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Abstract: Compared to multispectral or panchromatic bands, fusion imagery contains both the
spectral content of the former and the spatial resolution of the latter. Even though the Estimation
of Scale Parameter (ESP), the ESP 2 tool, and some segmentation evaluation methods have been
introduced to simplify the choice of scale parameter (SP), shape, and compactness, many challenges
remain, including obtaining the natural border of plastic greenhouses (PGs) from a GaoFen-2 (GF-2)
fusion imagery, accelerating the progress of follow-up texture analysis, and accurately evaluating
over-segmentation and under-segmentation of PG segments in geographic object-based image
analysis. Considering the features of high-resolution images, the heterogeneity of fusion imagery
was compressed using texture analysis before calculating the optimal scale parameter in ESP 2 in
this study. As a result, we quantified the effects of image texture analysis, including increasing
averaging operator size (AOS) and decreasing greyscale quantization level (GQL) on PG segments
via recognition of a proposed Over-Segmentation Index (OSI)-Under-Segmentation Index (USI)-Error
Index of Total Area (ETA)-Composite Error Index (CEI) pattern. The proposed pattern can be used to
reasonably evaluate the quality of PG segments obtained from GF-2 fusion imagery and its derivative
images, showing that appropriate texture analysis can effectively change the heterogeneity of a fusion
image for better segmentation. The optimum setup of GQL and AOS are determined by comparing
CEI and visual analysis.

Keywords: texture analysis; multi-resolution segmentation (MRS); greenhouse extraction;
over-segmentation index (OSI); under-segmentation index (USI); error index of total area (ETA);
composite error index (CEI); GaoFen-2 (GF-2)

1. Introduction

Extracting plastic greenhouse (PG) segments from well-segmented high-resolution imagery is
a basic goal for many applications, such as area monitoring, production forecast, and the accurate
inversion of land surface temperature; and it is more effective than traditional manual drawing when
many samples have to be selected as the reference polygons in large-scale research.

Segmentation, its evaluation, and texture analysis are crucial steps in geographic object-based image
analysis (GEOBIA). According to 254 case studies in Ma et al. [1], 80.9% used eCognition (Trimble,
Munich, Germany) for segmentation, whereas the remaining segmentation software mainly includes
ENVI (Harris Geospatial Solutions, Inc., Broomfield, USA), SPRING (National Institute for Space Research,
Sao José dos Campos, Brazil) and ERDAS (Hexagon Geospatial, Madison, USA). Generally, objects can
be obtained via chessboard, quadtree-based, contrast split, contrast filter, multi-threshold, superpixel [2-5],
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watershed [6,7], and multi-resolution segmentation (MRS) [8,9] in eCognition software [10], or the
active contours (snakes) [11-13] method in MATLAB (MathWorks, Natick, USA). MRS is most widely
and successfully employed method under the context of remote sensing GEOBIA applications [14-18].
Even though thematic vector data can improve the quality of the segmentation [19], the decision of the
optimal value of scale parameter (SP), shape, and compactness in MRS is not easy, since the conventional
try-and-evaluate method [19,20] is too complicated, time consuming, and provides incomplete results.
Therefore, Estimation of Scale Parameter (ESP) and ESP 2 are methods that have been introduced to
calculate variance among segmentation results that are produced by the given shape, compactness,
and step-changing scale levels. ESP estimates the SP for MRS on single-layer image data or other continuous
data (e.g., digital surface models) semi-automatically [21], and ESP 2 can automatically obtain optimal
scale parameter (OSP) on multiple layers [22]. As an updated version, ESP 2 has been adopted to find
the specific scale levels for specific target objects [23], and is also employed to determine the optimal
parameters for extracting greenhouses from WorldView-2 and WorldView-3 multispectral imagery [17,18].
The segmentation results of GaoFen-2 (GF-2) multispectral and panchromatic fusion imagery based
on the ESP 2 tool still do not meet the requirements for the degree of over-segmentation and struggle
to delineate the natural boundary of PGs, which is an obstacle to fully using the panchromatic band.
Namely, over-segmentation and under-segmentation [14,24] are still two critical issues for PG segments,
which is called problem L

The pixels of one class display some texture features that differ from other categories in
satellite imagery. To illustrate, textural information can be used as an additional band to improve
the object-oriented classification of urban areas in Quickbird imagery [25]; however, a similar
pixel-based maximum likelihood PG classification in Agiiera et al.’s research [26] showed that the
inclusion of a band with texture information did not significantly improve the overwhelming majority
quality index values compared to those found when only multi-spectral bands were considered.
Another object-based work conducted by Hasituya et al. [27] showed that adding textural features
from medium-resolution imagery provides only limited improvement in accuracy, whereas spectral
features more significantly contribute to monitoring plastic-mulched farmland. Some researchers
treated the grey-level co-occurrence matrix (GLCM) [28] parameter values as available features of
separated objects for sample training [20,29]. However, these schemes were executed in a so-called
“black box” without a practical physical mechanism, so they are not easily reproducible for another
similar task. The recognition and use of texture information in eCognition is another formidable
time-consuming task [10], even if optimal SP, shape, and compactness are derived from ESP or ESP
2 based on initial fusion imagery. As an ancillary feature for mapping greenhouses, texture should be
further studied both in pixel-based and object-based extraction, which can be called problem II.

