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Abstract: Many applications, including crop growth and yield monitoring, require accurate long-term
time series of leaf area index (LAI) at high spatiotemporal resolution with a quantification of the
associated uncertainties. We propose an LAI retrieval approach based on a combination of the
LAINet observation system, the Consistent Adjustment of the Climatology to Actual Observations
(CACAO) method, and Gaussian process regression (GPR). First, the LAINet wireless sensor network
provides temporally continuous field measurements of LAIL Then, the CACAO approach generates
synchronous reflectance data at high spatiotemporal resolution (30-m and 8-day) from the fusion
of multitemporal MODIS and high spatial resolution Landsat satellite imagery. Finally, the GPR
machine learning regression algorithm retrieves the LAI maps and their associated uncertainties.
A case study in a cropland site in China showed that the accuracy of LAI retrievals is 0.36 (12.7%) in
terms of root mean square error and R? = 0.88 correlation with ground measurements as evaluated
over the entire growing season. This paper demonstrates the potential of the joint use of newly
developed software and hardware technologies in deriving concomitant LAI and uncertainty maps
with high spatiotemporal resolution. It will contribute to precision agriculture, as well as to the
retrieval and validation of LAI products.

Keywords: leaf area index; uncertainty; Gaussian processes; wireless sensor network; data fusion;
Landsat; MODIS; validation
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1. Introduction

The leaf area index (LAI) describes the surface area available per unit ground surface for energy
and mass exchanges between vegetation and the atmosphere. It plays a key role in several surface
processes, including photosynthesis, respiration, and evapotranspiration. Spatiotemporal continuous
LAI data is critical for climate model validation [1], regional to global scale carbon budget estimation [2],
disturbance detection [3], and many other applications. Remote sensing is the only tool that can
effectively generate spatiotemporal continuous LAI products [4,5]. The methods to estimate LAI values
from satellite data can be divided into empirical methods based on statistical relationships with ground
measurements [6-8], physical methods based on the inversion of radiative transfer (RT) models [9-11],
and hybrid methods that combine statistical methods with RT models [12-14]. The physical and hybrid
methods are increasingly used in the scientific community because of their strong generalization
ability [15,16]. However, the inversion of a canopy RT model is an under-determined problem because
of the limited information content of the radiometric signal compared to the high number of unknowns
influencing the canopy reflectance [17]. The ill-posed nature of the inversion problem—several sets of
input variables can yield very similar spectra [18,19]—hampers the application of the physical and
hybrid methods [18], so empirical methods are still popular, especially in regional-scale studies.

In situ LAl measurements, required in the calibration of the empirical methods, are usually derived
from optical instruments [20-22], including digital hemispheric photographs [23,24], TRAC [25],
LAI-2000 Plant Canopy Analyzer [26], or its successor LAI-2200. The manual nature of the
optical instruments makes the traditional in situ measurements time-consuming and labor-intensive.
The emergence of more portable or even fully automatic observation instruments, such as LED
sensors [27] and smartphones [28,29], represents a change in paradigm in near-surface remote sensing.

Several operational LAI products, including MODIS [30], GLASS [31], and Copernicus Global
Land [32,33] products, are regularly provided by space agencies over long periods at high temporal
resolution (between 8- and 15-day frequency) but at coarse spatial resolution (between 300 m
and 8 km). On the other hand, several studies have generated LAI maps with high spatial
resolution but with a limited temporal sampling [34-36]. In fact, the technical constraints of remote
sensing instruments [37] involves a tradeoff between spatial and temporal resolution for remote
sensing application. This hinders the utility of LAI products in areas with high spatial heterogeneity
or substantial temporal variations [38—40]. LAI time series with high spatiotemporal resolution are
urgently needed for characterizing terrestrial ecosystem processes at the parcel level.

