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Abstract: With extensive applications of Unmanned Aircraft Vehicle (UAV) in the field of remote
sensing, 3D reconstruction using aerial images has been a vibrant area of research. However,
fast large-scale 3D reconstruction is a challenging task. For aerial image datasets, large scale means
that the number and resolution of images are enormous, which brings significant computational
cost to the 3D reconstruction, especially in the process of Structure from Motion (SfM). In this
paper, for fast large-scale SfM, we propose a clustering-aligning framework that hierarchically
merges partial structures to reconstruct the full scene. Through image clustering, an overlapping
relationship between image subsets is established. With the overlapping relationship, we propose
a similarity transformation estimation method based on joint camera poses of common images.
Finally, we introduce the closed-loop constraint and propose a similarity transformation-based hybrid
optimization method to make the merged complete scene seamless. The advantage of the proposed
method is a significant efficiency improvement without a marginal loss in accuracy. Experimental
results on the Qinling dataset captured over Qinling mountain covering 57 square kilometers
demonstrate the efficiency and robustness of the proposed method.

Keywords: UAV aerial imagery; 3D reconstruction; image clustering; similarity transformation

1. Introduction

With the development of Unmanned Aircraft Vehicle (UAV), low-altitude remote sensing is
playing an increasingly important role in land cover monitoring [1–3], heritage site protection [4],
and vegetation observation [5–7]. For these applications, aerial imagery-based 3D reconstruction of
large-scale scenes is highly desired. For instance, Mancini et al. [1] used 3D reconstruction from UAV
images to get accurate topographic information for coastal geomorphology, which could be used to
perform a reliable simulation of coastal erosion and flooding phenomena.

Structure from Motion (SfM) is a 3D reconstruction method used to recover the 3D structure
of stationary scenes from a set of projective measurements, via motion estimation of the cameras
corresponding to images. In essence, SfM involves the three main stages of: (1) extraction of features
in images (i.e., points of interest) and matching these features between images; (2) camera motion
estimation (i.e., camera poses including the rotation matrix and translation vector); and (3) recovery
of the 3D structure using the estimated motion and features. Among the 3D reconstruction methods,

Remote Sens. 2019, 11, 315; doi:10.3390/rs11030315 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-5180-2316
https://orcid.org/0000-0001-6380-8996
http://dx.doi.org/10.3390/rs11030315
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/11/3/315?type=check_update&version=2


Remote Sens. 2019, 11, 315 2 of 20

SfM is a basic 3D reconstruction approach that is able to recover sparse 3D information and camera
motion parameters from images, which is the basis for generating successively-dense point clouds and
high-resolution Digital Surface Models (DSMs). Therefore, SfM is the primary task for the research
and application of 3D reconstruction using aerial images.

However, the application of SfM technology to large-scale 3D reconstruction is a very challenging
task because of the efficiency problem. For SfM, large-scale means that there is a larger range of scenes
to be reconstructed. Obviously, in order to reconstruct the large-scale scene structure, more aerial
images and greater image resolution are required, which brings a computational challenge for each
step of the SfM pipeline, such as feature matching. For example, given a dataset with n images, this will
result in n(n− 1)/2 possible image pairs, hence leading to O(n2) complexity for feature matching.
On the other hand, the number of features detected from large resolution images is generally very
high. Consequently, the computational cost of feature matching is adequately huge, which constrains
the efficiency of reconstruction.

Strategies for SfM can be divided into two main classes: incremental [8,9] and global [10–12].
Incremental SfM pipelines start from a minimum reconstruction based on two views and
then incrementally add new views to a merged model. During the adding image process, periodic
Bundle Adjustment (BA) [13] is required to optimize the 3D points of the scene structure and camera
poses. The essence of BA is an optimization process, the purpose of which is to minimize the
re-projection error. Re-projection error is obtained by comparing the pixel coordinates (i.e., the observed
feature positions) with the 2D positions projected by 3D points according to the camera pose of the
projected image. Incremental methods are generally slow. This is mainly because of the exhaustive
feature matching in a large number of image pairs. In addition, periodic global BA is time consuming.
As for global pipelines, most are solved in two steps. The first step estimates the global rotation of each
view, and the second step estimates the camera translations and the scene structure. Although global
SfM avoids periodic global BA, it still encounters the computational bottleneck brought by feature
matching in a large number of image pairs. In other words, both strategies aim at entire image sets,
thus causing a serious efficiency problem for large-scale SfM.

