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Abstract: Mobile scanning systems are being used more and more frequently in industry, construction,
and artificial intelligent applications. More particularly, autonomous scanning plays an essential role
in the field of the automatic creation of 3D models of building. This paper presents a critical review
of current autonomous scanning systems, discussing essential aspects that determine the efficiency
and applicability of a scanning system in real environments. Some important issues, such as data
redundancy, occlusion, initial assumptions, the complexity of the scanned scene, and autonomy,
are analysed in the first part of the document, while the second part discusses other important aspects,
such as pre-processing, time requirements, evaluation, and opening detection. A set of representative
autonomous systems is then chosen for comparison, and the aforementioned characteristics are
shown together in several illustrative tables. Principal gaps, limitations, and future developments
are presented in the last section. The paper provides the reader with a general view of the world of
autonomous scanning and emphasizes the difficulties and challenges that new autonomous platforms
should tackle in the future.

Keywords: automatic 3D scanning; autonomous scanning robots in indoor; dense point cloud
processing; 3D laser scanners

1. Introduction

The creation of 3D models of buildings from 3D data is still a semi-manual work. Of particular
relevance in this respect is the fact that, during the extraction of as-is models, an operator must
manually take and process millions of datum (mainly 3D points), which entails time and errors in the
model obtained.

However, the era of the automatic creation of what are denominated as Building Information
Models (BIM) has brought about new systems, procedures, and algorithms that are able to collect and
process a huge amount of data efficiently without the help of humans. In the last few years, the fields
of artificial intelligence and robotics have, therefore, burst into the automatic BIM world.

Very few reviews concerning autonomous 3D scanning in construction can be found in literature
to date. Representative surveys related to this research field can be found in References [1–3].
Lehtola et al. [1] present a review of the latest commanded mobile scanning techniques, focusing on
aspects related to the quality of the point cloud and the metrics used. The survey also presents essential
aspects that determine the goodness and applicability of the existing mobile autonomous 3D scanning
systems and discusses the current limitations and gaps in this research field. Kostavelis et al. [2]
present a survey regarding semantic mapping obtained from mobile robots. The paper categorizes
the existing methods and shows the current applications implemented in mobile robots. A discussion
concerning the sensors and strategies utilised in the construction of metric maps of the inside of
buildings is carried out and the authors conclude their paper with a discussion of open issues.
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In Reference [3], the survey is focused on the inspection of structures, such as bridges, turbines,
ships, and others, by using robotic systems. The paper mainly addresses coverage path planning and
3D model reconstruction. It also includes detailed information on viewpoint generation, coverage
path generation, evaluation, and applications for coverage path planning, sensors, algorithms,
and properties for the 3D reconstruction works surveyed.

This paper provides a review from a different point of view focused on autonomous scanning
in construction. This survey is organised as follows. Section 2 introduces the building scanning
concept by showing representative autonomous platforms. Section 3 establishes the context in which
this survey is framed. Current key issues and problems in the field of autonomous 3D scanning
(data acquisition) of buildings are analysed in Section 4. Section 5 makes a comparison, from several
points of view, between the most important autonomous scanning systems in the construction context
(i.e., buildings and facilities). Properties and characteristics are first discussed and are, later, gathered
together in several comparative Tables. Weaknesses and strengths are dealt with in Section 6. Finally,
Section 7 presents the principal improvements, challenges, and future projects.

2. Autonomous Scanning Platforms

Completely autonomous systems are those that are able to perform navigation, 3D data acquisition,
and 3D data processing, without any initial knowledge of the scene and without human interaction.
This degree of autonomy is attained thanks to efficient next best view (NBV) algorithms, which are
adapted to each particular mobile platform. Representative examples of mobile scanning robots are
illustrated in Figure 1.

The first autonomous platforms appeared in the period 1995–2010. Sequeira et al. [4] present
a simple autonomous robot that partially digitalizes a single room with a time-of-flight laser range
finder. A pan-tilt unit is used to collect a range image with 140 by 140 samples, covering a field of
view of 60◦ by 60◦. Surmann et al. develop Ariadne robot [5], a mobile platform with a 3D laser range
finder that was capable of digitalizing large indoor environments. The Rosete platform is presented by
Strand et al. in Reference [6]. In order to overcome the small viewing cone of the earlier commercial
3D scanners, they introduce a rotating laser scanner mounted on a mobile platform and successfully
scans simple indoor scenarios. ATRV-2 AVENUE [7] is designed to acquire data from large-scale
outdoors sites. It consists of a laser-scanner-equipped robot that assumes a previous rough localization
(2D-map), which is necessary to calculate the route with a minimal set of views. Therefore, although
the system has a high degree of autonomy, it requires essential information about the scene.

The platform of Blodow et al. [8] autonomously explores indoor environments and provides
a semantic map obtained from colored point clouds. The robot, which is denominated as the “PR2”
robot, has a tilting laser scanner and a color camera, which is panned and tilted to overcome the
problem of its short field of view. This technique is applied to the drawers and doors. The same
robot is used in Reference [9], but now to analyze the performance of a next best view algorithm in
small and cluttered environments. In this case, the scene consists of a table top with different objects,
which are sensed and recognized for robot interaction tasks. Charrow et al. [10] carry out 3D mapping
of indoor environments using a ground robot equipped with a 2D laser range finder and a RGB-D
camera. A single experiment is developed on a set of connected corridors and without occlusion.
Iocchi et al. [11] obtain 3D maps of buildings by integrating a 2D laser, stereo-vision, and IMU on
a mobile robot. Bormann et al. [12] present the platform Irma3D, a robotic platform that automatically
creates 3D thermal models of indoor environments. The mobile platform is equipped with a 3D laser
scanner, a thermal camera and an RGB camera. A 2D laser scanner is used for obstacle avoidance.



Remote Sens. 2019, 11, 306 3 of 21
Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 24 

 

  
(a) (b) 

 
 

(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 1. Cont.



Remote Sens. 2019, 11, 306 4 of 21
Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 24 

 

 
 

(i) (j) 

  
(k) (l) 

Figure 1. Several examples of autonomous mobile scanning systems. (a). Ariadne robot, Surmann 
2003 [5]; (b). ATRV-2 AVENUE robot, Blaer 2007 [7]; (c). Rosete platform, Strand 2008 [6] ; (d). PR2, 
Blodow 2011 [8]; (e). Irma3D, Bormann 2014 [12]; (f). PR2, Potthast 2014 [9] (g).MoPAD platform, Prieto 
2017 [13]; (h). GRoMI, Kim 2018 [14] ; (i). AscTec Firefly and AscTec Neo MAV, Bircher 2016 [15] ; (j). 
UAV platform, Meng 2017 [16]; (k)(l) Kurazume 2017 [17]. 