Purposive preprocessing operations based on pixel-level imagery are important prior to MRS.
Apart from frequently-used orthorectification, radiometric and atmospheric correction [18], and pan
sharpening, texture analysis of these images can also generate derivative input data, and then influence
the results of MRS. Thus, our first process involved compressing the heterogeneity of the fusion image by
different texture analysis to produce some derivative images, and then exploring what effects image texture
analysis would exert on PG segments. This led to our second idea that, in order to compare the accuracy of
different PG segments, a reliable evaluation system is indispensable, which can be called problem III

Many evaluation methods have been proposed. Depending on whether a human evaluator
examines the segmented image visually or not, Zhang et al. [30] introduced a hierarchy of segmentation
evaluation methods and a survey of unsupervised methods. Zhang et al. [31], Gao et al. [32],
and Wang et al. [33] each proposed novel unsupervised methods respectively to evaluate the
segmentation quality; however, these methods still need supervised evaluation for verification.
Supervised evaluation [34-36], also known as relative evaluation [37], is a method used for comparing
the resulting segments against a manually-delineated reference polygons. For instance, Lucieer
et al. [38] quantified the uncertainty of segments by those with the largest overlapping area with
corresponding reference polygons. Moller et al. [39] and Clinton et al. [40] used the area of each
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overlapping polygon partitioned by segments and reference polygons. Persello et al. [41] and
Marpu et al. [24] used the largest area of overlapping polygons. Clinton et al. [40] also summarized
goodness, area-based, location-based, and combined measures that facilitate the identification of
optimal segmentation results relative to a training set. Marpu et al. [24] provided a detailed view
of the segmentation quality in respect to over- and under-segmentation compared with reference
polygons, which proved that MRS performs well under a reasonable SP. Liu et al. [42] proposed
three discrepancy indices—Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR),
and Euclidean Distance 2 (ED2)—to measure the discrepancy between the reference polygons and
the corresponding image segments. PSE, NSR and ED2 were used [43] and adopted by Aguilar
et al. [17] and Gao et al. [44] to evaluate the effects of different segmentation parameters on MRS,
and modified by Novelli et al. [45] to the evaluation of object-based greenhouse detection. Cai et
al. [46] presented four kinds of supervised measurement methods based on area, object number, feature
similarity, and distance to study the influence of different object characteristics on extraction accuracy.
With defined variables, the pros and cons of these supervised evaluation methods are discussed in
Section 3.4. of this paper, and more detailed reviews of accuracy assessment for object-based image
analysis can be found in Ye et al. [47] and Chen et al. [48].

The three main contributions of this study were: (1) to improve the PG segments derived from
eCognition, we tried a two texture analysis method that involved increasing AOS or decreasing GQL prior
to MRS; (2) to evaluate the quality of PG segments generated from different derivative images, we designed
a supervised evaluation pattern named the Over-Segmentation Index (OSI)-Under-Segmentation Index
(USI)-Error Index of Total Area (ETA)-Composite Error Index (CEI) based on pixel level and independent
from the number of manual delineated reference polygons; and (3) to prove the availability of the proposed
pattern, we compared it with several supervised evaluation methods theoretically, and contrasted it with
the PSE-NSR-ED2 method by numerical and visualized analysis.

The remainder of this paper is organized as follows: Section 2 introduces the study area and data
source, Section 3 explains the methodologies applied in the analysis, Section 4 outlines the effects of
image texture analysis on PG segments via recognition of the OSI-USI-ETA-CEI pattern and explains
our hypothesis, Section 5 discusses several key points and provides a comparison of our method with
some related methods, and Section 6 summarizes the conclusions.

2. Study Area and Data Sets

2.1. Study Area

This study was conducted in Shouguang City, Shandong Province, PR.China, which is an
agricultural region called the "hometown of Chinese vegetable greenhouses" (Figure 1).
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Figure 1. Location of the study area on a Red-Green-Blue GaoFen-2 image taken on 25 April 2016.
Coordinate system: WGS_1984_UTM_Zone_50N.
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The study area (36°44’40”N and 118°49'0”E) was chosen for these reasons: (a) greenhouses are
the main local production mode and are developing rapidly in Shouguang City; (b) even though the
greenhouses account for nearly half the area in the selected region, they are adjacent to various land
cover types such as water, trees, buildings with high reflectance, residences, and barren land, which
form a representative common image; and (c) both continuous and scattered greenhouse can be found
in the selected region.

2.2. GF-2 Data and Pretreatment

As shown in Figure 1, the GF-2 imagery selected in this study was acquired on April 25, 2016,
which is a high-yield period for greenhouse crops [49].

GF-2 is equipped with two high-resolution scanners with 1 m panchromatic and 4 m multispectral,
and was launched on August 19, 2014. GF-2 started imaging and transmitting data on August 21, 2014.
Table 1 introduces the payload parameters of the GF-2 satellite [50].

Table 1. Payload parameters of GF-2 satellite

Camera Band No Spectral Spatial Swath Width Side-Looking Repetition
*  Range (um)  Resolution (m) (km) Ability Cycle (Days)
Panchromatic 1 0.45-0.90 1
2 0.45-0.52 45 (2 Camera 4350 5
Multispectral 3 0.52-0.59 4 Stitching with)
P 4 0.63-0.69
5 0.77-0.89

To take full advantage of both panchromatic and multispectral bands, the first pretreatment step is
Rational Polynomial Coefficients (RPC) orthorectification, and then image fusion. The Gram-Schmidt
Pan Sharpening method in ENVI 5.3 was adopted in this study, and the depth of the resulting fusion
image is 16 bits; thus, the greyscale quantization level (GQL) of the GF-2 fusion imagery is 65,536 (21°).