In a previous work [8], we proposed a framework for the retrieval of high spatiotemporal
LAI products based on the combined use of wireless sensor network (WSN) and data blending
(DB) technologies. The LAINet observation system [41,42] was used to estimate temporally
continuous field measurements at high temporal frequency. The Consistent Adjustment of the
Climatology to Actual Observations (CACAO) [43] was used as a DB technique to produce fine
spatial resolution satellite imagery. Then, an exponential function relating the reconstructed remote
sensing observations to the LAINet measurements was calibrated and used to predict LAI maps with
high spatiotemporal resolution. However, this approach has two main limitations: (i) accuracy of
LAl retrievals not meeting the user requirements (15%) proposed by the Global Climate Observing
System [44] and (ii) non-retrieval of the uncertainty associated with the LAI maps.

Characterizing the uncertainties associated with LAI maps is required in many applications
including the assimilation into land surface models [45,46]. Some of the existing LAI products provide
uncertainty estimates. In the MODIS LAI products, the uncertainty is the standard deviation over
all acceptable solutions of the inversion process [4]. In other cases, such as Copernicus Global Land
1 km Version 1 LAI products [32], the uncertainty is estimated using a dedicated algorithm that
is independent of the main LAI retrieval algorithm. The rapid development of machine learning
regression methods, particularly those based on Bayesian approaches, sheds light on the simultaneous
estimation of LAl and uncertainty in a single algorithm [47]. Gaussian process regression (GPR) [48,49]
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has been reported to improve accuracy in LAl retrieval and provide uncertainty estimates directly
through Gaussian probabilities [7].

We aim to develop a method to generate more accurate LAI time series and their associated
uncertainties at high spatiotemporal resolution. This will contribute to the temporally continuous
validation of coarse spatial resolution LAI products and the assimilation of LAI estimates into land
surface models, for which high spatiotemporal resolution maps of both LAI estimations and the
corresponding uncertainties are needed.

2. Material and Methods

2.1. Study Area

The research was conducted in a 5 km x 5 km region in Huailai, northern China (Figure 1).
The annual average precipitation and temperature are 396 mm and 9.6 °C, respectively. Croplands are
the main land cover type, and the growing season typically spans from mid-May to late September [50].
The remaining land cover types include water in the northwest and impervious surfaces scattered over
the study area.

115°44'E 115°45'E 115°46'E

Figure 1. Map of the study area. The background image is the false color composition with bands 6-5-4
of the Landsat 8 Operational Land Imager (OLI) image acquired on August 23, 2013. The points and
numbers indicate the locations of the twelve below nodes in the LAINet observation system deployed
in the study area.

2.2. Satellite Data

2.2.1. Landsat 8 OLI

We used Landsat 8 Operational Land Imager (OLI) data acquired through the Earth Resources
Observation and Science Center Science Processing Architecture (ESPA) (https://espa.cr.usgs.gov).
ESPA provides top of canopy reflectances based on the Second Simulation of the Satellite Signal in
the Solar Spectrum Vectorial (65V) atmospheric correction algorithm [51]. Spectral bands in the blue, green,
red, near infrared (NIR), and the two shortwave infrared (SWIR1 and SWIR2) bands were used (Table 1).
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Table 1. Band numbers (BN), central wavelengths (CW), and full width at half maximum (FWHM) of
the OLI and MODIS sensors for the selected spectral bands.

OLI MODIS
Spectral band
BN CW (nm) FWHM (nm) BN CW (nm) FWHM (nm)
Blue 2 482.0 60.1 3 469.0 11.5
Green 3 561.4 60.1 4 555.0 12.9
Red 4 654.6 37.5 1 645.0 10.5
Near infrared 5 864.7 28.2 2 858.5 11.6
Short wavelength infrared 6 1608.9 20.4 6 1640.0 14.0
Short wavelength infrared 7 2200.7 84.7 7 2130.0 15.8

The dataset includes six cloud-free Landsat 8 OLI scenes (path: 123; row: 32) acquired on the day
of year (DOY) 139, 187, 235, 267, 299, and 315 for the year 2013 (Figure 2). This period corresponds to
the growing season of the study area (Figure 4). Note that only two Landsat 8 OLI scenes (acquired on
DOY 187 and 235) are within the period of acquisition of ground data (from July 1 to September 14, 2013,
as detailed in Section 2.3.1), that is, only two ground-based LAI maps could be generated from Landsat
data without data blending.