In the last few years, micro aerial vehicles (MAV) have also been used as autonomous platforms 
that extract 3D information from indoor and outdoor scenes. Bircher et al. [15] proposed a new path-
planning algorithm for the autonomous exploration of an unknown volume using a firefly hexacopter 
and a stereo camera. The experiment took place in a single room. A similar UAV platform with two 
configurations is presented in Reference [16]. Heng et al. [18] present an algorithm for simultaneous 
exploration and coverage with an assumed data acquisition system composed of an MAV equipped 
with a forward-looking depth-sensing camera. The system is simulated in an office-like environment. 

In another context, the platform of Rusu et al. [19] acquires 3D maps of kitchens with the aim of 
interacting with recognized objects. The robot enters the room and sweeps the scene with a laser 
mounted on its end effector. The output is a coarse 3D model composed of cuboids and planes that 
represent relevant objects, such as containers or tables. 

The most recent proposals are those of References [13-14], [17]. Kurazume et al. [17] have 
proposed an innovative cooperative multiple robot system that scan indoors and outdoors. The 
system is composed of a mobile robot equipped with an on-board 3D laser scanner (the parent robot) 
and several child robots, including terrestrial robots and quadcopters. The parent robot obtains 3D 
data and generates a large-scale 3D model, whereas the child robots implement a precise localization 
technique. The system does not have any knowledge of the environment and works autonomously 
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the next positions obtained after analyzing the visible area of a previously built 2D map into three 
diffuse categories and moves to the best next position. By following this method, the system can move 
autonomously in corridors, but the scanning completeness is not guaranteed. Finally, the 
autonomous robotic platform MoPAD [13], composed of a 3D laser scanner and a RGB camera, is 
able to generate detailed 3D models of the indoors of buildings. This platform has been tested in more 
complex scenes with clutter and occlusion. 
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Figure 1. Several examples of autonomous mobile scanning systems. (a) Ariadne robot, Surmann
2003 [5]; (b) ATRV-2 AVENUE robot, Blaer 2007 [7]; (c) Rosete platform, Strand 2008 [6]; (d) PR2,
Blodow 2011 [8]; (e) Irma3D, Bormann 2014 [12]; (f) PR2, Potthast 2014 [9]; (g) MoPAD platform, Prieto
2017 [13]; (h) GRoMI, Kim 2018 [14]; (i) AscTec Firefly and AscTec Neo MAV, Bircher 2016 [15]; (j) UAV
platform, Meng 2017 [16]; (k,l) CPS-VII and CPS-VIII, Kurazume 2017 [17].

In the last few years, micro aerial vehicles (MAV) have also been used as autonomous platforms
that extract 3D information from indoor and outdoor scenes. Bircher et al. [15] proposed a new
path-planning algorithm for the autonomous exploration of an unknown volume using a firefly
hexacopter and a stereo camera. The experiment took place in a single room. A similar UAV
platform with two configurations is presented in Reference [16]. Heng et al. [18] present an algorithm
for simultaneous exploration and coverage with an assumed data acquisition system composed
of an MAV equipped with a forward-looking depth-sensing camera. The system is simulated in
an office-like environment.

In another context, the platform of Rusu et al. [19] acquires 3D maps of kitchens with the aim
of interacting with recognized objects. The robot enters the room and sweeps the scene with a laser
mounted on its end effector. The output is a coarse 3D model composed of cuboids and planes that
represent relevant objects, such as containers or tables.

The most recent proposals are those of References [13,14,17]. Kurazume et al. [17] have proposed
an innovative cooperative multiple robot system that scan indoors and outdoors. The system is
composed of a mobile robot equipped with an on-board 3D laser scanner (the parent robot) and several
child robots, including terrestrial robots and quadcopters. The parent robot obtains 3D data and
generates a large-scale 3D model, whereas the child robots implement a precise localization technique.
The system does not have any knowledge of the environment and works autonomously in complex
scenarios. Kim et al. [14] introduce a robotic platform with a hybrid laser scanning system composed
of five 2D laser scanners and a digital single-lens reflex (DSLR) camera. The robot classifies the next
positions obtained after analyzing the visible area of a previously built 2D map into three diffuse
categories and moves to the best next position. By following this method, the system can move
autonomously in corridors, but the scanning completeness is not guaranteed. Finally, the autonomous
robotic platform MoPAD [13], composed of a 3D laser scanner and a RGB camera, is able to generate
detailed 3D models of the indoors of buildings. This platform has been tested in more complex scenes
with clutter and occlusion.

Table 1 presents a summary of a set of representative autonomous mobile scanning systems,
including the environment tested, the technology, and the type of degree of autonomy.
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Table 1. Autonomous mobile scanning platforms.

Method Year Tested Environment Sensors Transport

Sequeira [4] 1996 A part of a single room Time-of-flight laser range finder (LRF) Ground robot

Surmann [5] 2003 Corridor Two 2D LRF Ground robot

Blaer [7] 2007 Interior and exterior scenes 3D laser scanner, 2D LRF and RGB camera. Ground robot

Iocchi [11] 2007 Corridor and several rooms 2D LRF Ground robot

Strand [6] 2008 Corridor and several rooms 2D LRF on a rotating platform and a camera Ground robot

Blodow [8] 2011 Single room 2D LRF and a registered colour camera. Ground robot

Bormann [12] 2014 Corridor and several rooms 3D laser scanner, thermal camera and RGB camera Ground robot

Potthast [9] 2014 Three scenarios. A table top scene, two
adjacent rooms and corridor with rooms 2D LRF and RGB-D camera Ground robot

Charrow [10] 2015 Long corridor RGB-D sensor Ground robot

Bircher [15] 2016 Indoors and outdoors Stereo camera Hexacopter

Prieto [13] 2017 Complex configuration of adjacent rooms
and corridors 3D laser scanner and 2D LRF Ground robot

Kurazume [17] 2017 Indoors and outdoors 3D laser scanner Multiple ground robots
and quadcopters

Meng [16] 2017 Indoors Rotating laser module Quadcopter

Kim [14] 2018 Scans taken in corridors and walkways Two 2D LRF and DSLR camera Ground robot

3. Context of the Review in the Process of the Creation of As-Is Models

Some of the scanning systems referenced collect partial data of the environment [4] or do not
generate a formal geometric model of the scene as seen in References [6,10,12,14,17]. However,
our interest lies in generating automatically geometric semantic models of buildings. The degree
of automation varies from the simple automatic acquisition of data (i.e., coordinates of 3D points,
color, and temperature, etc.) carried out by mobile robots/platforms, to the automatic detection
and positioning of small components of the building (e.g., signs or sockets on walls). In general,
the modeling tasks are carried out at five levels, each of which provides a particular semantic model.
Figure 2 shows these levels and the outputs at each of them.