The computer employed in the experiments had the following specification:

(1) Processor: Intel® Core™ i7-8700K CPU @ 3.70GHz (12 CPUs);

(2)  Graphics adapter: NVIDIA® GeForce® GTX™ 1080 Ti, 11 GB;

(3) Memory: SAMSUNG® DDR4 2400MHz, 2 x 8 GB and SAMSUNG® DDR4 2400MHz, 2 x 16 GB;

(4) Hard disk: SAMSUNG® MZVLW256HEHP-000H1, 256 GB and Seagate® ST2000DM001-1ER164,
2 TB;

(5) Operating system: Microsoft® Windows® 10 Professional, 64-bit.

2.3. Reference Polygons and Field Validation

To verify extraction results, reference polygons were first manually delineated from the
GF-2 fusion image. Polygons that were hard to judge whether or not they represent greenhouses from
the image were validated or amended by field investigation. To illustrate, four verification points are
demonstrated in Figure 2. Three statistical parameters of the reference polygons were obtained in
ArcGIS 10.3 (Esri, Redlands, CA, USA): the number of reference polygons was 151, and the summation
area was 1,659,078 m2, and the total area of study area was 4,000,000 m2.
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Figure 2. Sketch map of field validation, reference polygons, and (a) abandoned greenhouse covered
with weeds and shrubs, (b) greenhouses with some pixels with high reflectance, (c) unsheathed
greenhouses, and (d) another shed used for storage, which is much taller than greenhouses.

3. Methodology

A flowchart of experiment design, methods, variables, and indicator system for the evaluation of
the effects of texture analysis on PG segments is shown in Figure 3.

GF-2 fusion
imagery

Texture analysis t-th derivative image
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Figure 3. Flowchart of experiment design, methods, variables, and indicator system.
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3.1. Texture Analysis

Texture is the visual effect caused by spatial variation in tonal quantity over relatively small
areas [51], among which the homogeneity and heterogeneity are a pair of coupled features.
Even though homogeneity is more frequently employed in texture analysis, we choses the concept of
heterogeneity to explain our method and enable understanding. The definition of heterogeneity refers
to the distinctly nonuniformity in composition or character (i.e. color, shape, size, texture, etc.)

PG can be more discernible in very high resolution satellite imageries such as Quickbird,
Worldview, and GF-2, whereas the heterogeneity is a nonnegligible obstacle when segmenting these
images based on GEOBIA. If the heterogeneity of a PG surface can be compressed, a better segmentation
result might be derived from the processed image. Considering the nature of heterogeneity in a digital
number image, image preprocessing that increases the average operator size (AOS) or decrease the
greyscale quantization level (GQL) is the method used to produce derivative images with different
heterogeneities in this study.

For an averaging operator [11], the template weighting functions are unity (such as 1/9 in AOS 3
x 3). The goal of averaging is to reduce noise, which is its foundation for compressing the heterogeneity.
Averaging is a low-pass filter, since it allows low spatial frequencies to be retained and to suppress
high frequency components. The size of an averaging operator is then equivalent to the reciprocal of
the bandwidth of the low-pass filter it implements. A larger template, say 11 x 11 or 13 x 13, will
remove more noise (high frequencies) but reduce the level of detail.

The GQL size is dependent on the maximum quantization level in a monochromatic image or
a single channel of a multichannel image. It can be decreased according to the assigned maximum
quantization level and a particular weighted combination of frequencies, which is a redistribution
of the greyscale value at each pixel, so that the values can be clustered in a certain range if they are
spread over a broad range. As long as GQL decreases, the heterogeneity of each band is compressed.

By increasing AOS or decreasing GQL, information of the pixel’s neighborhood can be effectively
used, preceding the MRS. To evaluate the effects of AOS and GQL on MRS segmentation, four increased
AOSs (3 x 3,5 %x 5,7 x7,and 9 x 9) and three decreased GQLs (128, 64, and 32) were adopted to
produce another 19 images based on the initial fusion imagery (GQL initial). Hence, there were 20 input
data that were used for segmentation, rather than merely evaluating the segmentation results from the
sole data source.

The 19 derivative images were also produced in ENVI 5.3, in which the co-occurrence measures
tool can simultaneously change the AOS and GQL of multi-bands among GQL initial, 64, and 32.
The derivative images of GQL 128 were produced using the stretch tool, and averaging operations on
GQL 128 were conducted using low pass convolution filters, since the co-occurrence measures tool
does not support the conversion between GQL initial and GQL 128.

3.2. MRS via ESP 2 Tool

MRS in eCognition is based on the Fractal Net Evolution Approach (FNEA) principle and is
widely used for segmentation. It is a region-growing process, and the optimization procedure starts
with single-image objects of one pixel and repeatedly merges them in pairs to larger units until an
upper threshold is not exceeded locally [8,17,18]. For this purpose, a scale parameter (SP) is proposed
to adjust the threshold calculation. Higher values of the scale parameter would result in larger image
objects, and smaller values result in smaller image objects. The basic goal of an optimization procedure
is to minimize the incorporated heterogeneity at each single merge [8]. If the resulting increase in
heterogeneity when fusing two adjacent objects exceeds a threshold determined by the SP, then no
further fusion occurs, and the segmentation stops [33]. The SP criteria are defined as a combination of
shape and color criteria (color = 1 — shape), whereas shape is interiorly divided as compactness and
smoothness criteria; thus, the three parameter values that must be set are SP, shape, and compactness.

ESP 2 is a generic tool for eCognition software that employs local variance (LV) to measure the
difference in the MRS under increment scales [22]. When the LV value at a given level (LV,) is equal



Remote Sens. 2019, 11, 231 7 of 21

to or lower than the value recorded at the previous level (LV,_;). The level ¢ — 1 is then selected as
the OSP for segmentation. Based on this concept, ESP 2 can help derive the dependent SP, whereas
shape and compactness can be deduced from the try-and-error experiment within different assessment
systems [17,18], which recommend obtaining the SP parameter by fixing the compactness at 0.5 and
the testing shape values around 0.3.

