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Abstract: Capsule networks can be considered to be the next era of deep learning and have
recently shown their advantages in supervised classification. Instead of using scalar values to
represent features, the capsule networks use vectors to represent features, which enriches the feature
presentation capability. This paper introduces a deep capsule network for hyperspectral image (HSI)
classification to improve the performance of the conventional convolutional neural networks (CNNs).
Furthermore, a modification of the capsule network named Conv-Capsule is proposed. Instead of
using full connections, local connections and shared transform matrices, which are the core ideas of
CNNs, are used in the Conv-Capsule network architecture. In Conv-Capsule, the number of trainable
parameters is reduced compared to the original capsule, which potentially mitigates the overfitting
issue when the number of available training samples is limited. Specifically, we propose two schemes:
(1) A 1D deep capsule network is designed for spectral classification, as a combination of principal
component analysis, CNN, and the Conv-Capsule network, and (2) a 3D deep capsule network is
designed for spectral-spatial classification, as a combination of extended multi-attribute profiles,
CNN, and the Conv-Capsule network. The proposed classifiers are tested on three widely-used
hyperspectral data sets. The obtained results reveal that the proposed models provide competitive
results compared to the state-of-the-art methods, including kernel support vector machines, CNNs,
and recurrent neural network.

Keywords: convolutional neural network (CNN); deep learning; capsule network; hyperspectral
image classification

1. Introduction

The task of classification, when it relates to hyperspectral images (HSIs), generally refers to
assigning a label to each pixel vector in the scene [1]. HSI classification is a crucial step for a
plethora of applications including urban development [2–4], land change monitoring [5–7], scene
interpretation [8,9], resource management [10,11], and so on. Due to the fundamental importance of
this step in various applications, classification of HSI is one of the hottest topics in the remote sensing
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community. However, the classification of HSI is still challenging due to several factors such as high
dimensionality, a limited number of training samples, and complex imaging situations [1].

During the last few decades, a huge number of methods have been proposed for HSI
classification [12–14]. Due to the availability of abundant spectral information in HSIs, lots of
spectral classifiers have been proposed for HSI classification including k-nearest-neighbors, maximum
likelihood, neural network, logistic regression, and support vector machines (SVMs) [1,15,16].

Hyperspectral sensors provide rich spatial information as well, and the spatial resolution is
becoming finer and finer along with the development of sensor technologies. With the help of spatial
information, classification performance can be greatly improved [17]. Among the spectral-spatial
classification techniques, the generation of a morphological profile is a widely-used approach, which is
usually followed by either an SVM or a random forest classifier to obtain the final classification
result [18–21]. As the extension of SVM, multiple kernel learning is another main stream of
spectral-spatial HSI classification, which has a powerful capability to handle the heterogeneous
features obtained by spectral-spatial hyperspectral images [22].

Due to the complex atmospheric conditions, scattering from neighboring objects, intra-class
variability, and varying sunlight intensity, it is very important to extract invariant and robust features
from HSIs for accurate classification. Deep learning uses hierarchical models to extract invariant and
discriminate features from HSIs in an effective manner and usually leads to accurate classification.
During the past few years, many deep learning methods have been proposed for HSI classification.
Deep learning includes a broader family of models, including the stacked auto-encoder, the deep belief
network, the deep convolutional neural network (CNN), and the deep recurrent neural network. All of
the aforementioned deep models have been used for HSI classification [23,24].

The stacked auto-encoder was the first deep model to be investigated for HSI feature extraction
and classification [25]. In [25], two stacked auto-encoders were used to hierarchically extract spectral
and spatial features. The extracted invariant and discriminant features led to a better classification
performance. Furthermore, recently, the deep belief network was introduced for HSI feature extraction
and classification [26,27].

Because of the unique and useful model architectures of CNNs (e.g., local connections and shared
weights), such networks usually outperform other deep models in terms of classification accuracy.
In [28], a well-designed CNN with five layers was proposed to extract spectral features for accurate
classification. In [29], a CNN-based spectral classifier that elaborately uses pixel-pair information was
proposed, and it was shown to obtain good classification performance under the condition of a limited
number of training samples.

Most of the existing CNN-based HSI classification methods have been generalized to consider both
spectral and spatial information in a single classification framework. The first spectral-spatial classifier
based on CNN was introduced in [30], which was a combination of principal component analysis
(PCA), deep CNN, and logistic regression. Due to the fact that the inputs of deep learning models
are usually 3D data, it is reasonable to design 3D CNNs for HSI spectral-spatial classification [31,32].
Furthermore, CNN can be combined with other powerful techniques to improve the classification
performance. In [33], CNN was combined with sparse representation to refine the learnt features.
CNNs can be connected with other spatial feature extraction methods, such as morphological profiles
and Gabor filtering, to further improve the classification performance [34,35].

The pixel vector of HSIs can be inherently considered to be sequential. Recurrent neural networks
have the capability of characterizing sequential data. Therefore, in [27], a deep recurrent neural
network that can analyze hyperspectral pixel vectors as sequential data and then determine information
categories via network reasoning was proposed.

Although deep learning models have shown their capabilities for HSI classification, some
disadvantages exist which downgrade the performance of such techniques. In general, deep models
require a huge number of training samples to reliably train a large number of parameters in their
networks. On the other hand, having insufficient training samples is a frequent problem in remotely
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sensed image classification. In 2017, Sabour et al. proposed a new idea based on capsules, which
showed its advantages in coping with a limited number of training samples [36]. Furthermore,
traditional CNNs usually use a pooling layer to obtain invariant features from the input data, but
the pooling operation loses the precise positional relationship of features. In hyperspectral remote
sensing, abundant spectral information and the positional relationship in a pixel vector are the crucial
factors for accurate spectral classification. Therefore, it is important to maintain the precise positional
relationship in the feature extraction stage. In addition, when it comes to extracting spectral-spatial
features from HSI, it is also important to hold the positional relationship of spectral-spatial features.
Moreover, most of the existing deep methods use a scalar value to represent the intensity of a feature.
In contrast, capsule networks use vectors to represent features. The usage of vectors enriches the
feature representation and is a huge progress and a much more promising method for feature learning
than scalar representation [36,37]. These properties of the capsule network perfectly align with the
goals of this study and the current demands in the hyperspectral community.

Deep learning-based methods, including deep capsule networks, have a powerful feature
extraction capability when the number of training samples is sufficient. Unfortunately, the availability
of only a limited number of training samples is a common bottleneck in HSI classification. Deep models
are often over-trained with a limited number of training samples, which downgrades the classification
accuracy on test samples. In order to mitigate the overfitting problem and lessen the feature extraction
workload of deep models, the idea of a local connection-based capsule network is proposed in this
study. The proposed Conv-Capsule network uses local connections and shared transform matrices
to reduce the number of trainable parameters compared to the original capsule, which potentially
mitigates the overfitting issue when the number of available training samples is limited.

In the current study, the idea of the capsule network is modified for HSI classification.
Two deep capsule classification frameworks, 1D-Capsule and 3D-Capsule, are proposed as
spectral and spectral-spatial classifiers, respectively. Furthermore, two modified capsule networks,
i.e., 1D-Conv-Capsule and 3D-Conv-Capsule, are proposed to further improve the classification accuracy.

The main contributions of the paper are briefly summarized as follows.

(1) A modification of the capsule network named Conv-Capsule is proposed. The Conv-Capsule
uses local connections and shared transform matrices in the network, which reduces the number
of trainable parameters and mitigates the overfitting issue in classification.

(2) Two frameworks, called 1D-Capsule and 3D-Capsule, based on the capsule network are proposed
for HSI classification.

(3) To further improve the HSI classification performance, two frameworks, called 1D-Conv-Capsule
and 3D-Conv-Capsule, are proposed.

(4) The proposed methods are tested on three well-known hyperspectral data sets under the condition
of having a limited number of training samples.

The rest of the paper is organized as follows. Section 2 presents the background of the deep
learning and capsule network. Sections 3 and 4 are dedicated to the details of the proposed deep
capsule network frameworks, including spectral and spectral-spatial architectures for HSI classification.
The experimental results are reported in Section 5. In Section 6, the conclusions and discussions
are presented.

2. Background

2.1. Convolutional Neural Networks

In general, CNN is a special case of deep neural network, which is loosely inspired by the
biological visual system [38]. Compared with other deep learning methods, there are two unique
factors in the architecture of the CNN, i.e., local connections and shared weights. Since each
neuron only responds to a small region known as the reception field, CNN efficiently explores the
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structure correlation. Furthermore, CNN uses the replicated weights and biases across the entire
layer, which significantly reduces the parameters in the network. By using specific architectures like
local connections and shared weights, CNN tends to provide better generalization for a wide variety
of applications.

There are three main building blocks in CNNs: A convolution layer, a nonlinear transformation,
and a pooling operation. By stacking several convolution layers with the nonlinear operations and
several pooling layers, a deep CNN can be established [39].

A convolutional layer can be defined as follows:

xl
j = f

(
∑M

i=1 xl−1
i ∗ kl

ij + bl
j

)
, (1)

f (x) = max(0, x), (2)

where matrix xl−1
i is the i-th feature map of the previous (l-1)-th layer, xl

j is the j-th feature map of the

current l-th layer, and M is the number of input feature maps. kl
ij and bl

j are randomly initialized and
set to zero. Furthermore, f (·) is a nonlinear function known as the rectified linear unit (ReLU), and ∗
is the convolution operation [40].