To tackle the efficiency problem for large-scale SfM, researchers have proposed some solutions.
Some researchers have focused on the BA optimization problem for large-scale SfM. For large-scale
SfM, there is a huge number of reconstructed 3D points and camera parameters. Therefore, the global
BA optimization of all 3D points and camera parameters is a slow process. Steedly et al. [14] proposed
a spectral partitioning approach for large-scale optimization problems, specifically structure from
motion. The idea is to decompose the optimization problem into smaller, more tractable components.
The subproblems can be selected using the Hessian of the reprojection error and its eigenvectors.
Ni et al. [15] presented an out-of-core bundle adjustment algorithm, in which the original problem is
decoupled into several submaps that have their own local coordinate systems and can be optimized in
parallel. However, this method only focuses on the last step of reconstruction, and the solution to the
efficiency problem is limited. Obviously, the decomposition of the SfM problem from the beginning of
the reconstruction pipeline can maximize the efficiency of reconstruction. Some researchers exploited
a simplified graph of iconic images. Frahm et al. [16] first obtained a set of canonical views by clustering
the gist features and then established a skeleton and extended it using registration. Shah et al. [17]
proposed a multistage approach for SfM that involves first reconstructing a coarse global model using
a match-graph of a few features and enriching it later by simultaneously localizing additional images
and triangulating additional points. These methods merge multiple sub-models by finding the common
3D points across the models. However, 3D point matches obtained by 2–3D correspondences and 2D
feature matching are contaminated by outliers, especially in repetitive structure scenes. Thus, care must
be taken to identify common 3D points. Some researchers [18–21] have organized a hierarchical tree
and merged partial reconstructions along the tree. However, the merging processes still rely on
3D point matches to estimate similarity transformations. Some researchers have proposed novel
merging methods that do not depend on 3D matches. Bhowmick et al. [22] estimated the similarity
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transformation between two models by leveraging the pairwise epipolar geometry of the link images.
Sweeney et al. [23] introduced a distributed camera model, which represents partial reconstructions as
distributed cameras, and incrementally merges distributed cameras by solving a generalized absolute
pose and scale problem. However, these methods that incrementally merge partial reconstructions
may suffer from drifting errors.

To address all of these problems, in this paper, we propose a novel method for fast, large-scale
SfM. The contributions of this work are as follows:

• First, we present a clustering-aligning framework to perform fast 3D reconstruction. Clustering
refers to the clustering of images to obtain the associated image subsets. This specific image
organization lays a foundation for the subsequent partial reconstruction alignment.

• Second, in the process of aligning partial reconstructions, we present a robust initial similarity
transformation estimation method based on joint camera poses of common images across image
subsets without 3D point matches.

• Third, we present a similarity transformation-based BA hybrid optimization method to make
the merged scene structure seamless. In the process of similarity transformation optimization,
we introduce closed-loop constraints.

• Finally, to evaluate the proposed method, we construct a large-scale aerial image dataset
named the Qinling dataset, which is captured over Qinling mountain, covering 57 square
kilometers. The experiments demonstrate that our method can rapidly and accurately reconstruct
a large-scale dataset.

The remainder of the paper is organized as follows. We describe the proposed method in Section 2.
Section 3 describes the experimental results. In Section 4, we discuss the proposed method. Finally,
we conclude the paper in Section 5.

2. Method

This section elaborates our proposed approach for fast, large-scale 3D reconstruction based on
the hierarchical clustering-aligning framework. The flowchart of the proposed method is illustrated
in Figure 1.

The framework contains two main parts: image clustering and aligning of partial reconstructions.
Through image clustering, we obtain the two kinds of associated image subsets. In order to

visualize the relationship of the two kinds of image subsets, we use the concept of the hierarchical
atomic model, a term used in the chemical field. To distinguish the two kinds of image subsets,
we use the concepts of atom and molecule to represent a subset of clustered images, respectively.
The hierarchical atomic model is illustrated in Figure 2. The generation of a molecule is related to some
adjacent atoms. In fact, the molecule represents an image subset that overlaps with each given image
subset represented by atoms. It should be pointed out that the hierarchical atomic model is just a new
name for image subset. For large-scale image datasets, the atomic model has two layers, which means
the model has multiple molecules and corresponding atoms. For slightly smaller datasets, the atomic
model has just one layer, which means the model has just one molecule and corresponding atoms.
For large-scale image datasets, multiple groups of adjacent atoms generate multiple molecules. Among
these molecules, we determine a core molecule, which overlaps with each other molecule. In this way,
we have built a two-layer atomic model in which each atom is associated with the core molecule.
This image clustering pattern provides a prerequisite for the follow-up work. For convenience, in the
remainder of this paper, we use the atoms and molecules to represent the concept of the image subset.
Next, independent partial 3D reconstruction is performed on each atom and molecule. According
to the overlapping relationship between each pair of atoms and its corresponding molecules and
each pair of molecules, we compute the similarity transformation via joint camera poses of common
images across atoms and molecules. Finally, we implement a similarity transformation-based BA
hybrid optimization. During optimization, closed-loop constraints between atoms and molecules
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are applied to correlate pairwise partial reconstructions. With hybrid optimization, we can get the
complete seamless scene structure.

...

...