Since this study focused on the effect of texture analysis on MRS, the uniform shape and
compactness were set to 0.3 and 0.5, respectively. Thus, the OSP was automatically calculated by the
ESP 2 tool with the algorithm parameters set as shown in Table 2. The Level 1 and its segments in the
exported results were adopted for the next step of analysis.

Table 2. Algorithm parameters and settings in the ESP 2 tool.

Parameter Value Parameter Value
Use of Hierarchy (0 = no; 1 = yes) 1 Starting scale_Level 3 10
Hierarchy: TopDown = 0 or BottomUp = 1? 1 Step size_Level 3 100
Starting scale_Level 1 10 Shape (between 0.1 and 0.9) 0.3
Step size_Level 1 1 Compactness (between 0.1 and 0.9) 0.5
Starting scale_Level 2 10 Produce LV Graph (0 =no; 1 = yes) 1
Step size_Level 2 10 Number of Loops 200

3.3. Extraction of PG Segments

As different derivative images required different samples, features, parameters, or threshold values
in automatic extraction, and ensuring good quality is difficult, the greenhouse objects in this study were
manually selected by artificial visual interpretation using the single select button on the manual editing
toolbar in eCognition 9.0, so that each segmentation object can be as precisely evaluated as possible.
Theoretically, manual extraction would have a maximum precision on the criterion of geometric accuracy,
but this is only credible for the criterion of the area, since, in other methods, the commission area also has a
probability of offsetting the omissions while the geometric error can only be accumulated.

The principle used to assign an object as a greenhouse is when the proportion of greenhouse
area is more than 60% [24] and the feature of other categories is negligible from visual analysis.
Otherwise, the object’s feature is deemed to be unusable to extract the greenhouse contained within,
which would be evaluated as omission error in follow-up work.

After exporting from eCognition 9.0, two statistical parameters of the extracted PG segments were
obtained in ArcGIS 10.3: number of PG segments and summation area.

3.4. Establishment of OSI-USI-ETA-CEI Pattern

3.4.1. Case Study and Variable Definition

To better understand the problems in PG segmentation, the definitions of variables, and the
establishment of OSI-USI-ETA-CEI pattern, five cases of PG segments that were extracted from initial
GE-2 fusion imagery and four derivative images are demonstrated in Figure 4, and all images were
segmented under their optimal scale parameter provided by the ESP 2 tool. Notably, these cases cannot
represent the segmentation quality of a whole image.

Without decreasing the GQL, the degree of over-segmentation of the PG segments that were extracted
from the initial GF-2 fusion imagery (Figure 4a) or images derived from the treatment of AOS 3 x 3
(Figure 4b) are much worse than those extracted from other derivative images (Figure 4c—e), since the
dark and the sunny sides of the PG in the two images are segmented as different parts, making it hard to
delineate the PGs’ boundaries, which is not convenient for subsequent feature recognition and extraction.

Apart from the number of PG segments, the number and area of the fragments (the smaller
polygons that are partitioned jointly by reference polygons and PG segments) are also need to be
explored in depth.
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Figure 4. (a) Reference polygon and PG segments resulting from initial GF-2 fusion imagery and
overlapping polygons, lost fragments, extra fragments, and derivative images resulting from the
treatment of (b) GQL initial and AOS 3 x 3, (¢) GQL 128 and AOS 3 x 3, (d) GQL 64 and AOS 3 x 3,
and (e) GQL 32 and AOS 3 x 3.

To parameterize the relationship between the reference polygons and PG segments, four
quantity-based variables, seven area-based variables and their assemblies were defined in Table 3:
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Table 3. Four quantity-based variables, seven area-based variables and their assemblies.

Variable Definition
m total number of reference polygons
v total number of PG segments
n number of reference polygons that have no PG segments overlapping with them, n <m
Uy x-th number of corresponding segments found for one single reference geometry, x € (0, m — n] [45]
7 i-th reference polygon of assembly R; R indicates the real area of PG, i € (0, m]
S; j-th extracted PG segment of assembly S; S indicates the extraction area of PG, j € (0, 7]
Ok k-th polygon of assembly O; O indicates the overlapping area between Rand S,O=RN S

h-th element of Biggest Segments (BS); BS is the assembly of PG segments representing the biggest
bsy, overlapping polygon within its corresponding reference polygon, indicating the total area of biggest
segments, BS C S

h-th element of Biggest Overlaps (BO); BO is the assembly of overlapping polygons where each is
boy, partitioned by every bs;, and its corresponding reference polygon, indicating the total area of biggest
overlaps, BO C O

p-th element of Lost Fragments (LF); LF is the assembly of fragments where each is part of R and also
Ify part of a segment that cannot represent PG (fragments in R but outside of O, which are shown in coral
red in Figure 4), LF indicates the total area of lost fragments [24]

g-th element of Extra Fragments (EF); EF is the assembly of fragments where each is part of S but not
efy part of R itself (fragments in S but outside O, shown in dark green in Figure 4), EF indicates the total
area of extra fragments [24]

It is generally thought that a high-quality image segmentation should result in a minimum amount
of over- and under-segmentation, and different area-based or number-based indicators have been
designed based on selected samples and their corresponding reference polygons [14,24,39,41-43,45,52],
which we rewrote using variables defined above for comparison, as shown in Table 4.