The pooling operation offers invariance by reducing the resolution of the feature maps. The neuron
in the pooling layer combines a small N × N (e.g., N = 2) patch of the convolution layer. The most
common pooling operation is max pooling.

All parameters in the deep CNN model are trained using the back-propagation algorithm.
In this study, CNN is adopted as the feature extraction method, and the extracted features are fed

to the deep capsule network for further processing.

2.2. Capsule Network

The capsule network is a modification of the traditional neural network, which uses a group of
neurons to obtain the vector representations of a specific type of entity.

In [36], the input to a capsule sj is a weighted sum of prediction vector uj|i from the previous
layers. uj|i is obtained by multiplying ui of the previous capsule by a transform matrix Wij,

sj = ∑i cijuj|i, (3)

uj|i = Wijui (4)

where cij represents the coupling coefficients determined by a processing called dynamic routing [36].
The capsule uses the length of the output vector to obtain the probability of the entity, and then, a

nonlinear function which we call squash function is used to squash the vector,

vj =
||sj||2

1 + ||sj||2
sj

||sj ||
, (5)

where vj is the output of capsule j, which is a vector representation of the input, while the traditional
neural network uses a scalar value to give the final probability of the entity. There are some advantages
when we use a vector representation instead of a scalar value. The vector representation uses the
length of the activity vector to obtain the probability of the entity, and the vector representation gives
the orientation of the entity too. In traditional CNNs, a pooling layer is used to make the network
invariant to small changes in inputs, but the effectiveness is limited [37]. CNNs are not robust to
translation, rotation, and scale, which usually downgrades their classification performance. In the
capsule network, the output of the capsule is a vector representation of a type of entity [36]. When
changes occur on the entity, the length of the corresponding output vector of the capsule may not
change greatly. Through the capsule network, we can obtain a more robust representation of the input.
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2.3. Capsule Network for HSI Classification

The capsule network can be combined with the traditional neural network (e.g., CNN) to formulate
a classification system for a specific task (e.g., HSI classification). In the remote sensing community,
two works have already adopted the capsule networks for HSI classification. Paoletti et al. [41] and
Deng et al. [42] adopted the capsule network for HSI classification and achieved good classification
performance. In this context, Paoletti et al. proposed a spectral-spatial capsule network to capture
high abstract-level features for HSI classification while reducing the network design complexity. The
classification result in [41] demonstrates that the proposed method can extract more relevant and
complete information about HSI data cubes. Deng et al. presented a modified two-layer capsule
network capable of handling a limited number of training samples for HSI classification.

Previous capsule networks contained a fully-connected capsule layer, which led to lots of trainable
parameters. As we all know, having lots of parameters may cause an overfitting problem with a limited
number of training samples. In this study, an improved capsule network named Conv-Capsule, which
uses local connections and shared transform matrices in the network, is proposed. Conv-Capsule
dramatically reduces the number of trainable parameters and mitigates the overfitting issue in HSI
classification. Furthermore, the previous capsule networks for HSI classification are spectral-spatial
classifiers. In this study, a 1D capsule network is also proposed as a spectral classifier to enrich the
classification techniques of HSI. The details of our proposed methods are explicitly explained in
Sections 3 and 4.

3. One-Dimensional Deep Capsule Network as a Spectral Classifier

3.1. One-Dimensional Convolutional Capsule

Deep learning models use multilayer neural networks to hierarchically extract the features of input
data, which is the key factor for effectiveness in deep learning-based methods. The traditional capsule
network does not contain multiple capsule layers. Therefore, it is necessary to build a multilayer
capsule network.

The simple stacking of capsule layers can develop a deep capsule network. However, the
traditional capsule layer is fully connected and contains a huge number of trainable parameters.
The problem is even worse when the number of training samples is limited. Inspired by the CNN,
local connections and shared transform matrices, which are the core ideas of CNN, are combined
with the dynamic routing algorithm in the capsule layer, and we call it the convolutional capsule
(Conv-Capsule) layer. In the Conv-Capsule layer, each capsule in the current layer only connects with
capsules within its local receptive field in the last capsule layer. The transform matrices in the local
connections are shared across the entire layer.

In HSI classification, spectral classification is an important research direction. To develop a
1D capsule network for HSI classification, a 1D Conv-Capsule layer needs to be utilized. Here is a
description of the 1D Conv-Capsule layer which we use here to shape the spectral classifier. The input
of a capsule sx

j in a 1D Conv-Capsule layer is a weighted sum of the “prediction vector” ux+p
j|i from

all channels of the capsule within its receptive field in the last capsule layer. Furthermore, ux+p
j|i is

obtained by multiplying ux+p
i from the capsule in the last layer by the corresponding transform matrix

Wp
ij which is shared across the last capsule layer. By using a squash function, the output of the capsule

vx
j can be obtained from the input sx

j . The equations used here are listed as follows:

ux+p
j|i = Wp

ij u
x+p
i , (6)

sx
j = ∑I

i=1 ∑P−1
p=0 cp

iju
x+p
j|i , (7)

vx
j = squash

(
sx

j

)
, (8)
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where I and P are the number of capsule channels in the last capsule layer and kernel size in the
current 1D Conv-Capsule layer. sx

j is the input of the j-th channel capsule at position x in the current

1D Conv-Capsule layer, and vx
j is the corresponding output. ux+p

i is the output of the i-th channel

capsule at position (x + p) in the last capsule layer. Wp
ij is the transform matrix between ux+p

i and vx
j .

cp
ij represents the coupling coefficients determined by the dynamic routing algorithm. An illustration

of the 1D Conv-Capsule layer is shown in Figure 1.

Figure 1. One-dimensional Conv-Capsule layer.

3.2. Dynamic Routing Algorithm in 1D Conv-Capsule layer

Between two consecutive capsule layers, we use the dynamic routing algorithm to iteratively
update coupling coefficients. The details about the procedure of the dynamic routing algorithm in 1D
Conv-Capsule layer are described as follows:

From the description of the 1D Conv-Capsule in the last subsection, we know that each capsule
in the current 1D Conv-Capsule layer receives “prediction vectors” from the capsules within its
receptive field in the last capsule layer. The weight of each “prediction vector” is represented by
coupling coefficients. The coupling coefficients between capsule ux+p

i in the last capsule layer and all
channels capsules at the same position in the 1D Conv-Capsule layer sum to 1 and can be obtained by
a softmax function,

cp
ij =

exp
(

bp
ij

)
∑k bp

ik
, (9)

where bp
ij is initialized to 0 before the training begins and is determined by the dynamic routing

algorithm.
In the dynamic routing algorithm, the coefficient bp

ij is iteratively refined by measuring the

agreement between the “prediction vector” ux+p
j|i and vx

j . If the agreement is reached to a great extent,

capsule ux+p
i makes a good prediction for capsule vx

j . Then, the coefficient bp
ij will be significantly

increased. In our network, the agreement is quantified as the inner product between two vectors ux+p
j|i

and vx
j . This agreement is added to bp

ij:

ap
ij = ux+p

j|i ·v
x
j , (10)

bp
ij ← bp

ij + ap
ij, (11)

The pseudo codes of the dynamic routing algorithm in the 1D Conv-Capsule layer are shown in
Table 1.
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Table 1. Dynamic Routing Algorithm in 1D Conv-Capsule layer.

Algorithm 1. Dynamic Routing Algorithm in 1D Conv-Capsule layer

1. begin
2. for x in spectral dimension in current capsule layer
3. for j-th channel capsule in current capsule layer
4. for p across kernel size
5. for i-th channel capsule in last capsule layer
6. initialize coupling coefficients bp

ij
7. for r iterations
8. cp

ij = so f tmax
(

bp
ij

)
across dimension j

9. for j-th channel capsule in current capsule layer
10. sx

j = ∑I−1
i=0 ∑P−1

p=0 cp
ijW

p
ij u

x+p
i

11. vx
j = squash

(
sx

j

)
12. bp

ij ← bp
ij + vx

ijW
p
ij u

x+p
i

13. return vx
j

14. end

3.3. One-Dimensional Capsule Framework for HSI Classification

The main framework of the 1D-Conv-Capsule network, which is based on the integration of
principal component analysis (PCA), convolutional neural network, and the capsule network, is shown
in Figure 2. We build this framework based on HSI spectral features and only use spectral vectors of
the training data to train the model.

Figure 2. The framework of the 1D-Conv-Capsule network for hyperspectral image (hsi) classification.

As illustrated in Figure 2, PCA is first used to reduce the dimensionality of the input data [43],
which leads to fewer trainable parameters in the network. Then, m principal components of each pixel
are chosen as the inputs to the network. Through the capsule network, the predicted label of each pixel
can be obtained.