This paper discusses the methodologies and processes followed to accumulate dense 3D
information of the scene with the objective of creating a realistic 3D model of a building. Of all
these levels, this survey covers only the first and the second level, which are directly related to the
acquisition of 3D data.

The first level (see Figure 2) concerns the automatic data acquisition of the building. The semantic
model at this level is, therefore, a mere collection of unconnected 3D data of the visible scene (3D data
are coordinates and, sometimes, and color). Thanks to the scan planning and the next best scan
algorithms, the autonomous moving platforms collect sufficient information and roughly represent the
inside of References [5,6,10–12], or outside [7] of the buildings.

At the second level, a simplified geometric model of the building is obtained. At this level,
the model is composed of primary features, such as vertices, edges, and faces. This representation
is commonly implemented by using a graph-structure, which relates these geometric primitives,
all of which form a B-rep representation [7,20–22]. This simple model does not yet contain valuable
information from a semantic point of view.

The first and second levels are sometimes mixed into a single level at which the scanner
simultaneously collects the data from a mobile platform and generates a primitive polyhedral model
of the indoor scene scanned in References [8,11,13].

Higher levels concern the recognition of essential structural elements (SE), the recognition and
labeling of essential parts of these structural elements and the recognition of small building service
components. None of these levels, which concern 3D data processing and modeling, are within the
scope of this review.

In the following sections, we analyze current key issues and problems in the field of the
autonomous 3D scanning of buildings and make a comparison among the most important systems in
the construction context.



Remote Sens. 2019, 11, 306 6 of 21

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 24 

 

general, the modeling tasks are carried out at five levels, each of which provides a particular semantic 
model. Figure 2 shows these levels and the outputs at each of them. 

This paper discusses the methodologies and processes followed to accumulate dense 3D 
information of the scene with the objective of creating a realistic 3D model of a building. Of all these 
levels, this survey covers only the first and the second level, which are directly related to the 
acquisition of 3D data. 

The first level (see Figure 2) concerns the automatic data acquisition of the building. The 
semantic model at this level is, therefore, a mere collection of unconnected 3D data of the visible scene 
(3D data are coordinates and, sometimes, and color). Thanks to the scan planning and the next best 
scan algorithms, the autonomous moving platforms collect sufficient information and roughly 
represent the inside of References [5–6], [10–12], or outside [7] of the buildings. 

At the second level, a simplified geometric model of the building is obtained. At this level, the 
model is composed of primary features, such as vertices, edges, and faces. This representation is 
commonly implemented by using a graph-structure, which relates these geometric primitives, all of 
which form a B-rep representation [7], [20–22]. This simple model does not yet contain valuable 
information from a semantic point of view. 

The first and second levels are sometimes mixed into a single level at which the scanner 
simultaneously collects the data from a mobile platform and generates a primitive polyhedral model 
of the indoor scene scanned in References [8], [11], [13]. 

Higher levels concern the recognition of essential structural elements (SE), the recognition and 
labeling of essential parts of these structural elements and the recognition of small building service 
components. None of these levels, which concern 3D data processing and modeling, are within the 
scope of this review. 

In the following sections, we analyze current key issues and problems in the field of the 
autonomous 3D scanning of buildings and make a comparison among the most important systems 
in the construction context. 

. 

Figure 2. Semantic 3D model levels and outputs at each level. 

4. Open Issues. 

Autonomous scanning appeared in the late 1990s as a new and challenging topic and became 
more and more important as the functionality and accuracy of sensors improved. 

While some scanning platforms are currently able to autonomously scan specific environments 
and simple scenarios, there are still a number of underlying questions in this research field, which 
are rarely debated in papers. These open issues are related to the achievements and limitations of the 

Figure 2. Semantic 3D model levels and outputs at each level.

4. Open Issues

Autonomous scanning appeared in the late 1990s as a new and challenging topic and became
more and more important as the functionality and accuracy of sensors improved.

While some scanning platforms are currently able to autonomously scan specific environments
and simple scenarios, there are still a number of underlying questions in this research field, which are
rarely debated in papers. These open issues are related to the achievements and limitations of the
autonomous scanning methods. As will be shown throughout this paper, the current systems still have
gaps and serious weaknesses that need to be addressed in order to create autonomous systems
that are able to work in realistic environments. A critical discussion of this is presented in the
following subsections.

4.1. Utility and Redundancy of the Data

3D scanning entails collecting data from the scene, but the question is: Which of the collected data
are and are not necessary to develop a further application? Or otherwise, is there a particular strategy
that considers the utility (i.e., useful or useless) of the data before the scan is carried out?

While the final goal of some approaches is to create a 3D model of a building, the objective of
their scanning stage is to accumulate as much data of the visible area as possible [14]. Since the goal is
simply to scan everything inside (or outside) the building, these approaches do not deal with the utility
of the data collected in References [5,9,12,23]. Redundancy and cluttering are thus ignored by these
brute-force scanning techniques. As a consequence of this, a huge amount of data has to be processed
after several scans, with the sole aim of recognizing furniture [8], or extracting frontiers. 3D mapping
in References [7,9,10,12,19,24], and robot localization/navigation [10,25,26] and digitization [5,27] are
research lines in which the data redundancy problem is not considered in the data acquisition stage.
However, some redundancy in the collected data can also be useful, for instance to increase robustness
or to increase the probability of completeness of the model.

In the case of the extraction of a model of the building, most techniques have to manage a huge
amount of irrelevant 3D data, which do not correspond to the structural components of the building,
but rather to other objects inside the scene (i.e., furniture and clutter) [6,11,28]. These methods
are inefficient because a part of the point cloud is unimportant as regards creating the 3D model.
For example, if the goal of the process is to detect openings within a room, the data pertaining to the
furniture is unimportant information.
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In contrast with these methods, there are few that focus the scanning towards collecting ‘useful’
3D data of the scene. This means that if the objective is to create a 3D model of the inside of the
building, the scan planning algorithm is focused on collecting data from the structural elements (SE),
which are essentially the floor, walls, columns, and ceiling [13]. In this case, the next best scanner
position is based on the already sensed and recognized parts of the building structure. Such algorithms
consequently reduce the amount of data and the time, and also alleviate the algorithmic complexity in
further processes.

In summary, optimizing the choice of the regions of the scene to be sensed is an unexplored
issue that could be addressed in the future. The alternative of interactive scan planning strategies,
therefore, makes sense in this context. A hybrid human-computer approach entails a semi-automated
optimization of the scanning process, in which the knowledge of the geometry and heuristics can help
the user to decide the best scan planning and achieve a high-quality model of the scene. This strategy
has been successfully carried out during the large-scale recording of heritage [29].