Table 4. Different area-based or number-based indicators of over- and under-segmentation.

Year Reference Over-Segmentation Under-Segmentation
2002 Lucieer etal. [38] ribs 5 b <
2007 Moller etal. [39] % &
2010 Clinton et al. [40] 1% 1-¢
2010 Persello et al. [41] 1-— @ 1-— %
’ /,

2010 Marpu et al. [24] brﬂ lfi ‘;a
2012 Liu et al. [42] NSR = =2l PSE = Ef

NSRpew = F
2016  Novelli et al. [45] =X x| PSEney = Lma:(efq)

T mn i1

Some feature similarity-based, location-based or distance-based [41,46] methods are available
for measuring the quality of segmentation, but these methods only work when segments have an
approximately one-to-one relationship with the reference polygons, whereas the segmentation results
of continuous greenhouses always have the relationship with the reference of poly-to-one.

The OSI-USI-ETA-CEI pattern is based on the reference polygons that were manually delineated
in Section 2.3. and the PG segments extracted in Section 3.3. The method is designed for evaluating
the segmentation quality of PG segments from images with different heterogeneities. In short, OSI
denotes the extent to which the number of PG segments may affect the USI and ETA, USI indicates the
absolute geometric error of PG segments, ETA indicates the discrepancy in the total area between PG
segments and reference polygons, and CEI indicates the composite error.
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3.4.2. Over-Segmentation Index (OSI)

Segmentation results that are over-segmented are more likely to cause omission and commission
errors in follow-up classification because the number and some feature values (like mean value)
of both the interested and non-interested objects that are over-segmented would range widely
compared with those that are not over-segmented. An extreme example of this is when an image
is segmented on the pixel level. Even though it is much easier to compare the number rather
than other feature values for two assemblies of polygons, indicators that compare the number of
reference polygons with segments [17,18,42-45] and that compare the area of a reference polygon with
its biggest corresponding segment [24,38,53] were both designed or applied in over-segmentation
analysis. However, these criteria are designed for pursuing perfect segmentation that is similar
to manually delineated reference polygons, which is not suitable for evaluating the segments of
continuous PGs since drawing those reference polygons is different from segmenting an image.
Reference polygons prefer to draw the outline of a single or continuous greenhouse rather than divide
pixels with different grey levels, whereas segmentation prefers the latter, especially when some pixels
material or Bidirectional Reflectance Distribution Function (BRDF) varies significantly from their
surrounding pixels. To manually draw the outline of continuous greenhouses is so subjective that it is
hard to determine the size of a reference polygon as well as the total number of reference polygons,
i.e., no wonderful polygons can be used to define whether a segmentation is over-segmented or
not. A similar view was reported by Zhang et al. [30]. Thus, continuous greenhouse extraction in
high-resolution imagery does not require a similar segment number compared to the manual reference
polygons, nor accordant outlines or even skeletons (Figure 4). However, we should consider counting
the segment numbers in the initial fusion imagery as an effective reference to assess over-segmentation
instead, since the high heterogeneity among greenhouse pixels in an initial fusion image tends to
lead to the worst over-segmenting result compared with derivative images with lower heterogeneity.
Therefore, the segment numbers of the initial fusion imagery under its OSP using ESP 2 can be regarded
as ancillary data of reference polygons in Section 2.3. The ancillary data provides a numerical reference
and the manually delineated polygons provides a geometric reference.

Synthesizing the situation stated above, over-segmentation of PG segments is indicated by a new
OSl in this study, which is a relative value calculated by Equation (1):

7

v
OSI = — 1
o M
where v denotes the number of extracted PG segments when the corresponding image is under the
optimal segmentation using ESP 2 tool, v; denotes the number of PG segments extracted from the initial
GF-2 fusion image, and v, denotes the number of PG segments extracted from the ¢-th derivative
image. A higher OSI indicates a larger error of over-segmentation.

3.4.3. Under-Segmentation Index (USI)

When an image is over-segmented, it is still possible to construct the object, but when an image is
under-segmented, the object may not be recovered [24]. Under-segmentation is more worthwhile to be
exactly evaluated.

From Figure 4, both lost and extra fragments are shown to have many members with very tiny
areas, and the boundaries of the reference polygons usually have fewer polylines than that of PG
segments. The number of lost and extra fragments are not only caused by geometric errors but also
changed by how we draw the outline of single or continuous greenhouses, so it is not appropriate to
neither count the number nor calculate the mean value of those fragments [24] when evaluating the
geometric errors of continuous greenhouses.

In general, the area of extra-segments are parts of under-segmentation error according to some
studies (Table 4), as the PG segments should slice those pixels that are not representing a PG.
However, lost fragments can be considered as a result of under-segmentation of those segments



Remote Sens. 2019, 11, 231 11 of 21

that do not contain enough PG pixels, i.e., the lost fragments can be regarded as the extra fragments of
another category (Figure 4). Therefore, it is necessary to adequately evaluate both the LF and EF error
rather than to consider only one and then combine the two errors into a single index (USI) to indicate
the intension of under-segmentation of PG segments. The theoretical value should range between zero
and one. The index can be calculated as:
LF +EF
USl = ——— 2

- @
where LF, EF, and R are the total area of lost fragments, extra fragments, and the real area of PG,
respectively. A higher USI indicates a larger under-segmentation error.

