov
[
X(b), X

(
b′
)]

= E
[
e(b)e

(
b′
)]

(6)

=
1

|b|2
E

(∑
pεb
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e (8)
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with equality holding only if the e(p) are spatially uncorrelated.
Co-registration error can be simulated by shifting the original raster X by some random amount,

resulting in a shifted raster Y where Y(p) = X(p’) and thus Y(b) = X(b’). If the e(p) are spatially
uncorrelated, then

cov
[
X(b), X

(
b′
)]

= cov
[
X
(
b′
)
, X(b)

]
=
|b ∩ b′|
|b|2

σ2
e . (9)

Furthermore,

corr[Y(b), X(b)] =
cov[X(b′), X(b)]√

var[X(b′)]var[X(b)]
=
|b ∩ b′||b|−2σ2

e

|b|−1σ2
e

=
|b ∩ b′|
|b| (10)

where the last quantity is the proportion of the original block b that is overlapped by the shifted block
b’. As a result, the coefficient of determination (R2) obtained by regressing Y(b) on X(b) will be directly
related to the proportion of block overlap:

R2 = (corr[Y(b), X(b)])2 =

(
|b ∩ b′|
|b|

)2

(11)

Appendix B

R code developed to perform all analyses and simulations within the study.
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Table A1. Examples of remote sensing applications impacted by co-registration errors and the impact
on model fit and estimates.

Application Data Source Impact on Model Fit and Estimates

Mapping forest characteristics
using models derived from field
data and remotely sensed data.

Landsat imagery

Attenuated estimates and reduction in model fit.
The amount depends on the spatial correlation

within the imagery, the co-registration error
between imagery and field data, and the spatial
extent of the field data observations (Table A2).

NAIP imagery

Attenuated estimates and reduction in model fit.
The amount depends on the spatial correlation

within the imagery, the co-registration error
between imagery and field data, and the spatial
extent of the field data observations (Table A2).

Other remotely sensed data.

Attenuated estimates and reduction in model fit.
The amount depends on the spatial correlation

within the imagery, the co-registration error
between imagery and field data, and the spatial

extent of the field data observations.

Change detection derived from
multiple images of a given area. Satellite and aerial based imagery Attenuated estimates and reduction in model fit.

Image radiometric normalization Satellite and aerial based imagery Attenuated estimates and reduction in model fit.

Image segmentation Attenuated outputs
Less variation in estimated values potentially

reducing the accuracy of the
segmentation process.

Practitioner use of attenuated
spatial data products derived from

field plots and remotely
sensed imagery.

Attenuated outputs

Mean estimates derived from the entire surface
will not be bias. Subsets of the derived surface

will be biased and will either over estimate
(values < mean) or under estimate

(values > mean) the true values.

Table A2. Estimated reduction in R2 (∆R2) for Landsat 8 and NAIP imagery given Equation (4), sample
unit size, GMI value, and published horizontal image and GPS errors.

Source Sample Unit Size
(Cells Wide) GMI ∆R2

Landsat 8 3 0.8 0.067
Landsat 8 5 0.8 0.043
Landsat 8 9 0.8 0.026
Landsat 8 3 0.9 0.040
Landsat 8 5 0.9 0.026
Landsat 8 9 0.9 0.016
Landsat 8 3 0.95 0.030
Landsat 8 5 0.95 0.019
Landsat 8 9 0.95 0.012

NAIP 20 0.8 0.226
NAIP 30 0.8 0.166
NAIP 40 0.8 0.131
NAIP 20 0.9 0.148
NAIP 30 0.9 0.109
NAIP 40 0.9 0.088
NAIP 20 0.95 0.116
NAIP 30 0.95 0.087
NAIP 40 0.95 0.070
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