4.2. The Complexity of the Scene

Among other aspects, a complex scene has a high component of occlusion and clutter, such as
a lounge in an inhabited building. Complexity also implies irregular geometry, such as non-regular
rooms (i.e., concave/convex storey rooms), which are connected through openings (mainly doors).

4.2.1. Geometry

With regard to the interiors of buildings, some systems are constrained to the scanning of
corridors [10], which are very simple shapes. Most works deal with scenes composed of a corridor to
which several rooms are connected [5,6,11,12,24–27,30]. In some cases, the mobile scanning system
moves along the corridor, enters the room in order to take 3D data, leaves the room, and goes back to
the corridor [5,12]. These systems are prepared to only work in such topologies.

Many of the systems work in rectangular rooms [5,6,12,15,18,24,25,27,30], and a few in free-shape
interiors [11]. Iocchi et al. [11] generated a multilevel 2D-map with which to generate not-necessarily
orthogonal structural elements. Moreover, the system is able to manage the changes in the plane of
the room with the help of an inertial measurement unit. Scenarios with more flexible shapes are used
in Reference [26], but the goal here is not to build a 3D model of the scenario, but rather to navigate
with the help of depth cameras. Approaches that work in free-shape scenarios, such as abandoned
mines [31] with winding corridors, are usually hand-guided and are not, therefore, within the scope of
this paper.

The reconstruction of concave rooms is not frequently dealt with. Jun et al. [32] proposes a method
with which to cut the point cloud data with arbitrary plans and extract the convex parts. Nevertheless,
some concave structures may not be detected. This method has been tested by humans that carry
a 3D LIDAR. The system presented by Prieto et al. [13] is able to deal with convex and concave rooms
connected by doors.

Few exterior-scanning techniques with robots can be found in literature. Good examples are
those of Wolf et al. [33] and Blaer et al. [7]. Wolf et al. digitize buildings and obtain very simple 3D
shape models, such as parallelepipeds, but the robot is commanded externally. Blaer et al. [7] present
an automated data acquisition on large-scale outdoor sites, but they assume that a two-dimensional
map of the region is known. Kim et al. [14] validate their method in both outdoor and indoor
environments. Recent MAVs with on-board 3D sensors are applied to extract coarse models of
the facades of building [15,16]. Figure 3a presents prototypes of simple and complex geometry of
indoors, whereas Figure 3b shows scenes tested with the platforms referenced in Section 2.

Much work is required to automatically digitize more complex scenes. The autonomy of the
current systems is limited to indoor scenes composed of a large single room or a wide corridor and
a few rooms on a single storey. The autonomous scanning of a complete building composed of multiple
storeys is one of the most important future challenges.
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4.2.2. Occlusion and Clutter

In the building scanning field, occlusion is considered to be one of the principal sources of
uncertainty. In order to avoid occlusions, the operators scan the environment from many different
viewpoints and thus generate a fused point cloud. However, human scanning can be inefficient
and time-consuming.

There are authors who explicitly do not refer to the occlusion problem [11]. Some approaches
work only in empty scenarios or deal with little occlusion and clutter [5]. In these cases, the point cloud
is easily processed and the navigation of the mobile system is also quite simple in interiors [10].
Other methods are tested by considering small obstacles in the scene [6,16,26]. In these scenes,
the segmentation of points that belong to structural parts of the building are calculated by applying
RANSAC [34], or other similar matching algorithms [35]. The next-best-position scan algorithms work
perfectly in such a friendly framework and a single 3D model is easily obtained.

On the contrary, in inhabited scenes, a lot of objects, such as pieces of furniture, shelves, or even
human beings, might occlude the essential structural parts of the building. In these cases, the lack of
information entails the use of more robust and efficient NBV algorithms [12,13,30]. Some examples of
works that deal with high levels of occlusions are those of [7–9,12,13]. In Reference [7], a church,
with a particularly cluttered environment, which includes several chairs and tables, is scanned
by using a particular NBV algorithm. Owing to the difficulty of the scene as regards autonomous
navigation, the robot is manually guided along the narrow paths towards the next scanning position.
Besides indoor scenes, this method also digitises outdoor scenes, e.g., large forts, which contain high
levels of clutter and occlusion. Blodow et al. [8] propose an NBV algorithm for the digitization of
kitchen environments. These scenes usually contain a high level of clutter and occlusion owing to the
kitchen furniture and household appliances in them. Bormann et al. [12] propose an NBV algorithm
that combines 2D and 3D planning. The 3D information is used to reduce the percentage of occlusion
obtained from the 2D planning. The NBV algorithm proposed by Potthast et al. [9] is able to work
in two different kinds of scenes: Small and cluttered environments (a table top with a large number
of objects) and in large-scale office environments. The small environments contain a high level of
clutter and occlusion, whereas the large-scale office environments are simple simulated scenes with
little clutter. The method proposed by Prieto et al. [13] addresses the occlusion problem in the same
planning algorithm. The experimentation presented is carried out in several scenarios with a high
level of clutter and occlusion.

Figure 4a presents prototypes of low and high occlusion indoors, whereas Figure 4b shows
different examples of scenes with occlusion that have been tested in autonomous systems.

Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 24 

 

In the building scanning field, occlusion is considered to be one of the principal sources of 

uncertainty. In order to avoid occlusions, the operators scan the environment from many different 

viewpoints and thus generate a fused point cloud. However, human scanning can be inefficient and 

time-consuming. 

There are authors who explicitly do not refer to the occlusion problem [11]. Some approaches 

work only in empty scenarios or deal with little occlusion and clutter [5]. In these cases, the point 

cloud is easily processed and the navigation of the mobile system is also quite simple in interiors [10]. 

Other methods are tested by considering small obstacles in the scene [6], [16], and [26]. In these scenes, 

the segmentation of points that belong to structural parts of the building are calculated by applying 

RANSAC [34], or other similar matching algorithms [35]. The next-best-position scan algorithms 

work perfectly in such a friendly framework and a single 3D model is easily obtained. 

On the contrary, in inhabited scenes, a lot of objects, such as pieces of furniture, shelves, or even 

human beings, might occlude the essential structural parts of the building. In these cases, the lack of 

information entails the use of more robust and efficient NBV algorithms [12–13], [30]. Some examples 

of works that deal with high levels of occlusions are those of [7–9][12–13]. In Reference [7], a church, 

with a particularly cluttered environment, which includes several chairs and tables, is scanned by 

using a particular NBV algorithm. Owing to the difficulty of the scene as regards autonomous 

navigation, the robot is manually guided along the narrow paths towards the next scanning position. 