Image clustering 

Atom generation Molecule generation

·Source image determination

·Similar images’query

·Iteratively clustering

·Scene graph construction

·Path searching

·Images designation

Aligning of partial reconstruction

Similarity transformation initial estimation Similarity transformation hybrid optimization

·Partial 3D reconstruction

·Scale unification

·Camera pose based transformation

·Local optimization

·Loop global optimization
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Similarity transformation initial 
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Partial 3D reconstruction 

on molecule

Partial 3D reconstruction 

on atom sets

Final  reconstruction results
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Aerial image dataset
Image clustering Aligning of partial reconstruction

Figure 1. Framework of the proposed method, which contains two main parts: image clustering and
the aligning of partial reconstructions. In the first part, we perform image clustering to get two image
subsets, named atoms and molecules. Specifically, the images with the same color bounding box belong
to the same atom. On the basis of image clustering, we utilize the image repetition relation between
atoms and the corresponding molecule to align multiple partial reconstructions. In the aligning process,
the similarity transformation is initially estimated by using the joint camera poses of common images
and then optimized by our hybrid optimization method to realize a seamless fusion.

Molecule Atom

Similarity transformation

Image clustering

Core

Figure 2. An illustration of the hierarchical atomic model. The green circle and yellow circles represent
atoms and molecules, respectively. The solid line represents the image clustering process, and the
dashed line denotes the similarity transformation between a pair of atoms and its corresponding
molecule or pair of molecules.
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2.1. Image Clustering

In this subsection, we perform an image clustering task. The purpose of image clustering is
to decompose large-scale SfM into small problems. This has two significant advantages in terms of
efficiency. First of all, due to the small number of images in the image subset, the time consumption in
the process of feature matching and BA will be significantly reduced, and second, partial reconstruction
on the image subset can be performed in parallel.

In addition, the specific image organization pattern caused by image clustering lays the foundation
for the subsequent alignment work.

2.1.1. Vocabulary Tree-Based Atom Generation

In the process of the generation of atoms, we use the vocabulary tree [24] to cluster images.
The vocabulary tree used in this paper is a standard vocabulary tree with K-branch and L-depth. In the
experiment, we use a pre-computed and publicly-available tree [25].

After vocabulary tree establishment, we firstly decide some source images, which are the origins
of image clustering. In order to make image clustering more uniform according to the UAV flight
path, the source images can be determined from those with long space intervals. Each source image is
assigned to an atom. We then iteratively assign similar images to each atom according to the similarity
measurement. Considering efficiency, in the image clustering phase, we resize all images to a fixed
small resolution; in our experiment, that is 640 × 480. We treat the source images as database images
and the remaining images as query images. For each image, Oriented FAST and Rotated BRIEF
(ORB) [26] features are detected and converted to weight vectors. Concretely, we define a query vector
q for query images and a database vector d for database images according to the assigned weights as:

qi = niωi (1)

di = miωi (2)

where ni and mi are the number of descriptor vectors of the query and database image, respectively,
with a path through the cluster center node i, ωi is the Inverse Document Frequency (IDF) weight,
which is denoted as:

ωi = ln
N
Ni

, (3)

where N is the number of images in the training database and Ni is the number of images in the
training database containing node i. For each database image, we compute a relevance score with all
query images in turn based on the normalized difference between the query and database vector:

s(q, d) = ‖ q
‖q‖ −

d
‖d‖‖. (4)

N query images with the highest scores are determined by sorting, which means these query
images are most similar to the database image. Therefore, we assign these selected query images to
the subset with the same label as the database images. Then, we regard these selected query images
as new database images and compute the relevance score to search for similar images. We iteratively
perform the above process until most images are assigned. Through image clustering, the number of
images in each image subset is generally limited to 35–65. The purpose of this is to avoid having too
many images in each image subset, which could affect the efficiency of reconstruction, and to avoid
fragmented partial reconstruction on each image subset due to having too few images.
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2.1.2. Path Searching-Based Molecule Generation

In the process of the generation of molecules, we use graph searching to cluster images. During
the image clustering of the atom sets, we detect ORB features from all the resized images. On this
basis, we can construct a scene graph. We apply exhaustive feature matching using Fast Approximate
Nearest Neighbor (FLANN) [27] to accelerate matching. Then, geometry is verified by computing
the geometrical constraint, which can map a sufficient number of features between a pair of
images. Based on the pairwise image relations, we can construct the scene graph with the images as
nodes and the matching relations of two images as edges.

A molecule is generated by searching for the path in the scene graph between the source images
of atoms. During each search for the shortest path, the images on the path are assigned to the molecule.
Here, we use the Dijkstra algorithm to search for the shortest path. The significance of searching for
the shortest path is that it avoids having an excessive number of images in the molecule. Since the
Dijkstra algorithm is applied to the weighted graph, in order to find the shortest path, the edge weight
should be set to 1. After counting the paths between any pair of source images, the duplicate images
are removed. For the large-scale image dataset, the atomic model has two layers. Concretely, there are
multiple molecules in the atomic model. According to the distribution of the source image of each
atom in space, we first divide the atoms into multiple groups, and each group of atoms will produce
a molecule. According to the distribution of molecules in space, we determine a core molecule. It is
necessary not only to count the paths in the scene graph between atoms, but also to count the paths
between the source images of the core molecule and each other molecule. We assign all the images
involved in these paths to the core molecule. In this way, we have built a two-layer atomic model in
which all atoms can be associated with the core molecule.