3.4.4. Error Index of Total Area (ETA)

Lost and extra fragments have an opposite influence on the final area of extraction even though
both directly contribute to the under-segmentation. Although area-based measures were discussed
in Clinton et al. [40] and some new measures based on area were designed after that [24,42,46],
these sample-based studies only focused on the proportion of the omission or commission area in
a segmentation, but the percentage of the difference in the total area between segmentation results
and corresponding reference polygons seems to be ignored, which should be fully considered when
evaluating the precision of the total area of extraction and the consequence of under-segmentation.
Thus, the Error Index of Total Area (ETA) can be used to indicate the discrepancy, which can be
calculated by:
|SRR| _ \EFRLF| 3)
where S denotes the summation area of extracted PG segments when corresponding image is under the
optimal segmentation using the ESP 2 tool, S denotes the summation area of PG segments extracted

ETA =

from the initial GF-2 fusion image, and S;,1 denotes the summation area of PG segments extracted
from the t-th derivative image. A higher ETA value indicates a larger total area error.

3.4.5. Composite Error Index (CEI)

In general, the more the PG segments are over-segmented, the larger the omission and commission
error produced indirectly in automatic classification or extraction. Under-segmentation causes
geometric errors and directly leads to an area difference from the reference. Given this consideration,
a new CEl is presented in Equation (4) to consider the composite error of segmentation results when
comparing to a set of reference polygons:

CEI = A x OSI + USI + ETA )

where A is a possible weight used to rescale the value of quantity-based OSI so that the indicator will
not overwhelm the value of area-based USI and ETA; thus, the OSI multiplied by A denotes the indirect
influence of the number of PG segments on extraction in CEIL

When omission or commission segments in an extraction are generated due to over-segmenting,
their geometric error and area difference from the real value (indicated by USI and ETA, respectively)
couple on the extraction. Thus, the value of A in this study is defined as the sum of USI and ETA as:

A =USI+ ETA (5)
4. Results

4.1. Derivative Images with Different Heterogeneities

We provide two images (Figure 5) as examples to show the visual disparity of different
heterogeneities. Even though there is no significant difference at first sight, some subtle distinctions can
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be found from the white roof (in red frame), and the texture in image that derived from the treatment
of GQL 64 and AOS 3 x 3 is more distinct than in initial GF-2 fusion imagery. Details emerge in the
images as long as they are segmented (Figure 6).

(b)
Figure 5. (a) Initial GF-2 fusion imagery; (b) image derived from the treatment of GQL 64 and AOS 3 x 3.

4.2. PG Segments in Images with Different Heterogeneities

Seven sets of PG segments are shown in Figure 6 as examples to demonstrate the visual disparity.
The number of PG segments extracted from initial fusion imagery is outdistancing the other situations
as well as reference polygons. Another significant difference is the number of segments of the white
roof (in red frame). In Figure 6a—c, the roof’s boundary is hard to distinguish from the thumbnails,
while the other examples are much better. The boundaries of the PG segments in Figure 6¢,d are more
orderly both horizontally and vertically, which conforms to the outlines of the greenhouses, whereas
the segmentation results in Figure 6e—g irregularly delineate the greenhouses.

Figure 6. Cont.
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Legend

Cl PG segments
|:| Segments of other categories
[ Location of the white roof

0 125 250 500 750 1,000
) Vleters

(8)

Figure 6. (a) PG segments based on initial GF-2 fusion imagery; and derivative images as well as PG
segments resulting from the treatments of (b) GQL initial and AOS 3 x 3, (¢) GQL 128 without an
averaging operator, (d) GQL 128 and AOS 3 x 3, (e) GQL 64 without an averaging operator, (f) GQL
64 and AOS 3 x 3, and (g) GQL 32 without an averaging operator.
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Apart from the examples in Figure 6, the indicator values of each set of PG segments that were
extracted from different images are shown in Table 5, while the summation area of reference polygons
(R) was 1,659,078 m?, and OSP is the optimal scale parameter calculated by the ESP 2 tool with fixed
shape of 0.3 and compactness of 0.5. We use DIF denotes the value of CEI of each set of PG segments
minus that of PG segments of the initial fusion imagery.

Table 5. Indicator values of each set of PG segments that were extracted from different images.

GQL AOS OSP o S (m?) LF(m?) EF(m?  OSI USI ETA CEI DIF

initial  none 81 3007 1,690,287 86,211 117,420  1.000 0.123 0.019 0.283 0.000
3x3 103 1737 1,659,104 109,546 109,572  0.578 0.132 0.000 0.208  —0.075
5x5 161 711 1,733,075 89,339 163,336  0.236 0.152 0.045 0.243  —0.040
7x7 197 446 1,710,681 114,154 165,757  0.148 0.169 0.031 0229  —0.054
9x9 161 507 1,693,593 122,930 157,805 0.169 0.169 0.021 0222 —0.061

128 none 82 808 1,700,510 102,356 143,788  0.269 0.148 0.025 0220 —0.063
3x3 94 561 1,660,182 128,221 129,325  0.187  0.155 0.001 0.185  —0.098
5x5 109 380 1,679,966 133,606 154,494  0.126 0.174 0.013 0210 —0.073
7x7 100 400 1,689,608 123,859 154,389  0.133 0.168 0.018 0211  —-0.072
9x9 115 267 1,703,666 117,728 162,316  0.089 0.169 0.027 0213 —0.070

64 none 50 457 1,781,987 87,601 210,510  0.152 0.180 0.074 0.292 0.009
3x3 56 352 1,796,653 90,983 228,558  0.117  0.193 0.083 0.308 0.025
5x5 64 255 1,827,083 83,023 251,028  0.085 0.201 0.101 0.328 0.045
7x7 67 250 1,870,392 72,295 283,609  0.083 0.215 0.127  0.370 0.087
9x9 82 171 1,903,843 81,584 326,349  0.057  0.246 0.148 0.416 0.133