Besides indoor scenes, this method also digitises outdoor scenes, e.g., large forts, which contain high 

levels of clutter and occlusion. Blodow et al. [8] propose an NBV algorithm for the digitization of 

kitchen environments. These scenes usually contain a high level of clutter and occlusion owing to the 

kitchen furniture and household appliances in them. Bormann et al. [12] propose an NBV algorithm 

that combines 2D and 3D planning. The 3D information is used to reduce the percentage of occlusion 

obtained from the 2D planning. The NBV algorithm proposed by Potthast et al. [9] is able to work in 

two different kinds of scenes: Small and cluttered environments (a table top with a large number of 

objects) and in large-scale office environments. The small environments contain a high level of clutter 

and occlusion, whereas the large-scale office environments are simple simulated scenes with little 

clutter. The method proposed by Prieto et al. [13] addresses the occlusion problem in the same 

planning algorithm. The experimentation presented is carried out in several scenarios with a high 

level of clutter and occlusion. 
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Figure 4. (a) Prototypes of low and high occlusion. (b) Scenes with occlusion scanned with different
autonomous mobile systems.

4.3. The Next Best Scan Position

One of the keys in automatic scanning with occlusion is that of a good selection of the next scanner
position. The decision regarding the best next position should lead to the attainment of a complete,
high-quality and non-redundant digitization process. This is known in literature as the Next Best View
problem (NBV) [36], but in our context, this could be renamed as Next Best Scan (NBS).

Most autonomous methods use the current 2D map of the scene and estimate the next scan
position on the basis of the future visibility of the scene, sometimes with low levels of occlusion [14].
Several of these techniques employ the frontier-based approach as a starting point [17,37]. However,
2D information is highly incomplete in terms of occlusion in a 3D world and frequently leads the
system to erroneous or non-optimum positions. In addition, the next best position algorithm should
take into account more important parameters regarding the accessibility and security of the mobile
platform, along with its cost in terms of power.

3D information-based NBV algorithms are more efficient when exploring volumes and inspecting
surfaces. Blaer et al. [7] propose a two stage-planning algorithm. In the first stage, a coarse model of
the scene is obtained by making use of a 2D map, setting several random scanning locations on the
map and selecting an optimal set of positions which covers the boundaries of the free space. In the
second stage, the coarse model obtained is refined. A 3D NBV algorithm is executed in a voxel space
with labels: unseen, seen-empty and seen-occupied. The position from which more boundary unseen
voxels (unseen voxels adjacent to seen-empty voxels) are seen is then selected as the next best position.
Surmann et al. [5] develop a 2D-3D mix algorithm that calculates several NBVs of various slices from
the point cloud and selects the best option. Bormann et al. [12] also propose a 2D-3D mix algorithm,
in which the robot moves to the positions obtained from the 2D NBV until it recognizes an enclosed
space. The system then uses a 3D NBV algorithm. The strategy is similar to that of Blaer et al. [7].
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Potthast et al. [9] present a probabilistic NBV using Markov Random Fields. The method assigns
the probability of being seen in the next scan position to each voxel. The voxel space contains
occupied, free, and unobserved voxels and the NBV is defined as the position with the highest
expected knowledge gain. In Reference [6], another form of representation is used. The next best view
is determined using a 2D-grid that stores different attributes of the 3D world. An octree representation
is used in Reference [8]. The octree space is labeled with four different labels: Occupied, free, unknown,
and fringe (i.e., voxels labelled as free adjacent to unknown voxels). The goal here is to find the pose of
the robot from which most fringe voxels are seen with an overlap of at least 50%. Meng et al. [16] also
create an octree structure and define the NBV position as a function of the volumetric information gain
model. They propose a two-stage planner, consisting of a frontier-based boundary coverage planner
and a fixed start open travelling salesman problem solver. The information gain is similar to that of
the entropy concept [9], which is the increase in the knowledge from a visibility-based propagation
with ray-casting. Charrow et al. [10] propose a two stage planning approach. In the first stage, a set
of candidate trajectories is generated by using a combination of global planning and local motion
primitives. The trajectory that maximizes the objective is then chosen. This trajectory is refined by
maximizing the CSQMI (Cauchy-Schwarz Quadratic Mutual Information) objective, while satisfying
the motion constraints of the robot.

An online inspection path planning algorithm for micro-aerial vehicle is proposed in [38].
The NBV is here based on a volumetric approach that constructs volumetric models composed
of voxels. The procedure is tested in simulated indoor and outdoor environments. The approach
presented in Reference [15] is also implemented in aerial vehicles, but using a sampling-based receding
horizon path planning paradigm. The quality of the view selected is determined by the amount
of visible uninspected volume. As in the earlier case, this method provides a voxel model of the
explored space. Another work in the MAV context is that of Heng et al. [18]. The system performs
simultaneous exploration and coverage in unknown environments. The goal is chosen from among
different candidates located on the edges of a currently known free space, thus maximizing the
information gain weighed exponentially by its cost to reach. Quintana et al. [39] generate a growing
3D voxel model of the environment by selecting next scanner positions on the basis of the visible
uninspected surfaces of the structural elements of the building. This method is robust under severe
occlusion and provides a raw 3D model of the structure of buildings.

4.4. Assumptions and Initial Hypotheses

The assumption of hypotheses always reduces the applicability of a method and makes a scanning
system less reliable as regards its application to real environments. In order to solve the 3D mapping
or the reconstruction of 3D models in an effective manner, most of the existing methods impose the
shape and dimensions of the scene a priori, whereas others assume a set of restrictive hypotheses.
For example, Potthast et al. [9] impose the bounds of the scenario and Rusu et al. [19] work in scenes
in which pieces of furniture are modeled as cubic volumes.

2D maps of the scenario are assumed beforehand in some approaches [7,11,26]. In Reference [7],
an initial point cloud of the target region is calculated in a first stage by using a two dimensional map
of the region. The initial point cloud model is refined in the second stage. Iocchi et al. [11] obtain a 3D
map of the environment as a set of connected 2D maps, while Biswas et al. [26] solve the localization
problem using a 2D map, which has been extracted from the blueprint of the building.

A rather unusual hypothesis is that of Strand et al. [6], in which the room is detected only if the
corridor is bigger than the existing rooms. Other systems solve the location and planning problems
using targets [17] or assume that the pose of the system is known beforehand [18]. In Reference [7],
the robot makes use of the GPS, and therefore, navigates only in outdoor environments.