2.2. Aligning of Partial Reconstruction

After the image clustering task, we make an independent partial 3D reconstruction on each image
subset, including the atoms and molecules. In this work, the partial 3D reconstruction is conducted by
global SfM [12], including the process from feature detection to the final global BA. To speed up the
process, each partial reconstruction could be processed in parallel. It should be pointed out that the
images used in partial 3D reconstruction are original images without resizing. The output of partial
3D reconstruction is a sub-model that contains 3D point clouds of the scene structures and camera
extrinsic parameters corresponding to images.

In this subsection, we introduce our method to align all partial 3D reconstructions seamlessly.
Our method contains two steps: (1) similarity transformation initial estimation and (2) similarity
transformation-based BA hybrid optimization.

2.2.1. Similarity Transformation Initial Estimation

To align a pair of partial reconstructions, a similarity transformation should be computed. Mostly,
a similarity transformation between the coordinate systems of the partial reconstructions is computed
by means of 3D point matches. However, due to the mismatching on features, the found 3D points do
not correspond. In addition, some 3D points may be outliers in the reconstruction process. Therefore,
3D point matching-based similarity transformations are unreliable unless rigorous identification
is performed.

In this paper, we propose a concise method to perform a similarity transformation without 3D
point matches, as illustrated in Figure 3. Taking a group of atoms and the corresponding molecule as an
example, here, we suppose there are L atoms in total. The jth atom shares some common images with
the molecule, which are denoted as Ijt, ..., Ijk, .... Firstly, the scale between the partial reconstructions
on an atom and molecule pair should be unified. For each image, we can get its camera center in the
frame of the jth atom or molecule. Since the camera model that we used is the basic pinhole model,
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according to the principle of multiple view geometry [28], supposing an image is Ijt, its camera center
is defined as:

Cjt = −RT
jttjt, (5)

where RT
jt and tjt are the transpose of the rotation matrix and the translation vector of image Ijt in the

frame of the jth atom, respectively. Thus, for any two common images Ijt and Ijk, the distance of the
corresponding camera centers in the frame of the jth atom could be computed as:

djtk = Cjt − Cjk, (6)

and similarly, we can get the distance dmtk of the corresponding camera centers for Ijt and Ijk in the
frame of the molecule, which can be represented by:

dmtk = Cmt − Cmk, (7)

where Cmt and Cmk are computed with Equation (5) using the rotation matrix and translation vector
of images Ijt and Ijk in the frame of the molecule, respectively. By combining Equation (6) and
Equation (7), the scale between the partial reconstructions on a pair of atom and molecule can be
computed as:

S = dmtk/djtk. (8)

After finishing the scale estimation on all pairs of common images between the atom and molecule,
the scale is averaged.

Then, we adopt a direct way to get the rotation matrix and translation vector of the similarity
transformation by means of the corresponding camera poses of common images shared by atoms
and molecules. In other words, we use common images to build a bridge to unify the two coordinate
systems. For simplicity, we refer to a common image as a reference view. Without any loss of generality,
in practice, we usually select the first common image Ijt as the reference view. First, any 3D point Xa

j

of the jth atom should be firstly transformed into the temporary frame of the reference view by means
of the rotation matrix Rjt and translation vector tjt of common image Ijt in the frame of an atom. Then,
applying the rotation matrix inverse R−1

mt and translation vector tmt of Ijt in the frame of molecule,
we get Xb

j in the frame of molecule, which is represented as:

Xb
j = R−1

mt [S(RjtXa
j + tjt)]− R−1

mt tmt, (9)

which, when written in matrix form, is: [
Xb

j
1

]
= Tj

[
Xa

j
1

]
, (10)

where Tj represents the transformation as:

Tj =

[
SRjm tjm

0T 1

]
(11)

where Rjm and tjm are respectively represented as:

Rjm = R−1
mt Rjt (12)

tjm = R−1
mt (Stjt − tmt). (13)
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3D point 

Atom j

Coordinate system

 Coordinate system of atom j Temporary coordinate system  Coordinate system of molecule 

Molecule

... ...

Common images

Figure 3. An illustration of the similarity transformation initial estimation. The estimation of the
similarity transformation contains two stages. In the first stage, a transformation can be realized from
the frame of the atom to the temporary frame by means of the camera pose corresponding to the
common images in the frame of the atom. In the second stage, a transformation from the temporary
frame to the frame of molecule can further be realized by means of the camera pose corresponding to
the common images in the frame of the molecule.

2.2.2. Similarity Transformation Hybrid Optimization

In this part, we elaborate on our optimization strategy. The goal of optimization is to get optimal
similarity transformations to make all scene structures of multiple partial reconstructions merge
seamlessly. In the initial registration process, we only calculate the similarity transformation based
on the camera poses of common images. Therefore, we try to use more 3D points in the optimization
process to get a more accurate similarity transformation. In addition, even though we use the 3D
points, we still do not need the 3D point matches when optimizing.