32 none 31 821 1,738,822 103,795 183,539  0.273 0.173 0.048 0.282  —0.001
3x3 39 527 1,793,144 96,658 230,724  0.175 0.197  0.081 0.327  0.044
5x5 46 355 1,773,550 130,505 244,977  0.118 0.226 0.069 0.330 0.047
7x7 49 361 1,792,180 119,801 252,903  0.120 0.225 0.080 0.341 0.058
9x9 46 379 1,802,023 110,171 253,116  0.126 0.219 0.086 0.344 0.061

The experiment was designed to find the optimal set of GQL and AOS, which could result in
optimum PG segments for the extraction. PG segments in derivative image with the treatment of GQL
128 and AOS 3 x 3 has the lowest CEI, which is consistent with visual analysis in Section 3.

4.3. Effects of Image Texture Analysis on PG Segments

4.3.1. Effects of Increasing AOS on PG Segments

Images under four kinds of GQLSs can be employed to process by four AOSs, so we could evaluate
the effects of increasing AOS on PG Segments as Figures 7 and 8 shown.
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Figure 7. Effects of increasing AOS on PG segments using the area of lost and extra fragments.

With the increase in AOS (Figure 7), both the sum of LF and EF (related to USI) and the distances
between them (related to ETA) have relatively low values under the treatments of GQL initial and
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GQL 128 than that of GQL 64 and GQL 32. Variation of LF and EF is the foundation to understand the

value of USI and ETA, while the sum of USI and ETA is main source of CEI (Figure 8).
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Figure 8. Effects of increasing AOS on PG segments using the OSI-USI-ETA-CEI pattern.

For GQL initial and GQL 128, the AOS 3 x 3 setup can let the values of ETA and CEI
reach their minimum simultaneously, and significantly decrease the value of OSI, whereas USI

increases somewhat.

For GQL 64 and GQL 32, the increase in AOS lead to the increase in CEI, which was not expected.
For each kind of GQL, the increase in AOS lead to opposite change trends of USI and OSI, whereas
CEI had the same with ETA. The curves under GQL 128 are smoother and steadier than other GQLs

with increasing AOS.

4.3.2. Effects of Decreasing GQL on PG Segments

Five AOS setups were used to evaluate the effects of decreasing GQL on PG Segments as shown

in Figures 9 and 10.
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Without AOS

Figure 9. Effects of decreasing GQL on PG segments using the area of lost and extra fragments.

Similar to Figure 7, Figure 9 demonstrates the superiority of GQL initial and GQL 128 on both the
sum of LF and EF (related to USI) and the distances between them (related to ETA), which shows the

lower omission and commission errors of PG segments than GQL 64 and GQL 32.

From Figure 10, the treatment of GQL 128 has the lowest CEI values under each setup of AOS

compared to other GQLs, among of which AOS 3 x 3 produced the minimum value.
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Figure 10. Effects of decreasing GQL on PG segments using the OSI-USI-ETA-CEI pattern.

4.3.3. Combined Effects of AOS and GQL on PG Segments

Compared with the initial fusion imagery, the increase in AOS and the decrease in GQL can reduce
the influence of over-segmentation but can also increase the error of both under-segmentation and the
extraction area. An interaction of the effects occurs among OSI, USI, and ETA, all of which synthetically
decide the CEL

After the treatment of different AOSs on GQL initial and GQL 128, the CEI was reduced by 4.0 to
9.8% compared to the initial fusion imagery, whereas the treatment of different AOSs on GQL 64 and
GQL 32 increase the CEI by 0.9 to 13.0%, except that of GQL 32 without an averaging operator, which
was very close to the initial fusion imagery with only a 0.1% reduction.

Thus, the optimum texture analysis setup for GF-2 fusion imagery is GQL 128 and AOS 3 x 3,
since the PG segments of the derivate image can reduce the CEI by 9.8% than PG segments of the
GEF-2 fusion imagery.

5. Discussion

Since the segmentation results from the initial fusion image are highly fragmented compared with
the boundary of real-world entities, compressing the heterogeneity of adjacent pixels before segment
was notable. To improve the PG segments derived from eCognition, the innovation of our method is
that we evaluate the effects of texture analysis on PG segments using OSI-USI-ETA-CEI pattern, based
on the nature of segmentation and heterogeneity in a digital number image.

5.1. Evaluation Problems

Several problems need to be considered when measurement methods are used for the evaluation
of PG segments.

First, the confusion matrix is a common method for evaluation or verification, but in object-based
extraction, a problem occurs for each segmented object: omission and commission errors may coexist
compared to the reference polygon. Thus, the extraction result cannot be accurately evaluated by choosing
those segmented objects with an inaccurate boundary as the true values [19,20]. Each greenhouse object’s
omission and commission errors should be considered on the pixel-based rather than the object-based level.

If the specified proportion of a greenhouse that is adopted to define a segment as a PG increases
or reduces, the percentage of LF and EF would change either [24].

As a non-negligible indicator, the difference in the area between the extraction results and the
reference polygons must also be evaluated quantitatively.
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5.2. Comparison with Related Evaluation Research

Several pointed discussions in Section 3.4. theoretically explained why the OSI-USI-ETA-CEI
method differs from existing indexes, which is summarized in Table 6. Notably, the existing indexes
are designed based on scattered reference polygons and the corresponding overlapped PG segments,
whereas the OSI-USI-ETA-CEI method in this study was built on the whole image.

Table 6. Comparing the OSI-USI-ETA-CEI pattern with related evaluation research.