Flexible and adaptable approaches can also be found in literature [5,9,10,12,13,24,30].
These methods do not require strong assumptions or hypotheses related to either the scene or the
initial localization of the sensor. The mobile scanning platform does not have any knowledge of the
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shape, dimension and other characteristics of the scenario, and is able to move autonomously and
obtain the necessary data. Despite this, there are implicit assumptions that are not mentioned in papers
that correspond to advanced situations and special scenes. For example, it is always assumed that the
mobile platform moves freely on horizontal ground, without different ground levels, that the walls are
vertical planes, that moving objects or human beings are not allowed or that the doors are all open.
All these and other assumptions signify that the current systems are not yet prepared to accomplish
the automatic digitization of more realistic environments.

5. Comparison

This section makes comparisons between a representative set of autonomous systems.
As is known, when authors present their approaches and experimental results, they do not follow

a particular pattern. Some articles provide complete information regarding the method/technique,
while others provide only the visual evidence of the results and do not evaluate the proposed method
in a quantitative manner. However, comparing methods implies certain risks. The selection of the
methods to be compared, the comparison method itself, and even some of the features taken into
account for comparison, may be debatable. We trust that this comparison will be truly useful to
other researchers.

Fourteen properties of fourteen autonomous scanning systems have been compared. The acronym
NR in included when the characteristic is ‘not reported’ by the author or when it is not possible to
infer it from the paper. A discussion of these features is provided in the next paragraphs.

Table 2 summarizes the properties mentioned in Section 4, that is: the environment in which the
systems has been tested, the final goal of the method presented, a brief description of the next best
view algorithm used, details of the geometry scanned, occlusion and clutter circumstances, a brief
description of the principal hypotheses and assumptions, and the output provided by the scanning
system. In order not to repeat the aforementioned comments, only the properties ‘Geometry’ and
‘Output’ are referred to below.

Most of the methods shown in Table 2 do not create a geometric model of the scene, but rather
provide a large unstructured point cloud that represents the whole scene [10,14,17]. Moreover, the point
cloud is not segmented into semantic groups of points, such as walls, ceiling, floor or clutter. Some point
cloud models contain information concerning color [6] and a few authors generate a coarse 3D CAD
model [5,8,11,13], or a meshed model [12], which would cover the second semantic level explained in
Section 3.

It is noteworthy that those approaches that yield simple 3D models work on rectangular floors
and flat walls. On the contrary, the systems that provide unstructured point clouds do not have
geometric restrictions [7,15–17]. In any case, none of the aforementioned systems scan a complete
multi-storey building.

Other important properties that are frequently considered in autonomous scanning systems have
been gathered together in Table 3.

First, some necessary preprocessing tasks are usually found in the data acquisition stage. The most
common are the detection of the outliers and the alignment of point clouds. With regard to outliers,
large range scanners capture data that might originate from outside the scene and that, additionally,
some incorrect data might originate from the scanner itself when beams reflect off shiny surfaces.
Outliers are, therefore, relatively common in scanning and can have a disturbing effect on the further
data processing algorithms. Data registration is an old topic that needs to be tackled and efficiently
solved. These processes are not referred to by some authors, but are, however, explicitly explained by
others [6,8,13,14].
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Table 2. Essential issues in the world of autonomous scanning systems of buildings.

Ref. Environment Tested Goal 2D/3D NBS Algorithm Geometry Occlusion and
Clutter

Hypotheses and
Assumptions Output

[5]
Surmann

2003

Indoor.
Corridor

Digitalisation of 3D
indoor environments

Maximum information gain criterion. Reduction
in the robot path length and rotation angles.

2D NBS considering different horizontal planes
at different heights.

Rectangular floor
and flat walls Low occlusion No initial

assumptions
3D model with
bounding boxes

[7]
Blaer
2007

Outdoor.
Part of a campus

Data acquisition and
view planning for

large-scale indoor and
outdoor sites.

Maximum unseen boundary voxels,
3D NBS

No geometric
restrictions

High occlusion
Inhabited cultural

heritage sites

Previous 2D
map needed. 3D point cloud

[11]
Iocchi
2007

Indoor.
Corridor and several rooms

Generation of visually
realistic 3D maps

formed of semantic
structural elements

Frontier-based exploration,
2D NBS NR

Low occlusion
Inhabited scene with

minor obstacles

Previous 2D map
needed for the

exploration

3D model generated
by creating walls from

the 2D map lines

[6]
Strand
2008

Indoor.
Corridor and several rooms

3D scanning of indoor
environments

Function of unexplored areas, overlapping,
distance and proximity to obstacles.

NBS in 2D grid with 3D information using
different attributes

Rectangular floor
and flat walls

High occlusion
Inhabited scene

Corridors must be
bigger than rooms

3D point cloud with
texture superimposed

[8]
Blodow

2011

Indoor.
Single room

Semantic representation
of a kitchen

Maximum fringe and occupied voxels in a 2D
projection with 50% minimum overlapping,
NBS with 3D information in 2D costmaps.

Rectangular floor
and flat walls

High occlusion
Inhabited scene

Furniture and
extracted elements

must be cuboids

Semantic 3D map with
information about the

furniture (handles,
doors, etc.)

[12]
Borrmann

2014

Indoor.
Corridor and several rooms

Generation of 3D
thermal models of

indoor environments

Maximum amount of unexplored regions (2D)
and unseen boundary voxels (3D)

Combination of 2D NBS and 3D NBS

Rectangular floor
and flat walls

High occlusion
Inhabited scene

No initial
assumptions

3D point cloud with
thermal images.

Reconstructed mesh

[9]
Potthast

2014

Indoor.
Three scenarios. A table top
scene, two adjacent rooms
and corridor with rooms

3D data acquisition and
viewpoint selection for
occluded environments

Highest expected knowledge gain using
probabilistic methods,

3D NBS

Rectangular floor
and flat walls Low occlusion No initial

assumptions NR

[10]
Charrow

2015

Indoor.
Long corridor 3D mapping

Trajectory that maximises an
information-theoretic objective based on the

Cauchy-Schwarz QMI and locally optimising
portions of the trajectory to maximise the

CSQMI objective.

Rectangular floor
and flat walls Low occlusion No initial

assumptions 3D point cloud

[15]
Bircher

2016
Indoor/Outdoor 3D exploration and

surface inspection
Receding horizon paradigm,

2D NBS
No geometric

restrictions
Low occlusion

Inhabited scene
Volume with
given bounds

3D voxel model with
occupied and

free voxels
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Table 2. Cont.

Ref. Environment Tested Goal 2D/3D NBS Algorithm Geometry Occlusion and
Clutter

Hypotheses and
Assumptions Output

[13]
Prieto2017

Indoor.
Complex configuration of

adjacent rooms
and corridors

3D scanning of indoor
structural elements in

complex scenes

Maximum sum of probabilities of visible voxels
being a structural element,

3D NBS

Convex and
concave floor and

flat walls.

High occlusion
Inhabited scene.