We propose a optimization strategy that is evolved from BA. We firstly introduce a local
optimization, which exists between a pair of partial reconstructions, as shown in Figure 4. Without
loss of generality, we still use the jth atom and its corresponding molecule as an example. The process
of local optimization contains the following steps. In the first step, we get the 3D points reconstructed
by common images Ijt, ..., Ijk, ... of the jth atom. From these 3D points, we select some 3D points as data
to be optimized, which are observed by at least two common images. By similarity transformation,
we can transform these 3D points into the frame of the molecule. In the second step, we perform
a BA optimization process in the frame of the molecule. In other words, the transformed 3D points
from atom can project into the image planes via the camera poses of common images of the molecule.
As the similarity transformation changes, the positions of these transformed 3D points change, and the
2D projected positions change, as well. Therefore, the optimal transformation will minimize the
re-projection error. Here, we take advantage of the fact that the features detected from common
images of the molecule and atom are consistent. Because the 2D feature observations are the same,
the minimum re-projection error means that these transformed 3D points from atoms can replace the
original 3D points of the molecule well. Thus, our optimization strategy can be summarized as a BA
procedure with similarity transformation, which can be represented as:

min
Tj

∑
j∈ζ

∑
i∈χ

‖ xi
j − PTjXi

j ‖, (14)

where j is the number of atoms, i is the number of the common 3D points of the jth atom and P is the
camera pose of common image Ijt in the frame of the molecule. Xi

j is a common 3D point of the jth atom.

In the process of optimization, P is fixed, and Xi
j is marginalized for efficiency. Through optimization,

we can get the optimal similarity transformation between a pair of partial reconstructions.
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The above optimization process exists in the fusion of a pair of partial reconstructions, including
between a pair of molecules and between a pair of an atom and its corresponding molecule.
Based on the above local optimization, we propose a loop global optimization strategy. We introduce
a closed-loop constraint to incorporate multiple similarity transformations into an optimization process.
As we can see from Figure 5, atoms a and b and molecules c and d form a closed-loop through similarity
transformations between each pair of them.

Similarity transformation

Projection 

Image of molecule

Image of       atom

Feature observation
3D point after transformation

3D point from       atom

molecule

     atom

Common image  Common image  

Figure 4. An illustration of the similarity transformation-based BA local optimization. The optimization
process contains two steps. In the first step, 3D points from the frame of the jth atom are first transformed
into the frame of the molecule by means of similarity transformation. In the second step, the transformed
3D points are projected into the 2D image plane according to the camera poses of common images in
the frame of the molecule. With the change in similarity transformation, the projection positions change
as well. When the re-projection error is minimum, the optimal similarity transformation is obtained.

Atom

Molecule

Similarity transformation

ab e

c

d

Figure 5. An illustration of the hybrid optimization. A similarity transformation between atom a and
molecule d can be represented by Tj or by T1

j T2
j T3

j . A closed-loop constraint is formed by a similarity
transformation relationship in two directions. The introduction of the closed-loop constraint associates
multiple similarity transformations and incorporates them into the global optimization.
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Thus, the transformation between atom a and molecule d can be replaced by a continuous
transformation of atom a to atom b, atom b to molecule c, and molecule c to molecule d. Therefore,
the similarity transformation between atom a and molecule d can be optimized by:

min
T1

j ,T2
j ,T3

j

∑
j∈ζ

∑
i∈χ

‖ xi
j − PT1

j T2
j T3

j Xi
j ‖, (15)

where T1
j , T2

j , T3
j represents the similarity transformation between atom a to atom b, atom b to molecule

c, and molecule c to molecule d, respectively. Such an optimized process only occurs on adjacent
atoms of different atom groups. In order to construct such a closed loop, it is necessary to copy some
of the images on the boundary between the adjacent atoms when constructing the atomic model.
By combining Equation (14) and Equation (15), we propose a hybrid optimization strategy that can be
represented as:

min
Tj ,T1

j ,T2
j ,T3

j

{∑
j∈ζ

∑
i∈χ

‖ xi
j − PTjXi

j ‖ + ∑
j∈η

∑
i∈χ

‖ xi
j − PT1

j T2
j T3

j Xi
j ‖}, (16)

where ζ represents the index of all pairs of partial reconstructions and η represents the index of
closed loops. To solve all of the optimizations defined in Equations (14)–(16), we use the standard
Levenberg–Marquardt algorithm [29] implemented in g2o [30] as the solver.

3. Experiments

Extensive experiments were conducted to evaluate the performance of the fast large-scale 3D
reconstruction approach based on a hierarchical clustering-aligning framework. We evaluated our
method on large-scale aerial image datasets with a high resolution of 7360 × 4912 captured by
fixed-wing UAVs. We implemented our algorithm with C++. The experiments in this paper were
all performed on an Intel i7 quad core machine with 64 GB RAM. For each image subset, we made
an independent partial 3D reconstruction using global SfM [12], implemented in OpenMVG [31],
a library for multiple view geometry. Compared to other SfM methods, this algorithm has two major
advantages. First, this algorithm has a strong ability to deal with noise. Most global algorithms are
actually challenged by noise; however, the reason why this algorithm has better accuracy is that it
has a good ability to reject outlier data (wrong point correspondences and false epipolar geometry).
This is very important, and it indicates that the algorithm has wide applicability and can be used in
a variety of complex environments. Second, this algorithm runs faster, and the rapid completion of
partial reconstruction is of great significance for our algorithm framework.