+ MCD43A4 Landsat-8 OLI LAINet

............................
............................

50 100 150 200 250 300 350

Figure 2. Temporal distributions of the MODIS and Landsat acquisitions during the year 2013 over
the study area. The shaded area represents the period of acquisition of ground LAINet measurements.
DOY: day of year.

2.2.2. MCD43A4

We also used the nadir directionally normalized reflectance MODIS Nadir Bidirectional
Reflectance Distribution Function (BRDF) Adjusted Reflectance product (MCD43A4) [52]. It is
produced at 500 m spatial resolution every 8 days using a compositing window of 16 days with
data from both Aqua and Terra satellites. All the scenes in 2013 covering the study area (tile number
of h24v04) were downloaded from the Land Processes Distributed Active Archive Center (LP DAAC)
(https:/ /Ipdaac.usgs.gov). The cloud-contaminated scenes were all filtered out, resulting in 36 clean
scenes with a full coverage of the growing season of the study area (see Figure 2). The six bands in the
MCD43A4 product analogous to the Landsat 8 OLI were selected (Table 1). The MCD43A4 data were
resampled to 30-m spatial resolution using the nearest neighbor sampling method.

2.3. Retrieval Algorithm

Figure 3 shows the general outline of the proposed framework to generate concomitant LAI
and uncertainty maps with high spatiotemporal resolution. It includes LAINet, CACAO, and GPR
methods:

(i) LAINet provided the LAI field measurements for calibrating and validating GPR;

(ii) CACAO was used for blending the Landsat 8 OLI and MODIS MCD43A4 products and generating
reflectance data with high spatiotemporal resolution; and,

(iii) GPR was used for the retrieval of LAI and uncertainty maps.
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Figure 3. Flowchart of the methodology combining LAINet, CACAO, and GPR for the generation of
LAI and uncertainty maps with high spatiotemporal resolution.

High spatial resolution
Landsat 8 OLI

2.3.1. LAINet Field Measurements

Field measurements were collected through the LAINet observation system. LAINet comprises
12 below nodes which receive the transmitted solar radiation below the canopy (Ep) (see Figure 1 for
their spatial distribution), and 1 above node which receives downward radiation above the canopy
(Ea) [42]. The LAI estimation is based on gap fraction measurements calculated as Eg/E 4. For details
regarding LAINet, please refer to Qu et al. (2014) and our previous work [8].

Ground measurements were collected from July 1 to September 14, 2013 (see Figure 2). To reduce
the random errors, the estimated LAI values from each node of the LAINet observation system
were averaged over an 8-day interval. The 8-day composite measurements are hereafter indicated
by the DOY of the first day of the compositing period. Due to unexpected instrument failures
and unsatisfactory weather conditions, some LAINet measurements were invalid. Only four nodes
(numbered 3, 5, 8, and 12 in Figure 1) had valid LAI values for every date. A total of 67 measurements
were finally available.

2.3.2. CACAO Reconstruction of High Spatiotemporal Satellite Data

The CACAO [43] method was used to blend Landsat 8 OLI data of high spatial resolution
and MCD43A4 data of high temporal resolution, and to reconstruct high spatiotemporal resolution
reflectance data.

CACAQOQ is a temporal smoothing and gap filling method with temporal constraints [43]. It fits a
phenology model to the actual observations based on a two-step process:

(i) A phenology model was first constructed per pixel and per band based on the temporal evolution
of MCD43A4 reflectance data. The time series of MCD43A4 reflectance were smoothed using
Savitzky-Golay (SG) filtering [53] to generate the phenology model. SG smooths the time series
by fitting a low-degree polynomial in the local temporal window. In this study, the degree of the
smoothing polynomial was fixed at 2 and the half-width of the smoothing window at 16 days.