No initial
assumptions

3D labelled voxel
model, 3D point cloud

and 3D CAD single
model of the scene

[17]
Kurazume

2017
Indoor/Outdoor 3D scan planning Frontier based approach,

2D NBS
No geometric

restrictions
High occlusion
Inhabited scene

No initial
assumptions 3D point cloud

[16]
Meng
2017

Indoor.
Office corridor environment 3D exploration Frontier based approach,

2D NBS
No geometric

restrictions
Low occlusion

Inhabited scene.
No initial

assumptions
3D voxel model and

raw point cloud

[14]
Kim 2018

Indoor.
Corridor and walkway

Mapping and
registration

2D NBS

Maximum visible area along a predetermined
robot trajectory,

2D NBS

Rectangular floor
and flat walls Low occlusion No initial

assumptions 3D point cloud
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The next column corresponds to openings. Door detection is a key issue when the mobile scanning
platform has to navigate on a storey with interconnected rooms. In this environment, the robot has
to recognize the door of the room in order to pass from one scene to another. There are, of course,
a lot of 3D imaging-based methods that detect doors in buildings by means of laser scanners or
photogrammetric systems, but only a few of them are implemented on mobile scanning platforms.
Of all the systems in Table 3, only References [6,12,13], can detect doors.

Time requirement is sometimes a confused characteristic. In this framework, not only is the time
required for scanning important [6,11,12], but also the time needed to calculate the next best position
of the robot. Although in the case of non-autonomous methods this information might be irrelevant,
the computation stage of the NBS is time-consuming in autonomous scanning systems. The methods
proposed in References [5,7,9,13], therefore, have time requirements because their respective NBS
algorithms consume a large proportion of the processing time.

The next two columns concern the experimentation. In all the cases discussed, the experimental
work has been developed in real environments, but some techniques have evaluated the precision
and completeness of the output yielded in simulated scenes. Simulation tools, such as MAV Gazebo
simulator Rotors [40], v-rep simulator from Coppelia Robotics [41] or Blensor [42] have been used in
the systems [13,15,16,18].

In order to demonstrate the importance of a method, an experimental comparison with similar
works is necessary. However, comparisons with other works are unusual in this research field.
Some sorts of comparisons are made in References [9,10,13,16–18]. Charrow et al. [10] performed
simulations and real world experiments and compared the performance of their method with that of
three other approaches, one of which is a manual method. Entropy maps over time and additional
statistics regarding the distance travelled and the time required to reduce entropy are shown in detail.
A comparison between frontier-based exploration algorithms is developed in Reference [9]. In this
case, a table-top scene with high clutter and occlusion is explored by a robot. The authors also simulate
two scenarios and compare the number of scans with four other methods. Prieto et al. [13] present
a comparison in terms of 3D NBV algorithms by evaluating the ray-tracing procedure and the evolution
of the scanned scene with three other approaches. Meng et al. [16] compared the exploration results
with the method of Bircher et al. [15]. Heng et al. [18] compared the path length and the percentage
of observed voxels in the final model with two similar approaches [43]. Kurazume et al. [17] made
a comparison between two of their multi-robot scanning prototypes.

The columns concerning the ‘Quantitative evaluation’ and ‘Time report’ of the scanning system
are very important. The first is specifically focused on the quantitative evaluation of the 3D model
generated. A good assessment of the method is essential to justify and provide arguments regarding
the soundness of the proposed technique. Visual arguments are not sufficiently convincing and make
the method less compelling. It is noteworthy that 50% of the approaches referenced here do not
provide any quantitative evaluations of the 3D model obtained (unstructured point cloud of a coarse
semantic model). Around 23% of them present a poor quantitative evaluation, reporting the number
of scans of the process [6,11], or the number of unobserved cells in a scanner position [9]. On the other
hand, it is even more surprising that the high percentage (78%) of the methods do not provide a report
concerning the accuracy of the 3D map obtained against a ground truth. Note that the final point cloud
is the pillar as regards extracting a BIM model of the scene. However, if the precision of the 3D map
is not evaluated, a realistic model will not be guaranteed. Complete time reports are also unusual in
papers. Times concerning the total scanning time or NBV times are frequently provided.
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Table 3. Other important aspects of the autonomous mobile scanning systems.

Ref. Preprocessing
Outlier PC alignment Door Detection Time Requirements Simulated/Real

Tests
Comparison

Report

Quantitative Evaluation
Related to the 3D Model

Obtained
Time Reports

[5]
Surmann 2003 NR No Yes. Time involved in

the NBV calculation R No No 3D scan matching

[7]
Blaer 2007 NR No Yes. Typical runtime,

scan time R No Voxel data for the NBV and
dimensions of the scene. NBV time

[11]
Iocchi 2007 No No Yes, acquisition time R No Only the quantity of laser scans

recorded Total scanning time

[6]
Strand 2008 Yes Doors Yes, acquisition time R No Only the quantity of laser

scans recorded Total scanning time

[8]
Blodow 2011 Yes No NR R No No No

[12]
Borrmann 2014 NR Doors

Yes, acquisition time
and reconstruction
algorithm runtime

R No
Number of unseen, occupied
and potential unseen voxels
from the next best position

Mesh model
creation.

[9]
Potthast 2014 NR No Yes. Runtime of the

NBV computation. S/R Experimental Number of unobserved cells in
each scan position Average NBV time

[10]
Charrow 2015 No No Yes S/R Experimental No Total scanning time.

Planning time

[15]
Bircher 2016 NR No NR S/R No Surface inspected Exploration and

computation time

[13]
Prieto 2017 Yes Doors Yes. Runtime of the

NBV computation. S/R Theoretical and
experimental

Yes. Percentage of the structural
element’s sensed area

Scanning and
NBV times

[17]
Kurazume

2017
Yes No NR S/R Comparison with

earlier prototypes Area coverage rate No

[16]
Meng 2017 Yes No No S/R Yes No Exploration and

computation time

[14]
Kim 2018 Yes No NR R No Registration accuracy No
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6. Weaknesses and Strengths

Significant limitations and advantages of each technique included in Tables 2 and 3 are
summarized in Table 4. Note that the majority of the weaknesses can be inferred from the features
presented in earlier sections. Some of the common disadvantages are restrictive initial assumptions,
the low resolution of the 3D model generated, planning exploration based on 2D maps, and the fact that
only low occlusion is permitted. The strengths are the reduction in the number of scans, a reduction in
the excessive time involved in the preprocessing stages, the flexibility of the system as regards working
in different environments, no geometric restrictions, and real applicability.

Table 4. Some important limitations and disadvantages of mobile scanning systems.

Ref. Limitations and Weaknesses Strengths

[5]
Surmann 2003

Reduced movement ability of the robot (simple trajectories).
The NBV is based on 2D data

The planning algorithm works in a continuous
state space rather than a grid-based space.