3.1. Datasets

In order to collect a large-scale aerial image dataset, we used high-quality SLR cameras fixed
on a fixed-wing UAV (as shown in Figure 6a) to capture images. We used this platform to collect
aerial images of about 57 square kilometers of the Qinling mountains (located in Shaanxi Province,
China) and surrounding areas through multiple trips. The image dataset is named Qinling. In addition,
when capturing each image, we also recorded its Global Positioning System (GPS) value, which
could be used as the ground truth for experimental evaluation. These images contained diverse
scenarios, such as mountains, towns, and highways. In order to better evaluate the algorithm’s
performance in terms of efficiency and accuracy, according to different scenarios, we selected some
adjacent local images to form the following image subsets named Mountains, Towns, and Mixed
zone, respectively. The image acquisition area and typical aerial images are shown in Figure 6b,c,
respectively. Mountains, towns, and mixed zone are subsets of Qinling, each of which also contains
hundreds of images. Since our method uses a vocabulary tree and graph searching to cluster images,
our algorithm can also be applied to the unordered image dataset. In order to verify the performance
of the clustering method on the unordered image dataset, we disrupted the index of the mountains
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dataset. For large-scale image datasets, in order to reduce the pressure of experimental storage and
calculation, we resized the images for the towns and mixed zone image datasets. The statistics of the
aerial image datasets are shown in Table 1.

(a) (b)

(c)

Towns Mixed Zone Mountains

China
 Shaanxi 

Figure 6. (a) UAV platform flying over the Qinling mountains; (b) example of image acquisition area
visualized by Google Earth, in which the area surrounded by the yellow bounding box denotes an area
of 57 square kilometers. (c) Typical aerial images.

Table 1. Details of aerial image datasets and image clustering results of our method.

Dataset Size Image Amount Total Number of Atoms

Towns 2560 × 1600 474 9
Mountains 7360 × 4912 216 6

Mixed Zone 2560 × 1600 430 9
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3.2. Experimental Results

First, we evaluated our method on relatively large aerial image datasets, such as mountains,
towns, and mixed zone, each of which contains hundreds of images. Thus, in each experiment,
after image clustering, we obtained an atomic model with one layer. The number of atoms per image
dataset is summarized in Table 1. Then, we made a parallel independent partial 3D reconstruction
using global SfM [12] on each molecule and each atom. Finally, the structures from multiple partial
3D reconstructions were merged by means of similarity transformation estimated by our method.
The reconstruction results of our method are shown in Figure 7. As we can see, there were no visible
vision errors in the reconstructed scene structures.

Mixed Zone Towns Mountains

Figure 7. Experimental results of three datasets, from left to right: mixed zone, towns, and mountains.

Finally, we evaluated the proposed method using the Qinling dataset. This is a fairly large dataset
of 3849 images, covering a total area of 57 square kilometers. In order to reduce the pressure on
experimental storage and calculation, we resized all images to 2560 × 1600. For such a large-scale
dataset, in order to avoid having too many images in the molecule after image clustering, we clustered
images to get a two-layer hierarchical atomic model. There was a total of 77 atoms and six molecules,
where Molecule 2 was determined to be the core molecule. For the molecules, the largest number
of images was 120, and for atoms, the largest number of images was 65. Table 2 shows the details
of the hierarchical atomic model. Then, we we took the coordinate system of the core molecule as
the global coordinate system, Firstly, through the similarity transformation between the atoms and
their corresponding molecules, the partial reconstruction results were unified under the molecule
coordinate systems, and then through the similarity transformation between the molecules and the
core molecule, they were unified into the global coordinate system. Finally, hybrid optimization was
applied to make all partial scene structures seamlessly fuse together. The total time of reconstruction
from clustering images to getting the final reconstructed scene structure took 112 min 50 s. Figure 8
shows an example of the final reconstruction results. In the top of Figure 8, we show a partial scene
structure dynamic merging process of the Qinling dataset, which illustrates the continuity of merging.
As we can see from the bottom of Figure 8, the partial scene structures were well aligned. We can
see that regardless of the mountain path or the road in towns, the merged scene structure presents
a continuous, natural situation.

Table 2. Details of the hierarchical atomic model on the Qinling dataset.

Molecule Index Total Number of Atoms Total Number of Images for All Atoms Total Number of 3D Points

1 15 735 1,221,873
2 11 435 626,680
3 8 412 449,574
4 21 964 1,028,081
5 21 1111 1,494,541
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Figure 8. Example of the partial scene structure dynamic merging process on the Qinling dataset.
The gray shaded area represents the reconstructed scene before the next fusion. The purple dotted box
denotes the magnification of the fusion details.
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4. Discussion

4.1. Evaluation Metrics

We used the absolute accuracy of the camera trajectory and the re-projection error of 3D points
to evaluate the accuracy of different algorithms, and we used the processing time to evaluate the
efficiency of different algorithms.