(ii) The phenology model was then fitted to the actual Landsat observations. It was shifted and
scaled in order to minimize its difference with the Landsat 8 OLI data in terms of the root mean
square error (RMSE):

. 1& R
argmfllellﬁiﬂ\/n; (Rori(t;) — scaleRpy (t; + shift))”, 1)

where Rop represents the Landsat 8 OLI reflectance, Ry represents the reflectance of the
phenology model, n is the number of available Landsat 8 OLI observations (in this study, n = 6),
t is the time in days, and scale and shift are the parameters to be adjusted. The minimization of
the RMSE was done pixel by pixel, and band by band. After obtaining the values of scale and shift
for each pixel in each band, Landsat-like reflectance can be computed at any arbitrary date from
the MODIS phenology model.
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The CACAO fitting is illustrated in Figure 4. Generally, the Landsat 8 OLI reflectance and the
MODIS phenology model (SG-filtered MCD43 A4 reflectance) show a similar seasonality with some
differences in terms of magnitude and phase. The reconstructed reflectance retains the seasonality of
the phenology model and fits the Landsat 8 OLI reflectance values.

The reconstructed reflectances have an 8-day temporal frequency and a 30-m spatial resolution.
Their temporal and spatial characteristics inherit from MCD43A4 and Landsat 8 OLI data, respectively.
The time series spans from DOY 121 to 321, 2013, covering the entire growing season in our study area.

03 —r—————"T T

shift =13 T ® Landsat 8 OLI reflectance
scale =0.76

— Reconstructed reflectance

= = SG-filtered MCD43A4 reflectance

Reflectance

0.0 T T T T T
120 160 200 240 280 320

DOY

Figure 4. Illustration of the CACAO fitting of the MODIS phenology model to actual Landsat
observations for reconstructing high spatiotemporal reflectance data. Case of reflectance in the red
band for the central pixel of the study area. The shift and scale fitting parameters are indicated.

2.3.3. GPR LAI and Uncertainty Retrieval

GPR can learn the complex relationship between input and output variables based on a
probabilistic approach [49]. In addition to highly accurate retrievals, GPR provides pixel-wise
confidence intervals of the estimations [7]. Details regarding GPR can be found in a series of studies
from Verrelst et al. [7,46,54,55], and we provide only a brief description of GPR adopting their notation.

Under the GPR paradigm, the estimated LAI from GPR obey Gaussian distribution with mean
and variance given by the following:

i = KT (K+a,§1) -y, )

—1
02 = K,y — KT (K 4 a,%l) K., 3)

where K- is a vector used for characterizing the similarity between the test and training samples,
and Kx is the prior covariance. A positive term is subtracted from the prior covariance to estimate
the final variance. Therefore, the posterior variance is always smaller than the prior variance, since
the observations contribute some additional information [49]. Theoretically, the GPR-estimated
uncertainty depends on the training reflectance. If the test reflectance is similar to the training
reflectance, the uncertainty for the test set is relatively small because we are dealing with similar input
features [46]. In this study, standard deviation (SD), namely, the square root of the predictive variance,
was used as a proxy of the retrieval uncertainty.

In Equations (2) and (3), K is a kernel function that evaluates the similarity between the test
reflectance x and all training reflectance values. In this study, the automatic relevance determination

kernel was used: 5
b b
B (x} —x7)
K(xj, xj) = vexp(—Z:b=1 #) + (51-]-(7,%, 4)
b
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where v is a scaling factor, B is the dimensions of the input (in this study, B = 6), ¢}, controls the spread
of the relations for each dimension of the input, and high values of ¢;, mean lower informative content
of the corresponding dimension for the regression and vice versa, 0, is the noise standard deviation,
and ¢;; is Kronecker’s symbol.

Model hyper-parameters involved in GPR were automatically optimized by maximizing the marginal
likelihood in the training set [49]. In this study, GPR was implemented using the simpleR MATLAB
toolbox, freely available at https:/ /github.com/IPL-UV /simpleR (accessed on 18 January 2019).