The proposed 1D-Conv-Capsule network contains six layers. The first layer is an input layer
which has m principal components for each pixel. The second and third layers are convolutional layers,
which are the same as traditional convolutional layers in a CNN. The fourth layer is the first capsule
layer with I channels of convolutional d1 dimension capsules, which means that each capsule contains
d1 convolutional units. The fifth layer is a 1D Conv-Capsule layer which outputs J channels of d2

dimension capsules. The last layer is a fully connected capsule layer that has n_class (n_class is the
number of classes) d3 dimensional capsules. Each capsule in the last layer represents one class, and
it is called the ClassCaps layer for short. The length of the vector output of each capsule represents
the probability of the input spectral vector belonging to each class. ||L2 || in Figure 2 is the Euclidean
norm of a vector (i.e., the length of the vector). Some details about the network are given below.
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In the first two convolutional layers, which have no difference with traditional convolution layers,
we use a leaky rectified linear unit (LeakyReLU) to obtain a nonlinear mapping [44],

f (x) =

{
x, x ≥ 0

αx, x < 0
, (12)

where α is a small positive scalar value.
The fourth layer is a transition layer and is also the first capsule layer. This layer translates

convolutional units to capsules. Although convolution is still a fundamental operation in this layer,
it has many differences with the traditional convolutional layer. In a traditional convolutional layer,
the output of each channel’s convolution is one feature map. In the convolutional capsule layer, each
channel outputs p (i.e., the number of neural units each capsule contains) feature maps. Then, p
convolutional units in the same location of the p feature map represent one capsule. The activation of
these convolutional units gives an output of each capsule using Equation (6).

In the second, third, and fourth layers, the convolution operation is followed with batch
normalization (BN) and LeakyReLU activation function [45]. There is no pooling operation in the
proposed network.

The fifth layer is a 1D Conv-Capsule layer. Local connections and shared transform matrices are
used in this layer. We use the dynamic routing algorithm described in the last section to iteratively
update coupling coefficients. Then, we can get the output of the capsule in this layer.

The last layer, which we call ClassCaps layer, is a fully connected capsule layer. The dynamic
routing algorithm is also used in this layer.

Each capsule in the ClassCaps layer represents one class. The probability of a pixel belonging to
one class is denoted by the length of the vector output of each capsule. In our network, we use the
margin loss as the loss function,

LM = ∑n_class
j=1 [Tjmax

(
0, m+ − ||vj ||

)2
+ λ

(
1− Tj

)
max

(
0, ||vj|| −m−

)2
], (13)

where Tj = 1 if the pixel belongs to class j. The parameter m+ means that if the length of the vector
output ||vj || is bigger than m+, we can make sure the pixel belongs to class j. The parameter m−

means that when ||vj || is smaller than m−, we can firmly believe the pixel does not belong to class j.
The loss for the class that the pixel does not belong to may stop the initial learning from shrinking the
length of vector output for all capsules in the ClassCaps layer. So λ is used to down-weight it.

4. Three-Dimensional Deep Capsule Network as a Spectral-Spatial Classifier

4.1. Three-Dimensional Convolutional Capsule

The 1D capsule network only extracts spectral features for HSI classification. To obtain an excellent
classification performance, spatial information should be taken into consideration. Therefore, we
further develop the 3D capsule network for HSI classification. A 3D Conv-Capsule layer is used in the
3D capsule network and is described below.

For each capsule in the 3D Conv-Capsule layer, all capsules in its receptive field make a prediction
through the transform matrix. Then, the weighted sum of all “prediction vectors” serves as the input
of the capsule. Finally, the input vector is squashed by a nonlinear function (i.e., squash function) to
generate the output of the capsule. The detailed equations are listed below:

u(x+p)(y+q)
j|i = Wpq

ij u(x+p)(y+q)
i , (14)

sxy
j = ∑I

i=1 ∑P−1
p=0 ∑Q−1

q=0 cpq
ij u(x+p)(y+q)

j|i , (15)
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vxy
j = squash

(
sxy

j

)
, (16)

where I is the number of capsule channels in the last capsule layer. P and Q represent the kernel size.
Furthermore, u(x+p)(y+q)

i is the output of the capsule which is the i-th channel’s capsule in the last
capsule layer at position (x + p, y + q). In addition, Wpq

ij is the shared transform matrix between the i-th
channel capsule in the last capsule layer and the j-th channel capsule in the current Conv-Capsule layer.
cpq

ij represents the corresponding coupling coefficients determined by the dynamic routing algorithm.
Figure 3 shows an illustration of the 3D Conv-Capsule layer.

Figure 3. Three-dimensional Conv-Capsule layer.

The dynamic routing algorithm in the 3D Conv-Capsule layer is similar to the one in the 1D
Conv-Capsule layer. The pseudo codes are shown in Table 2.

Table 2. Dynamic Routing Algorithm in 3D Conv-Capsule layer.

Algorithm 2. Dynamic Routing Algorithm in 3D Conv-Capsule layer

1. begin
2. for x in width dimension in current capsule layer
3. for y in height dimension in current capsule layer
4. for j-th channel capsule in current capsule layer
5. for p across kernel width
6. for q across kernel height
7. for i-th channel capsule in last capsule layer
8. initialize coupling coefficients bpq

ij
9. for r iterations
10. cpq

ij = so f tmax
(

bpq
ij

)
across dimension j

11. for j-th channel capsule in current capsule layer

12. sxy
j = ∑I

i=1 ∑P−1
p=0 ∑Q−1

q=0 cpq
ij Wpq

ij u(x+p)(y+q)
i

13. vxy
j = squash

(
sxy

j

)
14. bpq

ij ← bpq
ij + vxy

ij Wpq
ij u(x+p)(y+q)

i
15. return vxy

j
16. end
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4.2. Three-Dimensional Capsule Framework for HSI Classification

The main framework of the 3D-Conv-Capsule network is shown in Figure 4. Different from the
1D-Conv-Capsule network which extracts spectral features only, the spatial information of HSIs is also
taken into consideration.

Figure 4. The framework of the 3D-Conv-Capsule network for HSI classification.

From the framework shown in Figure 4, it can be seen that, first, EMAP (Extended Multi-Attributes
Profile) is used as a preprocessing technique, which significantly reduces the dimensionality of the
inputs and the number of training parameters. Then, a× a neighbors of each pixel, as the input 3D
images, are imported to the 3D-Conv-Capsule network. Through the network, each pixel gets n_class
(i.e., the number of classes) d3 dimension capsules. Each capsule represents a class of entity. The length
of the output vector of each capsule shows the probability that the corresponding entity exists. In other
words, it represents the probability of the pixel belonging to each class. Therefore, the classification
results can be obtained by calculating the length of the vectors.

Attribute profiles (APs), the basis of EMAP, are a generalization of the widely used morphological
profiles (MPs) [20]. EMAP uses multiple morphological attributes to replace the fixed structure
elements, which enables the EMAP to model the spatial information more accurately.

In order to extract spatial information more comprehensively, different kinds of attribute can
be used. In this paper, four attributes are considered: (1) a, the area of the regions; (2) d, the length
of the diagonal of the box bounding the region; (3) i, the first moment of Hu [46]; (4) s, the standard
deviation. EMAPs are generated by concatenating EAPs (Extend Attribute Profiles) computed by
different attributes where EAPs are obtained by applying APs to principal components extracted
by PCA.

Similar to the 1D-Conv-Capsule network, the 3D-Conv-Capsule network also has six layers, i.e.,
the input layer, two convolutional layers, and three consecutive capsule layers. The two convolutional
layers serve as a local feature detector. Then, a transition layer (i.e., capsule layer), which is similar
to the 1D-Conv-Capsule network, is adopted. In the last two capsule layers, we use a dynamic
routing algorithm to calculate the capsule output in the Conv-Capsule layer and the ClassCaps layer.
Compared to the 1D-Conv-Capsule network, the input data changes from 1D spectral information to
3D spectral-spatial information and from the 1D convolution operation to the 2D convolution operation.
The 3D-Conv-Capsule network uses the ReLU as the activation function. Batch normalization is also
used to alleviate the overfitting problem and boost the classification accuracy.

5. Experimental Results

5.1. Data Description

In our study, three widely-used hyperspectral data sets with different environmental settings
were used to validate the effectiveness of the proposed methods. They were captured over Salinas
Valley in California (Salinas), Kennedy Space Center (KSC) in Florida, and an urban site over the
University of Houston campus and the neighboring area (Houston).

The first data set was captured by the 224-band AVIRIS sensor over Salinas Valley, California.
After removing the low signal to noise ratio (SNR) bands, the available data set was composed of 204
bands with 512 × 217 pixels. The ground reference map covers 16 classes of interest. The hyperspectral
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image is of high spatial resolution (3.7-meter pixels). Figure 5 demonstrates the false-color composite
image and the corresponding ground reference map. The number of samples in each class is listed in
Table 3.

Figure 5. The Salinas data set. (a) False-color composite and (b) ground reference map.

Table 3. Land cover classes and numbers of samples in the Salinas data set.

Class Samples

No. Color Name Numbers

1 Brocoli_green_weeds_1 1977

2 Brocoli_green_weeds_2 3726

3 Fallow 1976

4 Fallow_rough_plow 1394

5 Fallow_smooth 2678

6 Stubble 3959

7 Celery 3579

8 Grapes_untrained 11213

9 Soil_vinyard_develop 6197

10 Corn_senesced_green_weeds 3249

11 Lettuce_romaine_4wk 1058

12 Lettuce_romaine_5wk 1908

13 Lettuce_romaine_6wk 909

14 Lettuce_romaine_7wk 1061

15 Vinyard_untrained 7164

16 Vinyard_vertical_trellis 1737

Total 53785

The second data set, KSC, was collected by the airborne AVIRIS instrument over the Kennedy
Space Center, Florida. The KSC data set has an altitude of approximately 20 km, with a spatial
resolution of 18 m. After removing water absorption and low SNR bands, 176 bands with 512 × 614
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pixel vectors were used for the analysis. For classification purpose, 13 classes were selected. The classes
of the KSC data set and the corresponding false-color composite map are demonstrated in Figure 6.
The number of samples for each class is given in Table 4.