Here, the re-projection error was obtained by comparing the pixel coordinates (i.e., the observed
feature positions) with the 2D positions projected by the 3D points of the partial reconstructions,
which were first unified into the global coordinate system by the similarity transformation. The camera
trajectory refers to the trajectory formed by the position of the camera as it moves with the UAV. In fact,
the reconstructed camera trajectory can be regarded as a series of 3D points, each of which means the
position of the camera center. Since we know the GPS of the camera moving with the UAV, after we
recover the scale of the reconstructed camera trajectory, we can compare it with the GPS ground
truth so as to measure the absolute accuracy of the reconstruction method. The processing time is the
total time from loading images to reconstructing the final scene structures. In the experiments of our
method, the processing time includes the time for clustering aerial images, the time for parallel partial
3D reconstructions, and the time for calculation and optimization of the similarity transformations.

4.2. Comparison with the 3D Point Matching-Based Method

First, we compared our similarity transformation calculation method with the method based on
3D point matching on the aerial image datasets mountains, towns, and mixed zone. In this comparative
experiment, we used standard SIFT [32] for feature detecting and brute-force matching and then filtered
out the matches using the fundamental matrix; finally, we calculated the similarity transformation
with Random Sample Consensus (RANSAC) [33] using [34] by 3D point matches.

Figure 9 (first row) shows an example of the partial reconstruction fusion results, which were
fused by similarity transformation based on 3D point matches. As we can see, the reconstructed
structures are not well aligned. Taking the reconstruction result of the towns dataset as an example,
from the side view, some partial structures after fusion appear on multiple horizontal planes. In another
case of the reconstruction results on the mountains dataset, the mountain road is blocked, since the
reconstructed scene structures are not well aligned. Therefore, similarity transformations calculated
by 3D matching are not reliable. In contrast, our approach reconstructs the complete scene structures
without a visible vision gap (as shown in Figure 9 (third row)). In addition, we show the difference in
accuracy between the two methods by re-projection error. Table 3 compares the statistical performances
of the two methods. Our method achieves a lower re-projection error. On average, our method only
has about 1.0 pixel, far less than the re-projection error of the fusion method based on 3D point
matches. As we can see from Table 3, after optimization, the re-projection error will significantly drop
before the optimization, which illustrates the significant accuracy improvement brought about by the
optimization.

Table 3. The re-projection error for experimental comparison results.

Dataset

Re-Projection Error

3D Matches Based Our MethodMethod [32] + [33] + [34]

Initial Estimation After Optimization

Towns 4.78 3.54 0.98
Mountains 4.72 1.53 1.03

Mixed Zone 4.27 3.73 1.11
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Figure 9. Experimental comparison results on three datasets, from left to right: mixed zone,
towns, and mountains. From top to bottom, the results of the 3D point matching-based method,
the reconstruction results of the global Structure from Motion (SfM) [12], and the reconstruction results
of our method. Additionally, the visual differences between the reconstruction results are shown in the
rectangular boxes.

4.3. Comparison with Global SfM

Then, we compared our method with the classic global SfM method [12] on the aerial image
dataset. The results of global SfM and our method are shown in the second row and third row
in Figure 9, respectively. As we can see, our method has a better visual effect than the global SfM.
For example, there are redundant scene structures in the reconstruction results of the global SfM on the
mixed zone dataset. From the overall appearance, the scene structures reconstructed by our method
appear to be very similar to the results of the global SfM method. In fact, our method usually has
a larger number of 3D points. Take the experiments of the towns dataset as an example: global SfM
has 446,391 3D points, and our method has 459,362 3D points, which is slightly more than using global
SfM. The number of 3D points for each atom is shown in Table 4. The reason that our method could
reconstruct more 3D points is that for adjacent atoms, since some adjacent images will observe the
same visual content, the partial reconstruction of each of them will have some overlapping scene
structures in the adjacent edge regions. Therefore, our method can obtain more reconstruction points.
In other words, the integrity of reconstruction of our method could be guaranteed.
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Table 4. The statistics of the reconstructed 3D points of our method and the global SfM.

Dataset

Global SfM [12] Our Method

The Sum The Sum The Number of 3D Points in Each Atom
of the of the Index Index Index Index Index Index Index Index Index

3D Points 3D Points 1 2 3 4 5 6 7 8 9

Towns 446,391 459,362 64,776 35,168 42,074 65,157 64,102 34,582 39,506 55,681 58,316
Mountains 2,324,688 2,410,609 428,612 370,807 456,524 513,893 395,523 245,250

Mixed Zone 515,743 537,465 60,690 71,453 79,155 67,431 45,174 45,941 41,767 50,756 75,278

However, using global SfM for large-scale scene reconstruction will not only encounter the
problem of low efficiency, but also lead to the decline of reconstruction accuracy due to the increase
in the number of images. As can be seen from Figure 10a, the model reconstructed by global SfM
has an overall curved trend. The cause of this phenomenon is as follows. In essence, global SfM
through motion averaging deals with error accumulation effectively. However, with an increase in
the number of images, bad feature matching also increases, leading to the increase of errors. In this
case, through the motion average, the accuracy of reconstruction decreases, so the reconstructed model
shows an overall tendency to bend. However, the scene structure reconstructed by our method also
shows a slight bending (as shown in Figure 10b), but this is far less than the bending degree of global
SfM. The reason is that the reconstruction result of our method is the fusion of multiple partial scene
structures, and due to the small number of images in each group, the bending degree of the model
obtained from partial reconstruction is relatively small, so the overall bending degree of the fused
model is not as large as that directly reconstructed by the global SfM. Therefore, the accuracy of our
method will be better than the global SfM.