The training dataset is the prerequisite to train a GPR suitable for LAI and uncertainty retrieval.
The 67 LAINet measurements and the associated reconstructed Landsat-like reflectances were
therefore collected and added to the training dataset. Our study area, beyond the cropping period,
is characterized by seasonal inundation and bare soil after harvest. Two dry-soil and two flooded-soil
spectral reflectances were therefore added to the training database (with LAI values equal to zero) to
improve its representativeness. This treatment was recommended to improve the accuracy of GPR,
especially for the input reflectances without associated in situ measurements [34,46]. This resulted in
the final training dataset made of 71 LAl-reflectance pairs. The trained GPR was used to generate the
concomitant LAI and uncertainty maps with 30-m and 8-day resolutions.

2.4. Validation Approach

The proposed framework approach requires accurate reconstruction of reflectance data at high
spatial resolution. The accuracy of the reconstructed reflectances was first assessed (Section 3.1).
The original reflectances from the six available Landsat 8 OLI images (Figure 2) were used as the
reference data.

We conducted a leave-one-out cross-validation to evaluate the performance of GPR in LAl retrieval
(Section 3.2). The n = 67 number of pairs of LAINet-reflectances were split in -1 for the training and
1 for the validation. Then, the calibrated GPR was used to predict LAI for the observation left out.
This process was repeated for all the samples. Finally, we evaluated the performance comparing the
predicted LAI with the ground observations for all the samples. For comparison purposes, we also
assessed the performance of the exponential regression (ER) approach proposed in our previous
work [8]. Both approaches share the same three-step flowchart described in Figure 3, but with some
major updates: (1) the exponential regression (y = 0.21exp(3.44x)) proposed in [8] has now been
replaced with GPR, to generate LAI and uncertainty maps from ground measurements and high
spatiotemporal reflectance data; (2) spectral reflectance was directly ingested into GPR, instead of
Normalized Difference Vegetation Index (NDVI) ingested into ER in the previous work; (3) SG filtering
was used to generate the phenology model in CACAO, rather than the Double Logistic function
adopted in the previous work.

Finally, the temporal evolution of the predicted LAI and associated uncertainties was evaluated
(Section 3.3).

3. Results

3.1. Evaluation of the Reconstructed High Spatiotemporal Satellite Data

For brevity, Figure 5 only shows the histograms of residuals between the CACAO reconstructed
reflectances and OLI observed reflectances on DOY 187 and 235, which are temporally synchronous
with the LAINet measurements. The comparison for other dates is shown in Appendix A. In general,
the distributions of residuals have peak shapes centered at 0 without significant bias, confirming a
good agreement between the reconstructed and the observed reflectances.
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Figure 5. Histograms of residuals between the CACAOQO reconstructed reflectances and the Landsat 8
OLI observed reflectances on DOY 187 (solid lines) and 235 (dashed lines) for the different
spectral bands. The statistics refer to the relative differences (RD).

3.2. Cross-Validation

The results of the cross-validation for ER and GPR approaches are shown in Figure 6. Compared to
our previous ER approach [8] (R? = 0.70, RMSE = 0.52, relative RMSE (R-RMSE) = 18.4%), GPR showed
improved performances (R? = 0.88, RMSE = 0.36, relative RMSE = 12.7%). In addition, ER clearly
underestimated LAI observations for LAI values higher than 4.0 because of the saturation of NDVIL.
This underestimation phenomenon for the high LAI values was clearly mitigated in GPR.

54 R*=0.70 . 71 5] R’=0s88 -
{ RMSE =052 - { RMSE =036 T
_ 1 R-RMSE=184% s — 1 R-RMSE=12.7% 3 .
= 44 .« 0% o 1 <44 p 5
— . , [ ] — , .
D R = O‘.‘.
8 . ® 9 . e Y M
5 . - .. k] o 8 o
23 .- 13317 ) ]
(3] - e = ..
& o« . A o oo
. @ o DR Y
~ 2 o5 o * g b oy .
W] . 1.'/‘ ¢ 1977 . See * 1
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e
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Figure 6. Cross-validation of (a) exponential regression (ER) predicted LAI, and (b) Gaussian process

regression (GPR) with field LAI observations. The dashed line represents the 1:1 line.