[7]
Blaer2007

Localisation based on a GPS, it cannot be used indoors.
Multiple iterations needed to attain the final model.

Two-dimensional map of the region is assumed.

The system works in indoor and outdoor scenes.
Scanning in a large-scale environment.

[11]
Iocchi 2007

Owing to the way in which the 3D model is obtained,
there could be wrong structures and a loss of information in

the final model.

Generation of a single 3D model of the
building structure

[6]
Strand 2008

Scene size restrictions. Doors must be open. The 3D
information is compressed in a 2D grid and the door detection

could lead to failures owing to the loss of information.
Reduction of the planning model representation.

[8]
Blodow 2011

The objective is focused on mapping objects in the scene.
Inefficient 2D/3D NBV for 3D model of buildings.

High overlapping between scans is required.

Exhaustive labelling. Detailed semantic 3D
model of the scene. The correct registration of

point clouds is guaranteed with the overlapping
restriction applied.

[12]
Borrmann 2014

The robot has plenty of space to move, the occlusion and the
obstacles are concentrated on the walls. Great loss of

information because of the height at which the data is taken.

The system obtains a 3D thermal point cloud.
Low computational and memory requirements.

[9]
Potthast 2014

The NBV might not be reachable for the robot and the final
position could be bad for the exploration. The exploration
algorithm is evaluated in a simulated and simple scenario.
There is an error owing to accumulative registration issues

The system is able to mimic different exploration
strategies. The system works in small cluttered

scenes (table top) and less cluttered large indoor
scenes (simulated office environments).

[10]
Charrow 2015 The exploration is based on 2D data

Particularly efficient for robots with limited
battery life, equipped with noisy sensors with

short sensing ranges and limited FOV.

[15]
Bircher 2016

Low resolution of the 3D model. High level of occlusion is not
permitted. Scene with given bounds. Online planning. Real applicability. Open source.

[13]
Prieto 2017

The robot’s footprint is too big for inhabited indoor scenes.
Excessive time involved in the preprocessing stages.

The system works in complex scenarios
composed of furnished concave rooms.

The number of scans is reduced. Generation of
a single 3D model of the building structure.

[17]
Kurazume 2017

Planning algorithm in 2D space. High complexity of the
overall system.

Scanning in a large-scale environment with no
geometric restrictions.

[16]
Meng 2017

Low resolution of the 3D model. High level of occlusion is
not permitted. Online planning. Real applicability.

[14]
Kim 2018

Noisy individual dynamic point cloud. The registered point
cloud is not sufficiently accurate

The system works without using targets.
The number of scans is reduced.

7. Conclusions: Improvements and Future Projects

Having analyzed the autonomous scanning systems referenced, a discussion a regarding:
“what has been achieved?”, “what is achievable?”, and “what are the future challenging projects?” is
presented in the following subsections.

7.1. What Has Been Achieved?

To date, the current autonomous scanning systems have achieved several important milestones,
such as:
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• Advances in the automatic digitization of buildings:

For many years, the 3D digitization of buildings and large-scale environments has been carried
out exclusively by expert operators. However, in the last few years, intelligent mobile scanning
platforms have successfully performed the digitalization and 3D mapping of real environments.
The current systems are able to navigate and scan the indoors of buildings composed of one or several
rooms. The most advanced methods work in irregular (i.e., non-rectangular) rooms and rooms with
reduced occlusion.

• Autonomy of the mobile platforms:

Some of the current systems do not impose strong assumptions about the scene, such as the a priori
knowledge of the scene, signifying that the autonomy of the scanning process can be guaranteed.
These autonomous systems are able to collect data and provide a coarse 3D model of the interior of
an inhabited building.

However, some restrictive hypotheses have been imposed on all the systems referenced,
which concern: The shape of the floor and walls (flat surfaces), the state of the doors (open doors),
and the degree of occlusion (low occlusion). All this still limits the autonomy of the current platforms
in realistic environments.

• Modelling:

The field of automatic BIM models has become one of the most exciting 3D computer vision
research lines to have emerged in the last few years. To date, autonomous platforms provide point
cloud models or elementary B-rep models of building indoors, which include the basic architectural
elements and openings.

7.2. What is achievable?

Important improvements that should be made to the current systems and future issues are shown
as follows.

• NBS algorithms:

The majority of the current NBS are thought to scan the whole scene, regardless the identity of
the data collected. The future NBS algorithms should address the problem of scanning the structural
elements of the building and thus avoid collecting any other kind of data, such as furniture, clutter
and outliers. More efficient NBS algorithms would reduce the volume of data and the processing time,
and highly alleviate the algorithmic complexity of further processes.

• Quantitative evaluation:

While some of the aforementioned approaches provide quantitative evaluations, little information
is provided as regards the accuracy of the 3D model obtained. A comparison with regard to a ground
truth in real experiments is particularly necessary. One of the future improvements in this field
would, therefore, would be to provide complete information about the deviations and errors in the 3D
model generated.

• Complexity of the scenes:

To date, the autonomous scanning systems provide, single 3D models composed of planar
structures of the building (walls, ceiling, floor, and columns). Nevertheless, solutions for more complex
scenarios, are needed, including curve structures, irregular ceilings, floors at several levels, and stairs
inserted into the environment. Much research on this issue is still necessary.



Remote Sens. 2019, 11, 306 19 of 21

7.3. Future Challenging Projects

Nowadays, the autonomy degree of the current mobile platforms is limited. To achieve a truly
autonomous scanning system, future platforms should tackle the following projects.

• Scanning of single storeys with closed doors:

The digitization of a single storey composed of a corridor and several easy-shaped rooms has
not been completely resolved. The major problem concerning how the mobile platform passes from
one room to another has not, as yet, been dealt with. All the methods, with the exception of the work
presented in Reference [13], assume that the doors are open and that the mobile platform will, therefore,
be able to enter the adjoining room. However, this issue has not yet been completely demonstrated in
papers. Beyond open doors, none of the current approaches is able to deal with closed or semi-closed
doors. In these situations, the mobile platform should interact in some way with the door in order to
clear the way. Scanning storeys with closed or semi-closed doors is, therefore, a challenging topic that
will also lead to increase the autonomy of the scanning systems.

• Scanning multi-storey buildings:

The autonomous scanning of a multi-story building has not yet been carried out. The key problem
is how to move the mobile platform from one floor to another. As in the earlier case, the system
should autonomously recognize the lift door, enter the lift and, eventually, leave the lift when the
next floor is reached. Executing these actions in a precise manner will entail the development of
efficient recognition and robot-interaction algorithms that will allow the truly autonomous system to
be attained.
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