Figure 6. The Kennedy Space Center (KSC) data set. (a) False-color composite and (b) ground reference
map.

Table 4. Land cover classes and numbers of samples in the KSC data set.

Class Samples

No. Color Name Numbers

1 Scrub 761

2 Willow swamp 243

3 CP hammock 256

4 Slash pine 252

5 Oak/Broadleaf 161

6 Hardwood 229

7 Swamp 105

8 Graminoid marsh 431

9 Spartina marsh 520

10 Cattail marsh 404

11 Salt marsh 419

12 Mud flats 503

13 Water 927

Total 5211

The third data set is an urban site over the University of Houston campus and neighboring area
which was collected by an ITRES-CASI 1500 sensor. The data set is of 2.5-m spatial resolution and
consists of 349 × 1905 pixel vectors. The hyperspectral image is composed of 144 spectral bands
ranging from 380 to 1050 nm. Fifteen different land-cover classes are provided in the ground reference
map, as shown in Figure 7. The samples are listed in Table 5.
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Figure 7. The Houston data set. (a) False-color composite and (b) ground reference map.

Table 5. Land cover classes and numbers of samples in the Houston data set.

Class Samples

No. Color Name Numbers

1 Grass Healthy 1251

2 Grass Stresed 1254

3 Grass Synthetic 697

4 Tree 1244

5 Soil 1242

6 Water 325

7 Residential 1268

8 Commercial 1244

9 Road 1252

10 Highway 1227

11 Railway 1235

12 Parking Lot 1 1233

13 Parking Lot 2 469

14 Tennis Court 428

15 Running Track 660

Total 15029

For all three data sets, we split the labeled samples into three subsets, i.e., training, validation, and
test samples. In our experiment, we randomly chose 200 labeled samples as the training set to train
the weights and biases of each neuron and transformation matrix between two consecutive capsule
layers. The proper architectures of our network were designed based on performance evaluation
on 100 validation samples, which were also randomly chosen from labeled samples. The choice of
hyper-parameters, like kernel size in the convolution operation and the dimensions of the vector output
of each capsule, were also guided by the validation set. After the training was done, all remaining
labeled samples served as the test set to evaluate the capability of the network and to obtain the final
classification results. Three evaluation criteria were investigated: overall accuracy (OA), average
accuracy (AA), and Kappa coefficients (K).

5.2. The Classification Results of the 1D Capsule Network

The 1D capsule network, which is built only based on spectral features, contains two parts. One
is a fully connected capsule network that uses normalized spectral vectors as input. The other is the
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Conv-Capsule network which inputs spectral features extracted by PCA. We call the two methods
1D-Capsule and 1D-Conv-Capsule for short. In the 1D-Conv-Capsule, we first used PCA to reduce the
spectral dimensions of the data. Then, we randomly chose 200 and 100 labeled samples as the training
and validation data for each data set. The training samples were imported to the 1D capsule network.
The number of principal components was chosen based on the classification result for the validation
samples. Some other hyper-parameters (e.g., the learning rate, the convolutional kernel size, the α in
LeakyReLU, etc.) were also determined by the validation set. In our method, the size of the mini-batch
was 100 and the number of training epochs was set to 150 for our network. We used a decreasing
learning rate which was initialized to 0.01 at the beginning of the training process. The number of the
principal components was set to 20, 20, and 30, respectively, for the Salinas, KSC, and Houston data
sets. We used α = 0.1 in the LeakyReLU function. The parameters m+, m−, and λ in the loss function
were set to 0.9, 0.1, and 0.5, respectively.

The main architectures of the 1D-Conv-Capsule network for each data set are shown in Table 6.
Due to the fact that the same number of principal components was chosen as the input, the network
for the Salinas and KSC data sets had the same architecture. In Table 6, (5 × 1 × 8) × 8 in the fourth
layer (i.e., transition layer) means that eight channels of convolution with the kernel size of 5 × 1 were
used, and each channel output eight feature maps. Thus, the fourth layer output a capsule with eight
channels. The fifth layer was a Conv-Capsule layer with eight (i.e., the number of capsule channels
output by the fourth layer) channels of capsule input and 16 channels of capsule output. The kernel
size was 5 × 1. We used (5 × 1 × 8) × 16 to represent this operation. The last layer was a fully
connected capsule layer. All capsules from the fifth layer were connected with n_class capsules in this
layer. The length of the vector output of each capsule in this layer represents the probability of the
network’s input belonging to each class. Between consecutive capsule layers in the 1D-Conv-Capsule,
three routing iterations were used to determine the coupling coefficients bp

ij.

Table 6. The architectures of the 1D-Conv-Capsule network for the different data sets.

Nets No. Convolution BN Stride Padding Activation
Function

Salinas (KSC)

1 First ten principal components, input shape is 20 × 1 × 1
2 5 × 1 × 32 YES 1 Yes LeakyReLU
3 5 × 1 × 64 YES 1 Yes LeakyReLU
4 (5 × 1 × 8) × 8 YES 2 Yes LeakyReLU, Squash
5 (5 × 1 × 8) × 16 No 2 No Squash
6 Three routing iterations and n_class capsules with a 16-dimensional output vector

Houston

1 First thirty principal components, input shape is 30 × 1 × 1
2 7 × 1 × 32 YES 1 No LeakyReLU
3 7 × 1 × 64 YES 1 No LeakyReLU
4 (7 × 1 × 8) × 8 YES 1 No LeakyReLU, Squash
5 (3 × 1 × 8) × 16 No 2 No Squash
6 Three routing iterations and n_class capsules with a 16-dimensional output vector

In this set of experiments, our methods were compared with other classical classification methods
that are only based on spectral information. These methods included random forest (RF) [47], multiple
layer perceptron (MLP) [48], linear support vector machine (L-SVM), support vector machine with
the radial basis kernel function (RBF-SVM) [17], recurrent neural network (RNN) [24], and the
convolutional neural network (1D-CNN) [28]. Furthermore, 1D-PCA-CNN, which has nearly the
same architecture as 1D-Conv-Capsule (apart from the capsule layer), was also designed to give a fair
comparison. The classification results are shown in Tables 7–9.
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Table 7. Classification with spectral features on the Salinas data set with different training samples.

Trainin Samples Method RF MLP L-SVM RBF-SVM RNN 1D-CNN 1D-PCA-CNN 1D-Capsule 1D-Conv-Capsule

100
OA (%) 77.81 ± 1.86 80.89 ± 2.25 80.33 ± 2.14 81.01 ± 2.10 71.48 ± 3.50 80.04 ± 1.66 84.07 ± 2.63 77.63 ± 1.52 84.75 ± 1.94
AA (%) 78.12 ± 3.06 81.56 ± 4.68 79.83 ± 3.58 80.79 ± 4.69 68.84 ± 4.62 80.99 ± 4.08 84.87 ± 4.70 76.41 ± 3.34 86.00 ± 2.01
K × 100 75.11 ± 2.14 78.68 ± 2.51 78.02 ± 2.44 78.77 ± 2.34 68.26 ± 3.86 77.69 ± 1.87 82.26 ± 2.89 74.92 ± 1.80 83.01 ± 2.15

200
OA (%) 82.63 ± 1.63 84.13 ± 0.50 86.37 ± 1.05 86.07 ± 1.52 79.67 ± 2.42 84.93 ± 0.73 86.52 ± 2.34 83.73 ± 0.23 88.12 ± 1.07
AA (%) 85.73 ± 2.09 88.71 ± 0.60 89.37 ± 1.92 88.07 ± 2.27 83.22 ± 1.25 89.97 ± 0.58 89.46 ± 3.09 89.02 ± 0.29 91.08 ± 1.70
K × 100 80.63 ± 1.77 82.21 ± 0.57 84.77 ± 1.18 84.46 ± 1.71 77.38 ± 2.71 83.20 ± 0.82 84.97 ± 2.57 81.78 ± 0.27 86.76 ± 1.21

300
OA (%) 84.24 ± 0.79 87.76 ± 0.83 88.47 ± 0.91 88.22 ± 1.05 81.35 ± 0.90 85.66 ± 1.33 88.46 ± 1.27 84.09 ± 1.36 89.36 ± 0.41
AA (%) 88.00 ± 1.41 91.72 ± 1.00 91.96 ± 1.16 91.40 ± 1.60 83.88 ± 2.82 88.41 ± 1.98 91.93 ± 1.54 88.28 ± 1.85 92.92 ± 0.32
K × 100 82.42 ± 0.87 86.37 ± 0.93 87.12 ± 1.02 86.86 ± 1.19 79.20 ± 1.07 84.00 ± 1.48 87.14 ± 1.39 82.22 ± 1.52 88.15 ± 0.44

Table 8. Classification with spectral features on the KSC data set with different training samples.