3.3. Temporal Evolution of LAI and Uncertainty Retrievals

The LAI maps (Figure 7) provide detailed information of the expected spatiotemporal dynamics
of vegetation in the study area. Before green-up (DOY 161), consistent low LAI values close to zero
are observed. After green-up, the vegetation grew rapidly, and reached the growing peak on DOY 217.
During this period (from DOY 201 to 217), areas around the water (in the northwestern part of the
study area) were characterized by low LAI values (<2.0) due to later sowing. After the growing peak
on DOY 217, the vegetation began to wither, and the LAI decreased gradually to zero. During this
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withering period, areas around the water were also characterized by rather low LAI values, because of
seasonal inundation.

f'!"“r‘“‘-‘ ez
DOY 257

DOY 281

LAI

B 0| s

; : 0-1.0 1.0-2.0 20-30 3.0-40 40-50
DOY 313 DOY 321

Figure 7. Maps of the estimated LAI at high spatiotemporal resolution (30-m and 8-day). The white
areas represent non-vegetated cover types.

The retrieved uncertainty maps (Figure 8) provide insight into the confidence of the estimated LAI
Before green-up, the middle area covering the LAINet nodes was characterized by high uncertainty
(SD > 0.8). LAI maps near and during the period of implementation of the LAINet (from DOY 185
to 233) were more credible (SD < 0.7). During the dormancy period (e.g., DOY 289-321), LAI retrievals
in the inundated region were uncertain (SD > 0.9).
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0.5-0.6 0.6-0.7 0.7-08 08-09 09-1.0

DOY 313 DOY 321

Figure 8. Maps of the standard deviation (SD) associated with the LAI retrievals (Figure 7). The white
areas represent non-vegetated cover types.

The temporal evolution of GPR and ER retrievals was further evaluated over the nodes 3, 5, 8 and
12 of LAINet, which provided full temporal coverage for field measurements (Figure 9). In general,
both the GPR and ER estimates had similar temporal patterns and followed the temporal dynamics
of the observed LAIL However, three main differences can be clearly observed: (1) the local temporal
variations in ground LAI measurements were well captured by GPR, whereas the ER over-smoothed
the LAI time series; (2) the magnitude of LAI values before green-up (DOY < 161) was close to zero
for GPR as expected, whereas ER slightly over-estimated the LAI; (3) during the withering period
between DOY 257 and 297, the GPR-estimated LAIs were larger than the ER-estimated ones. Note that
nearly all field observations (except the one for plot 8 on DOY 185) lie within the confidence interval of
GPR predictions.
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Figure 9. The temporal evolution of the LAI derived from Gaussian process regression (GPR),
exponential regression (ER), and LAINet field observations for (a) node 3, (b) node 5, (c) node 8,
and (d) node 12 (see Figure 1 for node location). The shaded areas represent the GPR uncertainty.

4. Discussion

4.1. Improvements Ouver Previous Approach

This study is based on our previous approach [8] with three major updates: (1) the exponential
regression was replaced with GPR, to generate LAI and uncertainty maps from ground measurements
and high spatiotemporal reflectance data; (2) spectral reflectance was directly ingested into the transfer
function, instead of the vegetation index in the previous work; (3) SG filtering was used to generate
the phenology model in CACAOQO, rather than the Double Logistic function adopted previously.
These updates bring several improvements. First, the accuracy of the retrievals has improved.
The R? increased from 0.70 to 0.88, and the RMSE decreased from 0.52 LAI (18.4%) to 0.36 LAI
(12.7%), meeting the accuracy requirements proposed by the Global Climate Observing System [44].
Second, the temporal evolution of LAI is better captured by GPR, whereas ER over-smooths the
time series. Further, GPR shows a better temporal extrapolation capacity than ER, particularly for the
dormancy period with LAl retrievals close to the expected zero LAl value. This allows the generation of
temporally continuous LAI maps over the entire growing season. Finally, GPR provides the uncertainty
associated with the LAI retrievals [46,54].