Proposed Pattern Comparation with Related Evaluation Research

Calculated by the ratio of the number of PG segments of derivate image to the number of
OsI PG segments of initial fusion imagery, instead of ignoring the impact of the number,
or assuming the delineated polygons have a dependable quantity

Calculated by the proportion of area of lost and extra fragments together as a consequence

Usl of under-segmentation, instead of calculating only one of them or separately
ETA Considers the difference in area between extraction results and reference polygons
CEI Rescale the OSI by geometry and area discrepancy first and then simply sum the rescaled

OSI with USI and ETA up, instead of calculating the Euclidean Distance of indicator values

Even though the effect of different shape and compactness values on PG segments are not
discussed in this study, we selected them on the basis of Aguilar et al. [17,18], which considered
ESP 2 to be an effective tool on PG segmentation. Aguilar et al. [17] evaluated the effects of shape
and compactness on the quality of PG segments by the ED2 in Equation (6), and Aguilar et al. [18]
compared the PG segments derived from multispectral, panchromatic, and atmospheric correctional
multispectral orthoimages under different shape and compactness values by the modified ED2 in

Equation (7):
ED2 = V/PSE? + NSR? (6)

modified ED2 = 1 /PSE2,,, + NSRZ,, @)

where PSE, NSR, PESpew, and NSRpew were defined in Section 3.4.1.

The ED2, modified ED2 and CEI are all evaluation methods based on both numeral and areal
indicators. Since the ED2 has a similar principle to the modified ED2 and is more computable than
that, we use the PSE-NSR-ED2 method contrasted with the OSI-USI-ETA-CEI pattern by numerical
and visualized analysis to support our availability.

The best texture analysis setup for GF-2 fusion imagery according to ED2 value is GQL 64 and AOS
9 x 9, which was judged as the worst one by USI, ETA, CEI and even PSE. Furthermore, the ED2 almost
determined by the NSR (Table 7 and Figure 11) shows that ED2 is not suit to evaluate the quality of
segmentation results in this study.

Table 7. Values of PSE, NSR, and ED2 of each set of PG segments under different GQL and AOS.

GOQL AOS PSE NSR ED2 GQL AOS PSE NSR ED2
Initial none 0.071 18914 18.914 64 none 0.127 2.026 2.030

3x3 0.066  10.503 10.504 3x3 0.138 1.331 1.338
5x%x5 0.098 3.709 3.710 5x5 0.151 0.689 0.705
7x7 0.100 1.954 1.956 7x7 0171 0.656 0.678
9%x9 0.095 2.358 2.360 9%x9 0.197 0.132 0.237
128 none 0.087 4.351 4.352 32 none 0.111 4437 4438
3x3 0.078 2.715 2.716 3x3 0.139 2.490 2.494
5x5 0.093 1.517 1.519 5x5 0.148 1.351 1.359
7x7  0.093 1.649 1.652 7x7 0152 1.391 1.399

9x9 0.098 0.768 0.774 9%x9 0153 1.510 1.518
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Therefore, the drawbacks of the ED2 [42] are: (1) equated the attribute of numerical indicator with
that of areal indicator; (2) gave the larger indicator a bigger weight than the smaller one in calculation.
The modified ED2 does this as well, which is not expected to happen when compositing the numerical
and areal indicators.

Although the PSE-NSR-ED2 method loses its efficacy in this study, it did work in several
studies [17,42-44]. A possible reason is the heterogeneity of the images of their study areas was
not as high as that of the GF-2 fusion data in this study [17].
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Figure 11. Effects of increasing AOS on PG segments using the PSE-NSR-ED2 pattern.
5.3. Next Steps

Although the experiments are all based on MRS in eCognition, the proposed methods are
presented in a general sense and may helpful for practitioners who suffer from segmentation issues
in GEOBIA.

The drawback of the proposed method is the number of PG segments relies on the validity of
the ESP 2 tool and the PG segments must be obtained by manual selection. Thus, other effective
segmentation schemes or automatic extraction methods are needed for experimentation with the
method in the future.

We only analyzed the effects of two preprocessing operations (increasing AOS and decreasing
GQL) on PG segments, whereas the influence of atmospheric correction on PG segments was evaluated
by Aguilar et al. [18], but different methods or tools to change the heterogeneity of input imagery are
available, such as median filter, Gaussian averaging operator, Region-Scalable Fitting (RSF) model,
and the Laplacian of Gaussian (LoG) operator [11,13].

Since segmentation results are highly scene-dependent, the investigation should also be applied
to other scenes and data sources in future studies.

6. Conclusions

This study was designed to examine the ability of extracting greenhouses from GF-2 imagery.
To complete the process, compressing the heterogeneity of the initial fusion image was designed to
effectively use the texture analysis and improve the MRS, and a new OSI-USI-ETA-CEI pattern was
proposed to evaluate the effects of texture analysis on PG segments.

Although this work should be only considered as an initial approach, the following conclusions
are drawn:

(1) Appropriate texture analysis applied to a fusion image can change its heterogeneity effectively
for better segmentation.

(2) When shape and compactness are fixed at 0.3 and 0.5 respectively, the optimum treatment of
GF-2 fusion imagery prior to segmenting the plastic greenhouses using ESP 2 tool is compresses
the GQL to 128 and uses the AOS 3 x 3 setup, which reduces the CEI by 9.8% compared with the
initial fusion imagery in this study.
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(3) The proposed OSI-USI-ETA-CEI pattern can be applied to evaluate the effects of image processing
on the quality of PG segments, which is more accurate but requires a higher workload than the
PSE-NSR-ED2 method.
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