Training Samples Method RF MLP L-SVM RBF-SVM RNN 1D-CNN 1D-PCA-CNN 1D-Capsule 1D-Conv-Capsule

100
OA (%) 73.56 ± 2.63 81.43 ± 1.85 81.38 ± 1.61 80.72 ± 1.85 70.70 ± 2.67 77.19 ± 2.63 81.72 ± 2.02 80.09 ± 1.66 84.83 ± 1.69
AA (%) 62.52 ± 4.14 72.33 ± 3.58 72.22 ± 3.33 71.17 ± 2.36 58.79 ± 4.74 67.92 ± 3.09 72.41 ± 3.39 70.65 ± 3.16 77.52 ± 3.07
K × 100 70.49 ± 2.95 79.30 ± 2.06 79.25 ± 1.79 78.51 ± 2.05 67.30 ± 3.07 74.57 ± 2.94 79.63 ± 2.26 77.79 ± 1.86 83.09 ± 1.87

200
OA (%) 80.08 ± 1.12 85.15 ± 0.81 86.35 ± 1.50 86.64 ± 1.21 82.03 ± 1.33 84.80 ± 0.97 86.02 ± 2.16 84.39 ± 0.33 88.22 ± 1.06
AA (%) 71.52 ± 1.93 78.78 ± 0.98 78.06 ± 2.76 79.57 ± 1.76 74.68 ± 1.21 79.32 ± 1.48 78.91 ± 2.97 78.66 ± 0.36 82.11 ± 2.52
K × 100 77.79 ± 1.26 83.45 ± 0.90 84.78 ± 1.68 85.11 ± 1.35 79.97 ± 1.48 83.08 ± 1.08 84.44 ± 2.39 82.59 ± 0.37 86.87 ± 1.18

300
OA (%) 82.31 ± 0.98 88.02 ± 0.67 88.56 ± 0.84 88.87 ± 0.93 82.35 ± 1.81 84.34 ± 1.12 88.03 ± 0.88 85.81 ± 1.40 89.84 ± 1.41
AA (%) 75.32 ± 0.99 82.15 ± 1.55 82.45 ± 2.23 83.55 ± 1.39 73.33 ± 3.10 78.37 ± 1.84 81.45 ± 2.09 79.11 ± 1.29 84.43 ± 2.29
K × 100 80.26 ± 1.09 86.66 ± 0.75 87.27 ± 0.95 87.60 ± 1.04 80.33 ± 2.02 82.56 ± 1.25 86.66 ± 0.99 84.18 ± 1.55 88.68 ± 1.57

Table 9. Classification with spectral features on the Houston data set with different training samples.

Training Samples Method RF MLP L-SVM RBF-SVM RNN 1D-CNN 1D-PCA-CNN 1D-Capsule 1D-Conv-Capsule

100
OA (%) 64.68 ± 2.27 72.42 ± 1.39 69.89 ± 1.99 72.95 ± 1.64 62.41 ± 3.10 70.66 ± 3.43 72.51 ± 2.94 70.11 ± 3.14 76.04 ± 1.90
AA (%) 63.59 ± 3.34 70.82 ± 2.88 70.11 ± 2.28 72.03 ± 2.23 61.58 ± 2.96 68.20 ± 3.99 71.43 ± 3.81 69.64 ± 4.34 75.46 ± 2.93
K × 100 61.76 ± 2.47 70.15 ± 1.52 67.42 ± 2.16 70.73 ± 1.77 59.37 ± 3.36 68.22 ± 3.73 70.24 ± 3.18 67.66 ± 3.41 74.08 ± 2.06

200
OA (%) 72.64 ± 1.27 80.69 ± 1.53 75.47 ± 0.96 78.91 ± 0.95 74.24 ± 1.61 79.47 ± 0.59 80.85 ± 1.55 77.54 ± 2.47 84.06 ± 1.34
AA (%) 71.48 ± 1.54 79.68 ± 1.88 75.22 ± 1.11 78.06 ± 0.91 73.22 ± 1.45 77.94 ± 1.59 80.62 ± 1.59 77.39 ± 1.99 83.46 ± 1.43
K × 100 70.39 ± 1.37 79.11 ± 1.65 73.45 ± 1.04 77.17 ± 1.03 72.15 ± 1.73 77.80 ± 0.64 79.29 ± 1.69 75.70 ± 2.67 82.75 ± 1.46

300
OA (%) 77.32 ± 1.17 83.25 ± 1.36 79.00 ± 1.51 83.30 ± 1.17 77.61 ± 2.36 79.26 ± 1.13 86.39 ± 0.37 80.25 ± 1.19 87.11 ± 1.38
AA (%) 75.99 ± 1.03 82.32 ± 1.49 77.97 ± 1.33 82.16 ± 1.25 75.79 ± 1.71 78.18 ± 1.57 85.47 ± 0.93 79.37 ± 1.19 86.32 ± 1.50
K × 100 75.45 ± 1.26 81.87 ± 1.47 77.26 ± 1.63 81.93 ± 1.26 75.80 ± 2.53 77.55 ± 1.23 85.27 ± 0.40 78.63 ± 1.29 86.06 ± 1.50



Remote Sens. 2019, 11, 223 16 of 28

The experiment setups of the classical classification methods are described as follows. RF was
used for classification. A grid search method and four-fold cross-validation were used to define RF’s
two key hyper-parameters (i.e., the number of features to consider when looking for the best split (F)
and the number of trees (T)). In the experiment, the search ranges of F and T were (5, 10, 15, 20) and (100,
200, 300, 400), respectively. The MLP used in this experiment was a fully connected neural network
with one hidden layer. The used MLP contained 64 hidden units. L-SVM is a linear SVM with no kernel
function. RBF-SVM uses the radial basis function as the kernel. In L-SVM and RBF-SVM, a grid search
method and four-fold cross-validation were also used to define the most appropriate hyper-parameters
(i.e., C for L-SVM and (C, γ) for RBF-SVM). In this experiment, the search range was exponentially
growing sequences of C and γ (C = 10−3, 10−2, . . . , 103, γ = 10−3, 10−2, . . . , 103). A single layer RNN
with a gated recurrent unit and the tanh activation function were adopted. The architecture of 1D-CNN
was designed as in [28] and contained an input layer, a convolutional layer, a max-pooling layer, a fully
connected layer, and an output layer. The convolutional kernel size and number of kernels were 17 and
20 for all three data sets. The pooling size was 5, 5, and 4 for the Salinas, KSC, and Houston data sets,
respectively. Tables 7–9 show the classification results obtained when we used the aforementioned
experimental settings. All experiments were run ten times with different random training samples.
The classification accuracy is given in the form of mean ± standard deviation. The 1D-Conv-Capsule
network showed a better performance in terms of accuracy on all three data sets.

For all three data sets, RBF-SVM, which is famous for handling a limited number of training
samples, provides competitive classification results. We use the experiments with 200 training samples
as an example to discuss the results. For the Salinas data set, 1D-Conv-Capsule exhibited the best OA,
AA, and K, with improvements of 2.05%, 3.01%, and 0.023 over RBF-SVM, respectively. Our approach
outperformed 1D-PCA-CNN by 1.6%, 1.62%, and 0.0179 in terms of OA, AA, and K, respectively.
For the KSC data set, as can be seen, the OA of 1D-Conv-Capsule was 88.22%, which is an increase
of 1.58% and 2.2% compared with RBF-SVM and 1D-PCA-CNN, respectively. For the Houston data
set, 1D-Conv-Capsule improved the OA, AA, and K of 1D-PCA-CNN by 3.21%, 2.84%, and 0.0346,
respectively. The results show that the 1D-Conv-Capsule method demonstrated the best performance
in terms of OA, AA, and K for all three data sets. In addition, all experiments with 100 and 300
training samples were also implemented to demonstrate the effectiveness of the proposed methods.
From the results reported in Tables 7–9, it can be seen that 1D-Conv-Capsule outperformed the other
classical classification methods, especially when the number of training samples was extremely limited
(i.e., 100 training samples).

Furthermore, the 1D-Conv-Capsule with a different number of principal components as input
was conducted. Figure 8 shows the classification results of the 1D-Conv-Capsule on three data sets
by using 200 training samples. Due to the fact that we injected only spectral information into the
1D-Conv-Capsule, relatively more principal components were used to make sure that sufficient spectral
information was preserved, and, at the same time, this maintained low computational complexity.
From Figure 8, it can be seen that if the number of selected components is too small or too big, the
classification results tend to be poor under both circumstances. On one hand, the spectral information
is not sufficiently preserved and the network cannot efficiently extract the spectral feature when the
number of principal components is low. On the other hand, the networks are over-trained when
the number of principal components is high. The situation becomes worse if the number of training
samples is limited. The best classification performance was achieved when the number of the principal
components was set to 20, 20, and 30 for the Salinas, KSC, and Houston data sets, respectively.
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Figure 8. Classification results of the 1D-Conv-Capsule on three data sets with respect to different
numbers of principal components.

5.3. The Analysis of Learnt Features of the 1D Capsule

From the aforementioned description about the capsule, it can be understood that the output of
the capsule is a vector representation of the type of entity. In order to demonstrate the real advantage
of the capsule network on remote sensing data, we performed another experiment based on the
1D-Capsule network followed by a reconstruction network (1D-Capsule-Recon). The architecture of the
reconstruction network is shown in Figure 9. According to the label of the input pixel, the representative
vector of the corresponding capsule in the ClassCaps layer was imported to the reconstruction network
(e.g., if the input pixel belonged to the i-th class, the vector output of the i-th capsule in the ClassCaps
layer was used as input to the reconstruction network). The reconstruction network contained three
fully connected (FC) layers. The first two FC layers had 128 and 256 hidden units with the ReLU
activation function. The last FC layer with Sigmoid activation function output the reconstructed
spectra (i.e., a combination of normalized spectral reflectance of different bands) corresponding to the
input of the 1D-Capsule-Recon. The reconstruction loss, i.e., the Euclidean distance between the input
and the reconstructed spectra, was added to the margin loss that described in Section 3:

Ltotal = LM + εLR, (18)

where LM is the margin loss and LR is the reconstruction loss. ε is the weight coefficient that is used to
avoid LR dominating LM during the training procedure. In the experiment, ε was set to 0.1. Ltotal was
used as the loss function for the 1D-Capsule-Recon.