Several reasons can explain this improvement. (1) GPR is an advanced regression method and
can learn the complex nonlinear relationship between remote sensing observations and biophysical
variables [48,49]. Many studies have shown that GPR outperforms parametric regression methods
in most cases [5,7,34]. Our study further confirms this finding. (2) GPR has the capability to directly
exploit the full spectrum [55] and, for this reason, individual bands rather than the derived vegetation
index were used in our GPR. The procedure for calculating the vegetation index (i.e., the selection
of bands and the formulation of the selected bands) would cause loss of information useful for LAI
retrieval [56]. (3) SG filtering can reserve the relatively high frequency variation in the original
reflectance time series [53], which is therefore suitable for capturing the local scale changes in the time
series of LAl and preventing the over-smoothing observed in Double Logistic. (4) Two dry-soil and
two flooded-soil spectral reflectances (with LAI values equal to zero) were introduced to establish an
extended training dataset. The original training dataset consisting of only the 67 LAINet measurements
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under-sampled the low LAI values. The introduction of dry- and flooded-soil spectral reflectances
improved the representativeness of the trained GPR for low LAI values, and therefore improved its
temporal extrapolation capacity especially for dormancy periods.

The GPR-estimated LAI values are higher than the ER retrievals during the withering period
(see Figure 9). One possible explanation is that the NDVI represents the greenness of the vegetation [57],
and the gradual decrease of leaf chlorophyll content during the withering period [58] can therefore
decrease the value of NDVI and further cause an underestimation of the LAI value. The temporal
variation of leaf chlorophyll content (which further causes the variation of leaf spectra) underlines the
importance of the direct use of multi- or even hyper-spectral reflectances, especially those containing
information on leaf spectra.

4.2. Potential Applications

The LAI time series generated from the proposed framework are characterized by high
spatiotemporal resolution and are accompanied with concomitant uncertainty maps. These datasets
may be useful in many applications.

The generated high spatiotemporal resolution LAl maps can support the validation activities for
the coarse resolution LAI products. Our framework complies with the hierarchical four-stage validation
approach proposed by the Land Product Validation (LPV) subgroup of the Committee Earth Observing
Satellites” Working Group on Calibration and Validation (CEOS WGCV) [59]. Therefore, the generated
LAI maps can directly serve as reference maps in validation activities. The obvious advantage of
our framework over existing studies is that it can derive temporally continuous LAI reference maps.
Therefore, it can be used to assess the temporal performance of the coarse resolution LAI products,
which is the prerequisite for long-term global change research [60,61].

The derived high spatiotemporal resolution LAI maps can also be used to quantify the spatial
and temporal variability of crop distribution and status at field scale. This kind of information is of
paramount importance for precision agriculture [62]. The high spatiotemporal resolution LAI maps
can provide guidance on agricultural activities and aid farmers to decide, for example, which is the
appropriate time to fertilize or irrigate their fields.

The retrieved uncertainty information would allow a proper use of the LAl retrieval. For example,
the high reliable retrieval with low SD can be easily extracted for subsequent applications.
The inconsistencies among existing coarse resolution LAI products call for quality-assured long-term
LAI products [60,63]. Our framework may provide an effective method to fulfill this target.

In addition, the concomitant uncertainty maps facilitate the integration of remote sensing and
process models at field scale [64]. For example, the LAl retrievals can be easily assimilated by crop
models, because their contribution in the assimilation process can be automatically weighted according
to the concomitant uncertainty maps.

4.3. Future Prospects of Research

This study proposed a framework to generate concomitant LAI and uncertainty maps with high
spatiotemporal resolution. Several issues are worth being noted to further improve the framework.