(a)

(b)

Figure 10. (a) The side view of the global SfM [12] reconstruction results on the towns dataset; (b) the
side view of our method reconstruction results on the towns dataset.

To analyze quantitatively the difference in accuracy between our method and the global SfM,
we conducted an experimental comparison of the accuracy of the reconstructed camera trajectory.
Here, we used the GPS as the ground truth of the camera trajectory. In order to compare the
two methods under the same coordinate system, we used the similarity transformation to register the
ground truth and the computed coordinate system. Before the registration, a reference point needed to
be determined to translate the GPS value into geodetic coordinates. The comparison results are shown
in Figure 11a,b. In order to quantitatively show the difference between the reconstructed trajectory and
GPS, we computed the absolute difference in the X, Y, and Z axes, respectively. Since the trajectories
of the two datasets are both in the shape of periodic bands, for clarity, the shapes of the trajectories
can be described as a matrix. Along the UAV moving direction, it is called a row; perpendicular to
the UAV moving direction, it is called a column. When calculating the absolute difference between
the reconstructed trajectory and the GPS, we summed and averaged the data in the same column.
The absolute differences are shown in Figure 11c,d. As we can see, compared to the global SfM,
the camera trajectory reconstructed by our method is closer to the ground truth.
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Figure 11. Experimental comparison results of the accuracy of the reconstructed camera trajectory.
(a) and (b) The 3D camera trajectory comparison between the reconstructed camera trajectory and GPS
ground truth on the towns dataset and the mountains dataset, respectively. (c) and (d) The absolute
value of the difference between the reconstructed camera trajectory and the GPS ground truth on the X,
Y, and Z axes in the towns dataset and the mountains dataset, respectively.

On the other hand, our method has a significant advantage in terms of the efficiency. Take the
experiment on the mountains dataset as an example: it consumes 19 h 11 min 22 s to get the
reconstruction results for the global SfM method. In contrast, it consumes 2 h 12 min 33 s to get
the final reconstruction results for our method, specifically including 1 min 30 s to cluster images, 2 h
07 min 20 s for parallel partial reconstruction, and 3 min 43 s for the initial estimation and optimization
of the similarity transformation. Thus, it promotes 88.49% in terms of efficiency. Table 5 shows the
quantitative comparison results in terms of the processing time on the three aerial image datasets.

Table 5. The processing time for experimental comparison results.

Dataset Total Time
Global SfM [12] Our Method

Towns 33 min 35 s 10 min 29 s
Mountains 19 h 11 min 22 s 2 h 12 min 33 s

Mixed Zone 48 min 03 s 12 min 10 s

5. Conclusions

In this paper, we proposed a hierarchical clustering-aligning framework for fast large-scale 3D
reconstruction using aerial images. The framework contains two parts, the image clustering and
the aligning of the partial reconstructions. The significance of the image clustering is to decompose
the large-scale SfM into a smaller problem and to lay the foundation for the follow-up aligning
work. Through image clustering, the overlapping relationship between image subsets is established.
Using the overlapping relationship, we initially estimate similarity transformations based on the
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joint camera poses of common images instead of using 3D matching. Then, we introduce the
closed-loop constraint and propose a similarity transformation-based BA hybrid optimization method
to optimize the similarity transformations. The advantage of the proposed method is that it can quickly
reconstruct scene structures for a large-scale aerial image dataset without compromising the accuracy.
Experimental results on large-scale aerial datasets show the advantages of our method in terms of
efficiency and accuracy.

In the current work, we used the classic global SfM [12] to make a partial 3D reconstruction
on each image subset. In general, global SfM is vulnerable to the challenge of feature mismatching,
so global SfM [12] takes a strict filtering of mismatches. When applied to a challenging dataset, once the
filtering standard is reached, it will filter some images from the reconstruction set, which contributes
to the stability of the reconstruction but introduces the problem that, if the common images
between atoms and molecules are all filtered out, our algorithm process will terminate, because
our method relies on the partial reconstruction results, including the camera poses and 3D points
corresponding to the common images. In future work, a better partial reconstruction method will
be adopted. The requirements for the partial reconstruction method are not only precision and
efficiency, but also the completeness of the reconstruction. After all, a good partial reconstruction
result guarantees the implementation of our method. In addition, in our optimization approach,
we used the closed-loop constraint. In fact, there are other constraints that can be used in the atomic
model. In future work, we hope to exploit the constraints fully in the atomic model to make the hybrid
optimization algorithm more robust.
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