Figure 9. The architecture of the reconstruction network.

To visualize the vector representation of the capsule, we made use of the reconstruction network.
After the training procedure of the 1D-Capsule-Recon was done, we randomly chose some samples
from different classes and computed the representation vector of their corresponding capsules in the
ClassCaps layer. We made perturbations in different dimensions of the vector and fed them to the
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reconstruction network. Figure 10 shows the reconstructed results of three class samples from the
Salinas data set. Two dimensions of the representation vector were tuned. In Figure 10, the original
is the input spectra to the 1D-Capsule-Recon. The notation of [v(i) + ∆] in Figure 10 means that we
tuned the i-th dimension of the representation vector v with perturbation ∆. The perturbed v was used
to reconstruct the spectra. From the results shown in Figure 10, the representation vector (i.e., v) can
well reconstruct the spectra, which means that the representation vector contains the information in
the spectra with low dimensionality.

Figure 10. Normalized spectral reflectance reconstructed by the perturbed representation vector of
three samples from the Salinas data set. The two pictures in each row are the results reconstructed
by tuning different dimensions of the representation vector of the same sample. (a) sample
from broccoli_green_weeds_1 class; (b) sample from grapes_untrained class; (c) sample from
vinyard_untrained class.
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Furthermore, as shown in Figure 10, v(i) + ∆ can influence the reconstruction of some special
bands, which means that v(i) has a close relationship with the special bands. v is a vector that contains
several v(i), and v is a robust and condensed representation of spectra.

5.4. The Classification Results of the 3D Capsule Network

In the 3D capsule network, the network extracts both spectral and spatial features effectively,
which could lead to a better performance in terms of classification accuracy than the one obtained by
the 1D capsule network. As mentioned above, we proposed two 3D frameworks, i.e., the 3D-Capsule
and the 3D-Conv-Capsule. Similar to a 1D framework, the 3D-Capsule is an original fully connected
capsule network, while the 3D-Conv-Capsule is the convolutional capsule network. Additionally, the
3D-Capsule directly uses the original hyperspectral data as input, while the 3D-Conv-Capsule utilizes
EMAP to extract features of hyperspectral data. In the 3D-Conv-Capsule, three principal components
were used and parameters in EMAP were set as in [21]. Through the EMAP analysis, the number
of spectral dimensions became 108 for all three data sets. In this set of experiments, the numbers of
training and validation samples were the same as for the 1D Capsule network. The mini-batch size was
also 100. The training epoch was set to 100 with a learning rate of 0.001. The parameter in loss function
was the same as for the 1D capsule network. The details on the architecture of the 3D-Conv-Capsule
network are shown in Table 10. The definitions of the parameters in Table 10 can be found in the
description for the 1D-Conv-Capsule network. Batch normalization was also used to improve the
performance of the network.

Table 10. The architectures of the 3D-Conv-Capsule network.

Nets No. Convolution BN Stride Padding Activation
Function

Salinas
KSC

Houston

1 Features extracted by EMAP, input shape is 27 × 27 × 108
2 3 × 3 × 32 YES 1 No ReLU
3 3 × 3 × 64 YES 1 No ReLU
4 (4 × 4 × 8) × 4 YES 2 No ReLU, Squash
5 (3 × 3 × 4) × 8 No 2 No Squash
6 Three routing iterations and n_class capsules with a 16-dimensional output vector

The SVM-based and CNN-based methods were included in the experiments to give a
comprehensive comparison. The classification results are shown in Tables 11–13. For the three data sets,
we used 27 × 27 neighbors of each pixel as input 3D images in these methods.

Due to the high performance in terms of classification accuracy of SVM, some SVM-based HSIs
classifiers were adopted for comparison. The extended morphological profile with SVM (EMP-SVM) is
a widely used spectral-spatial classifier [19]. In the EMP-SVM method, the morphological opening
and closing operations were used to extract spatial information on the first three components of HSIs,
which were computed by PCA. In the experiments, the shape structuring element (SE) was set as a
disk, and the radius of disk increased from two to eight with an interval of two. Therefore, 27 spatial
features were generated. The learned features were fed to an RBF-SVM to obtain the final classification
results. EMAP is a generalization of the EMP and can extract more informative spatial information.
EMAP was also combined with the random forest classifier (EMAP-RF) [20]. In order to have a fair
comparison, the parameters in EMAP were kept the same as for the 3D-Conv-Capsule. In RBF-SVM,
the optimal parameters C and γ were also obtained by grid-search and four-fold cross-validation
methods. Furthermore, CNN was also used for comparison. We conducted 3D-CNN, EMP-CNN
and 3D-EMAP-CNN. Their CNN architectures were the same as in [31]. To give a comprehensive
comparison, a spectral–spatial residual network recently proposed in [49] was adopted for comparison.
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Table 11. Classification with spectral-spatial features on the Salinas data set with different training samples.

Training Samples Method EMP-SVM EMP-CNN EMAP-RF EMAP-SVM 3D-CNN SSRN [49] 3D-EMAP-CNN3D-Capsule 3D-Conv-Capsule

100
OA (%) 86.13 ± 2.21 84.28 ± 0.97 87.33 ± 2.44 90.15 ± 2.42 82.34 ± 2.47 84.40 ± 2.11 86.58 ± 4.60 88.00 ± 2.53 93.96 ± 2.18
AA (%) 86.40 ± 4.96 77.50 ± 4.11 85.11 ± 4.97 91.22 ± 4.07 79.05 ± 2.78 80.90 ± 4.92 82.24 ± 4.80 83.37 ± 4.23 88.03 ± 4.31
K × 100 84.49 ± 2.53 82.29 ± 1.11 85.88 ± 2.73 89.02 ± 2.72 80.11 ± 2.85 82.52 ± 2.41 84.95 ± 5.07 86.54 ± 2.83 93.25 ± 2.43

200
OA (%) 90.07 ± 1.45 92.71 ± 0.66 94.27 ± 1.14 94.72 ± 2.04 90.68 ± 1.28 91.16 ± 1.64 94.28 ± 2.14 94.86 ± 1.63 97.92 ± 0.30
AA (%) 91.42 ± 2.30 93.22 ± 0.62 93.45 ± 2.41 95.35 ± 3.21 88.18 ± 1.25 93.59 ± 2.35 92.86 ± 3.32 93.49 ± 3.15 96.21 ± 1.87
K × 100 88.93 ± 1.63 91.83 ± 0.74 93.62 ± 1.26 94.12 ± 2.29 89.56 ± 1.45 90.16 ± 1.82 93.59 ± 2.41 94.24 ± 1.83 97.68 ± 0.34

300
OA (%) 91.92 ± 0.40 94.91 ± 1.04 95.66 ± 1.02 96.35 ± 0.54 93.98 ± 1.34 92.81 ± 1.21 98.41 ± 0.77 97.64 ± 1.00 99.17 ± 0.58
AA (%) 94.22 ± 0.44 94.60 ± 1.77 95.77 ± 1.87 97.22 ± 0.61 92.79 ± 2.57 95.20 ± 1.18 98.44 ± 1.01 97.27 ± 1.33 98.95 ± 0.73
K × 100 91.00 ± 0.45 94.30 ± 1.18 95.18 ± 1.14 95.94 ± 0.60 93.25 ± 1.52 91.98 ± 1.35 98.23 ± 0.86 97.36 ± 1.12 99.07 ± 0.65

Table 12. Classification with spectral-spatial features on the KSC data set with different training samples.

Training Samples Method EMP-SVM EMP-CNN EMAP-RF EMAP-SVM 3D-CNN SSRN [49] 3D-EMAP-CNN3D-Capsule 3D-Conv-Capsule

100
OA (%) 87.83 ± 2.04 86.95 ± 1.68 85.44 ± 2.15 87.88 ± 3.14 84.15 ± 2.58 90.79 ± 2.83 90.07 ± 3.05 88.42 ± 1.23 93.23 ± 2.50
AA (%) 81.80 ± 3.19 80.63 ± 2.09 78.34 ± 4.16 81.93 ± 3.95 76.98 ± 4.00 84.09 ± 6.20 84.97 ± 5.02 82.28 ± 3.42 89.10 ± 3.94
K × 100 86.43 ± 2.27 85.46 ± 1.87 83.71 ± 2.42 86.49 ± 3.51 82.35 ± 2.88 89.73 ± 3.17 88.95 ± 3.41 87.12 ± 1.37 92.47 ± 2.78

200
OA (%) 93.63 ± 1.77 96.56 ± 1.24 91.81 ± 1.30 93.66 ± 0.95 95.98 ± 0.85 96.77 ± 0.83 95.30 ± 0.96 97.08 ± 0.41 98.75 ± 0.87
AA (%) 90.28 ± 2.68 94.65 ± 2.48 87.52 ± 1.75 90.89 ± 1.77 94.07 ± 1.39 94.70 ± 0.86 92.36 ± 1.25 95.77 ± 0.58 98.01 ± 1.36
K × 100 92.90 ± 1.98 96.18 ± 1.38 90.86 ± 1.44 92.94 ± 1.07 95.53 ± 0.95 96.41 ± 0.93 94.77 ± 1.06 96.75 ± 0.45 98.62 ± 0.97

300
OA (%) 95.34 ± 1.09 98.29 ± 0.83 94.43 ± 0.79 95.28 ± 0.99 97.69 ± 0.69 98.21 ± 0.69 98.57 ± 0.91 98.21 ± 1.07 99.19 ± 0.63
AA (%) 93.12 ± 1.59 97.45 ± 1.48 91.81 ± 1.05 92.91 ± 2.43 96.66 ± 1.17 96.30 ± 1.50 97.58 ± 1.53 97.27 ± 1.49 98.35 ± 1.51
K × 100 94.81 ± 1.22 98.10 ± 0.93 93.79 ± 0.88 94.75 ± 1.10 97.44 ± 0.77 98.01 ± 0.77 98.41 ± 1.01 98.01 ± 1.19 99.10 ± 0.70

Table 13. Classification with spectral-spatial features on the Houston data set with different training samples.