High spatial resolution remote sensing observations that are temporally synchronous with field
measurements are needed to reduce the uncertainty during LAI estimation caused by the dynamic
change of vegetation [65]. The tradeoff between temporal and spatial resolutions of a remote sensing
sensor makes it difficult to acquire remote sensing observation with both high spatial resolution and
frequent coverage. Data blending techniques were used here to obtain high spatial resolution remote
sensing observations that were temporally synchronous with LAINet observations. In our study area,
one year of MODIS data was enough to provide temporally continuous coverage although multi-year
data may be required to build the phenology model in regions with high cloud coverage. Note that
a spectral normalization between MCD43A4 and Landsat 8 OLI data was not applied. We assumed
that the difference in their spectral response functions could be implicitly accounted for during the
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shifting and scaling procedure, considering the significant linear correlation between MODIS and OLI
reflectance products [51].

An alternative to generate high spatiotemporal resolution remote sensing data is the combined use
of multi-sensor data. For example, Zhao et al. [16] used HJ1/CCD and Landsat 8/OLI simultaneously
to fill temporal gaps which existed in any one single data source. In addition, some newly launched
satellites (e.g., GF-6 or Venus) can provide remote sensing observations with both high spatial
and temporal resolutions. The performance of our proposed method for multi-sensor or high
spatiotemporal data will be evaluated in future studies.

The analysis of the uncertainty maps suggested that under-sampled observations (e.g., middle
areas before green-up and inundated areas during the dormancy period, see Figure 9) are often
associated with high uncertainty. Therefore, a longer temporal span and more below nodes should
be added to the LAINet system in our study area to enhance the representativeness of the training
dataset [50,66]. To partly cope with the training dataset under-sample for low LAI, we deliberately
extended the original training dataset with four new spectra that covered two main kinds of
non-vegetated surfaces (i.e., dry and flooded soils) with an LAI value of zero. This extended
training dataset improved the extrapolation capacity of GPR, especially for low values which were
not sufficiently sampled by LAINet. Surprisingly, the estimates with low LAI also represent high
uncertainty after introducing the non-vegetated spectra. This may be because the non-vegetated
and low-LAlI surfaces have significant heterogeneity [67] and four spectra cannot represent them
very well. However, we did not try to add more non-vegetated spectra, because the number of LAINet
measurements was limited (67), and more non-vegetated spectra would have diluted the information
involved in LAINet measurements, and further reduced the retrieval accuracy. Another solution to
improve the representativeness of the training dataset is to add reflectance simulated by RT models,
which can cover a broader range of scenarios. As proposed by [12], the simulated reflectance can be
imported through the joint Gaussian process to extrapolate the observed reflectance.

The predictive variance from GPR is an indicator of the real uncertainty; however, the physical
meaning of this predictive variance is still not clear [46]. Intuitively, it is an indicator of the similarity
between the test and the training samples in the LAI space transferred from the reflectance space
through a kernel function (see Equation (4)). The kernel used assumed that the measurement noise
was independent from the signal (see Equation (4)), which does not hold in most of the problems.
The heteroscedastic Gaussian processes [68] can be employed to further improve the estimation results
in future studies. In addition, several other methods exist in the literature to quantify the uncertainty
associated with retrievals including partial least squares regression [69], Markov chain Monte Carlo [70],
random forest [71], and Kriging [72]. These methods will be assessed in future studies.

5. Conclusions

We proposed a framework to generate long-term time series of LAl and their associated
uncertainty maps with high spatiotemporal resolution. It was based on the combination of LAINet,
CACAOQ, and GPR. The performance of the proposed method was evaluated over the entire growing
season in a crop site in northern China. The accuracy of the retrieved LAl maps (0.36 LAI (12.7%) in
terms of RMSE with R? = 0.88 correlation) met the up-to-date uncertainty threshold (15%) proposed by
the Global Climate Observing System. To our knowledge, this is the first work combining wireless
sensor network, data blending, and machine learning technologies for retrieving LAl and its uncertainty
at high spatiotemporal resolution. Our framework will contribute to precision agriculture, as well as
to the retrieval and validation of LAI products.
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Figure A1. Histograms of residuals between the CACAOQO reconstructed reflectances and the Landsat 8
OLI observed reflectances on DOY 139 (red solid lines), 235 (blue dashed lines), 299 (orange dotted lines),
and 315 (green dash-dotted lines) for the different spectral bands. The statistics refer to the relative
differences (RD).
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