Training Samples Method EMP-SVM EMP-CNN EMAP-RF EMAP-SVM 3D-CNN SSRN [49] 3D-EMAP-CNN3D-Capsule 3D-Conv-Capsule

100
OA (%) 79.39 ± 2.63 71.35 ± 2.59 76.57 ± 4.43 78.82 ± 1.74 70.29 ± 4.07 74.58 ± 3.64 73.51 ± 2.80 77.96 ± 3.49 82.61 ± 2.83
AA (%) 77.13 ± 4.67 67.57 ± 3.46 75.32 ± 4.53 76.75 ± 2.61 67.77 ± 4.83 75.19 ± 3.91 70.60 ± 3.45 76.04 ± 3.77 80.82 ± 3.86
K × 100 77.69 ± 2.86 68.97 ± 2.81 74.64 ± 4.80 77.07 ± 1.89 67.82 ± 4.41 72.51 ± 3.94 71.31 ± 3.05 76.16 ± 3.78 81.18 ± 3.08

200
OA (%) 86.63 ± 1.26 85.46 ± 2.05 85.68 ± 1.86 87.20 ± 1.51 85.19 ± 1.95 85.12 ± 1.49 87.54 ± 1.92 88.69 ± 1.92 90.41 ± 1.28
AA (%) 86.29 ± 2.19 85.40 ± 1.95 85.30 ± 1.80 86.63 ± 1.87 83.11 ± 2.74 85.47 ± 1.39 85.43 ± 1.96 86.83 ± 2.75 89.46 ± 1.72
K × 100 85.54 ± 1.36 84.29 ± 2.21 84.51 ± 2.01 86.17 ± 1.63 83.98 ± 2.11 83.90 ± 1.62 86.52 ± 2.07 87.77 ± 2.08 89.63 ± 1.38

300
OA (%) 90.44 ± 1.34 89.76 ± 1.97 90.17 ± 0.93 90.52 ± 0.75 90.02 ± 1.02 90.64 ± 1.97 91.78 ± 1.48 92.55 ± 1.32 94.16 ± 1.62
AA (%) 90.10 ± 1.77 89.74 ± 2.78 90.12 ± 1.09 89.75 ± 1.27 89.19 ± 1.68 91.00 ± 1.90 92.19 ± 1.41 91.87 ± 1.86 93.73 ± 2.32
K × 100 89.66 ± 1.45 88.93 ± 2.13 89.37 ± 1.01 89.74 ± 0.81 89.21 ± 1.10 89.88 ± 2.13 91.11 ± 1.60 91.94 ± 1.43 93.69 ± 1.76
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Tables 11–13 give the classification results of the proposed methods and contrast methods on the
three data sets. We also used the classification results with 200 training samples as an example. For the
Salinas data set, the 3D-Conv-Capsule exhibited the highest OA, AA, and K, with the improvements
of 3.64%, 3.35%, and 0.0409 over 3D-EMAP-CNN, respectively. On the other hand, our 3D-Capsule
approach also performed better than 3D-EMAP-CNN in terms of OA, AA, and K. For the KSC data
set, 3D-Conv-Capsule improved the OA, AA, and K of EMP-CNN by 2.19%, 3.36%, and 0.0244,
respectively. Our 3D-Capsule method also showed higher classification accuracy than EMP-CNN with
improvements of 0.52%, 1.12%, and 0.0057 in terms of OA, AA, and K. For the Houston data set, we
obtained similar results. Experiments with 100 and 300 training samples were investigated as well.
The detailed classification results are shown in Tables 11–13. Compared with other state-of-the-art
methods, the 3D-Conv-Capsule demonstrated the best performance under different training samples.

In the experiment using the 3D-Conv-Capsule, we also explored how a different number of
principal components that are used in EMAP analysis may affect the classification results. Due to the
spatial information being considered and the EMAP analysis significantly increasing the data volume,
we used relatively fewer principal components here compared with the 1D-Conv-Capsule. Figure 11
shows the classification result for the 3D-Conv-Capsule. The 3D-Conv-Capsule with different numbers
of principal components outperformed the other contrast experiments. Unlike 1D-Conv-Capsule,
the preservation of more principal components leads to a vast data volume which brings a higher
requirement for hardware and longer training time in 3D-Conv-Capsule. Though the classification
accuracy may be higher with relatively more components, we only used three principal components in
consideration of computational cost in the 3D-Conv-Capsule.

Figure 11. Classification results of the 3D-Conv-Capsule on three data sets with respect to different
principal components.

5.5. Parameter Analysis

In the 3D-Conv-Capsule, convolutional layers were used as feature extractors, and they converted
the original input into a capsule’s input. Thus, the number of convolutional layers and the
convolutional kernel size used in 3D-Conv-Capsule influences the classification performance of the
model. Furthermore, due to the fact that the input of a 3D-Conv-Capsule is the a × a neighbors around
the pixel, the size of neighborhoods is also an important factor. These factors are analyzed below.

When we explored the influence of a parameter on the classification result, the other parameters
were fixed. The neighborhood size and convolution kernel size were set to 27 and 3 when we
analyzed the number of convolutional layers. For the analysis of the convolution kernel size, 27 × 27
neighborhoods and two convolutional layers were used in the 3D-Conv-Capsule. Similarly, the
number of convolutional layers and the convolution kernel size were set to 2 and 3 for analysis of
the size of the neighborhood. All the experiments for this analysis were conducted with 200 training
samples. Tables 14–16 shows the detailed classification results. As reported in Table 14, the use of two
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convolutional layers gave better classification results. Furthermore, one convolutional layer could not
extract features efficiently while three layers made the model prone to overfitting. Table 15 shows
the classification results with different convolution kernel sizes. The 3D-Conv-Capsule performed
better when the kernel size was 3. For the neighborhood size, the 3D-Conv-Capsule obtained good
classification accuracies on the Salinas and KSC data sets when the neighborhood size was relatively
large, but the result for the Houston data set was the other way around.

Table 14. Classification results of the 3D-Conv-Capsule with different numbers of convolutional layers
on three data sets.

Data Set Convolutional Layers 1 2 3

Salinas
OA (%) 97.60 ± 1.12 97.92 ± 0.30 97.69 ± 0.77
AA (%) 95.69 ± 2.77 96.21 ± 1.87 95.84 ± 2.45
K × 100 97.32 ± 1.25 97.68 ± 0.34 97.41 ± 0.87

KSC
OA (%) 97.80 ± 1.20 98.75 ± 0.87 98.20 ± 1.24
AA (%) 96.53 ± 2.10 98.01 ± 1.36 97.08 ± 2.09
K × 100 97.55 ± 1.33 98.62 ± 0.97 97.99 ± 1.37

Houston
OA (%) 88.86 ± 1.58 90.41 ± 1.28 89.04 ± 1.17
AA (%) 88.03 ± 2.80 89.46 ± 1.72 86.94 ± 1.84
K × 100 87.96 ± 1.72 89.63 ± 1.38 88.15 ± 1.27

Table 15. Classification results of the 3D-Conv-Capsule with different convolutional kernel sizes on
three data sets.

Data Set Kernel Size 3 5 7

Salinas
OA (%) 97.92 ± 0.30 97.08 ± 1.21 97.39 ± 0.84
AA (%) 96.21 ± 1.87 95.59 ± 3.77 96.90 ± 2.05
K × 100 97.68 ± 0.34 96.73 ± 1.35 97.08 ± 0.95

KSC
OA (%) 98.75 ± 0.87 97.39 ± 1.10 98.25 ± 1.19
AA (%) 98.01 ± 1.36 95.68 ± 1.65 97.26 ± 1.85
K × 100 98.62 ± 0.97 97.10 ± 1.22 98.05 ± 1.32

Houston
OA (%) 90.41 ± 1.28 88.40 ± 1.28 89.06 ± 1.77
AA (%) 89.46 ± 1.72 87.71 ± 2.72 87.84 ± 1.89
K × 100 89.63 ± 1.38 87.46 ± 1.38 88.18 ± 1.91

Table 16. Classification result of the 3D-Conv-Capsule with different neighborhood sizes on three
data sets.

Data Set Neighborhoods 11 17 21 27

Salinas
OA (%) 95.73 ± 0.87 96.65 ± 2.11 97.07 ± 0.81 97.92 ± 0.30
AA (%) 95.52 ± 2.98 95.34 ± 4.28 96.15 ± 1.06 96.21 ± 1.87
K × 100 95.24 ± 0.97 96.25 ± 2.36 96.73 ± 0.90 97.68 ± 0.34

KSC
OA (%) 97.36 ± 0.81 97.68 ± 1.18 97.46 ± 1.15 98.75 ± 0.87
AA (%) 95.69 ± 1.30 96.34 ± 1.75 94.92 ± 3.42 98.01 ± 1.36
K × 100 97.07 ± 0.90 97.42 ± 1.30 97.18 ± 1.27 98.62 ± 0.97

Houston
OA (%) 91.56 ± 0.87 91.35 ± 0.78 91.08 ± 1.30 90.41 ± 1.28
AA (%) 91.81 ± 1.43 89.92 ± 0.70 90.10 ± 1.89 89.46 ± 1.72
K × 100 90.88 ± 0.94 90.65 ± 0.84 90.36 ± 1.41 89.63 ± 1.38

5.6. Visualization of Learnt Features from the Capsule Network

Unlike traditional neural networks which use a sequence of scalar value to represent the
probability of the input belonging to different classes, capsule networks output n_class (i.e., the number
of classes) capsules that represent different classes of entity. The length of the vector output of each
capsule (i.e., the Euclidean norm of the vector) represents the probability that a corresponding entity
exists. In HSI classification tasks, the length of different capsules’ output vectors can be interpreted as
the probability that the input belongs to different classes.
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We randomly choose several samples from the test data set and imported them into the trained
3D-Conv-Capsule network. The length of the vector output of each capsule in the ClassCaps layer is
computed and visualized in Figure 12. From the results shown in Figure 12, it is possible to observe that
the capsule corresponding to the true class output the longest vector. Due to the similarity between the
Graminoid marsh and Spartina marsh, the experimental results of three samples from the Graminoid
marsh class show that the length of the vector corresponding to the similar class was longer than those
of the other classes.

Figure 12. The visualization of learnt features (i.e., length of vector output of each capsule in ClassCaps
layer) from 3D-Conv-Capsule network on the KSC data set. The four pictures in each row are the
results of three randomly selected samples of the same class and an example of input images (i.e., false
color image). (a) Scrub class; (b) Willow swamp class; and (c) Graminoid marsh class.

5.7. Time Consumption

All experiments in this paper were conducted on a Dell laptop equipped with an Intel Core
i5-7300H processor with 2.5 GHz, 8 GB of DDR4 RAM, and an NVIDIA GeForce GTX 1050Ti
graphical processing unit (GPU). The software environment used Windows 10 as an operating system,
CUDA 9.0 and cuDNN 7.1, Keras framework using TensorFlow as a backend, and Python 3.6 as the
programing language. The training and test times of different models are reported in Tables 17 and 18.
The traditional RF and SVM classifiers demonstrated superior computational efficiency. As for deep
learning models, the model was able to be trained within a few minutes due to the limited number of
training samples and the GPU’s strong computing acceleration power. The 3D-Conv-Capsule required
nearly the same training time as 3D-CNN and less time than SSRN. In the experiments, it was found
that capsule network-based method converged “faster” than the CNN-based method (e.g., 100 epochs
for 3D-Conv-Capsule and 500 epochs for 3D-EMAP-CNN). In future work, the use of more specific
computing acceleration for the capsule network could further boost the computational efficiency of
the capsule-based method.
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Table 17. Training and test times of different spectral classifiers for the three HSI data sets with 200
training samples.

Data Sets
Methods

RF MLP L-SVM RBF-SVM RNN 1D-CNN 1D-PCA-CNN 1D-Capsule 1D-Conv-Capsule

Salinas
Train (s) 23.5 6.8 0.43 4.8 190.3 19.5 17.1 230.3 92.2
Test (s) 1.5 0.2 1.5 1.65 4.1 0.29 0.25 120.5 56.3

KSC
Train (s) 21.0 6.5 0.37 4.4 160.2 19.1 17.5 160.2 88.5
Test (s) 0.2 0.04 0.11 0.13 2.1 0.02 0.02 8.2 5.2

Houston
Train (s) 26.0 6.5 0.49 4.0 135.1 17.5 17.7 145.3 110.2
Test (s) 0.5 0.07 0.36 0.45 3.5 0.07 0.07 22.3 16.8

Table 18. Training and test times of different spectral-spatial classifiers for the three HSI data sets with
200 training samples.

Data Sets
Methods

EMP-SVM EMP-CNN EMAP-RF EMAP-SVM 3D-CNN SSRN 3D-EMAP-CNN 3D-Capsule 3D-Conv-Capsule

Salinas
Train (s) 1.1 32.5 18.7 2.95 130.2 240.3 72.2 270.2 140.2
Test (s) 0.38 3.7 1.5 0.8 19.2 43.6 28.4 220.4 128.4

KSC
Train (s) 1.0 28 19.1 2.75 122.3 215.5 72.1 240.1 140.1
Test (s) 0.04 0.4 0.15 0.08 1.5 3.8 1.0 17.6 12.3

Houston
Train (s) 1.2 45.0 22.2 3.2 133 190.2 75.2 255.7 135.2
Test (s) 0.13 1.2 0.5 0.31 3.0 9.0 4.9 65.2 36.1

5.8. Classification Maps

Lastly, we evaluated the classification accuracies from a visual perspective. The trained models,
including 1D-CNN, 1D-Conv-Capsule, EMAP-SVM, 3D-CNN and 3D-Conv-Capsule, were selected
to classify the whole images. All parameters in these models were optimized. Figures 13–15 show
the classification maps obtained by different models using the three data sets. From Figures 13–15,
we can figure out how the different classification methods affect the classification results. Although the
1D-Conv-Capsule demonstrated a higher accuracy than 1D-CNN, the 1D-CNN and 1D-Conv-Capsule
models, which only utilize spectral features, depicted more errors compared with spectral-spatial-based
methods for the three data sets. Spectral-based models always result in noisy scatter points in the
classification map (see Figure 13b,c, Figure 14b,c and Figure 15b,c). Spectral-spatial methods overcome
this shortcoming. Obviously, 3D-CNN and 3D-Conv-Capsule, which directly use the neighbor
information as the model input, resulted in smoother classification maps. By comparing the true ground
reference with the classification maps, the 3D-Conv-Capsule obtained more precise classification results,
which demonstrates that the capsule network is an effective method for HSI classification.

Figure 13. Salinas. (a) False color image. (b) to (f) Classification maps of different classifiers: (b) 1D-CNN;
(c) 1D-Conv-Capsule; (d) EMAP-SVM; (e) 3D-CNN; and (f) 3D-Conv-Capsule.
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Figure 14. KSC. (a) False color image. (b) to (f) Classification maps obtained by different classifiers:
(b) 1D-CNN; (c) 1D-Conv-Capsule; (d) EMAP-SVM; (e) 3D-CNN; and (f) 3D-Conv-Capsule.

Figure 15. Houston. (a) False color image. (b) to (f) classification maps obtained by different classifiers:
(b) 1D-CNN; (c) 1D-Conv-Capsule; (d) EMAP-SVM; (e) 3D-CNN; and (f) 3D-Conv-Capsule.

6. Conclusions

In this paper, an improved capsule network called the convolutional capsule (Conv-Capsule)
was proposed. On the basis of Conv-Capsule, new deep models called 1D-Conv-Capsule and
3D-Conv-Capsule were investigated for HSI classification. Furthermore, 1D-Conv-Capsule and
the 3D-Conv-Capsule were combined with PCA and EMAP, respectively, to further improve the
classification performance.

The proposed models, 1D-Conv-Capsule and 3D-Conv-Capsule, can effectively extract spectral
and spectral-spatial features from HSI data. They were tested on three widely-used hyperspectral
data sets under the condition of having a limited number of training samples. The experimental
results showed the superiority over the classical SVM-based and CNN-based methods in terms of
classification accuracy.

The proposed methods explored the convolutional capsule network for HSI classification,
representing a new methodology for better modeling and processing of HSI. Compared with a fully
connected capsule layer, the convolutional capsule layer dramatically reduces the trainable parameters,
which is critical in order to avoid over-training. In our future work, based on the convolutional capsule,
deep capsule architecture like SSRN in CNN will be conducted to fully investigate the potential of
capsule networks.
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Abbreviation

There are many abbreviations in the paper. For paper’s readability, an abbreviation list that explicitly explains
each abbreviation’s meaning is given here.

AP Attribute profile
BN Batch normalization
CNN Convolutional neural network
Conv-Capsule Convolutional capsule
EMAP Extend multi-attributes profile
EMP Extend morphological profile
HSI Hyperspectral image
L-SVM Linear SVM
MLP Multi-layer perceptron
MP Morphological profile
PCA Principal component analysis
RBF radial basis kernel function
RBF-SVM SVM with RBF kernel
ReLU Rectified linear unit
RF Random forest
RNN Recurrent neural network
SVM Support vector machine
1D-CNN One dimension CNN
1D-PCA-CNN 1D-CNN with PCA as preprocessing
1D-Capsule One dimension fully connected capsule network
1D-Conv-Capsule One dimension convolutional capsule network with PCA as preprocessing
3D-CNN Three dimension CNN
EMP-SVM RBF-SVM with EMP as preprocessing
EMAP-RF RF with EMAP as preprocessing
EMAP-SVM RBF-SVM with EMAP as preprocessing
EMP-CNN 3D-CNN with EMP as preprocessing
3D-EMAP-CNN 3D-CNN with EMAP as preprocessing
SSRN Spectral-spatial residual network proposed in [49]
3D-Capsule Three dimension fully connected capsule network
3D-Conv-Capsule Three dimension convolutional capsule network with EMAP as preprocessing
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