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Abstract: The subsurface target classification of ground penetrating radar (GPR) is a popular
topic in the field of geophysics. Among the existing classification methods, geometrical features
and polarimetric attributes of targets are primarily used. As polarimetric attributes contain more
information of targets, polarimetric decomposition methods, such as H-Alpha decomposition, have
been developed for target classification of GPR in recent years. However, the classification template
used in H-Alpha classification is preset depending on the experience of synthetic aperture radar
(SAR); therefore, it may not be suitable for GPR. Moreover, many existing classification methods
require excessive human operation, particularly when outliers exist in the sample (the data set
containing the features of targets); therefore, they are not efficient or intelligent. We herein propose a
new machine learning method based on sample centers, i.e., particle center supported plane (PCSP).
The sample center is defined as the point with the smallest sum of distances from all points in the
same sample, which is considered as a better representation of the sample without significant effect
of the outliers. In this proposed method, particle swarm optimization (PSO) is performed to obtain
the sample centers; the new criterion for subsurface target classification is achieved. We applied
this algorithm to full polarimetric GPR data measured in the laboratory and outdoors. The results
indicate that, comparing with support vector machine (SVM) and classical H-Alpha classification,
this new method is more efficient and the accuracy is relatively high.

Keywords: full polarimetric GPR; machine learning (ML); classification; particle center supported
plane (PCSP); particle swarm optimization (PSO); H-Alpha decomposition

1. Introduction

Ground penetrating radar (GPR) is a type of electromagnetic technique for the detection of
subsurface targets. It has been applied widely to various fields such as engineering, archaeology,
hydrology, and land mine identification. As underground object detection is always involved in these
fields, the subsurface target classification of the GPR becomes a popular topic in the geophysical field.
It is aimed to classify different types of targets based on their attributes. Among the existing methods,
geometrical features and polarimetric attributes are primarily used in classification. For example,
Ikechukwu K. Ukaegbu et al. combined GPR and a gamma ray detector to estimate the nonintrusive
depth of buried radioactive wastes [1]; Wentao Li et al. applied a randomized Hough transform to
achieve the automatic recognition of tree roots [2]; Byeongjin Park et al. used instantaneous phase
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analysis of GPR data to perform underground object classification [3]; Xuan Feng et al. applied
migration for the detection of underground objects [4–6]. However, traditional GPR measurements
can only yield a small part of information for underground objects. As the full polarimetric data
contains much more information of targets [7], full polarimetric GPR has been developed to detect
underground objects in recent years [8,9]. Polarimetric decomposition [10,11] is a method for obtaining
polarimetric attributes from full polarimetric data, in which H-Alpha decomposition [5] and Freeman
decomposition [12,13] have been applied to GPR.

H-Alpha decomposition is a method based on the Kennaugh matrix, which was proposed
by Cloude and Pottier in 1997 [14]. This method has been applied widely to synthetic aperture
radar (SAR), as well as to target classification in GPR [5] in recent years. It uses entropy H and
angle Alpha to perform the classification. The entropy H is a measure of randomness of scattering
mechanisms, and the angle Alpha characterizes the scattering mechanism [15]. This classification
method depends on the classification template called the H-Alpha plane [5] which contains nine
zones, and the physical scattering characteristic associated with each zone provides information for
identification. This distinctive advantage, unfortunately, is offset by preset zone boundaries in the
H-Alpha plane [15]. The determination of classification boundaries depends on the experience of SAR.
While some differences in measurement exist between GPR and SAR, such as the medium and distance
of propagation for electromagnetic waves, observation methods, and noise characteristics, the template
used in SAR may not be suitable for GPR. In this study, we removed the classical H-Alpha template
and studied the characteristics of H and Alpha data; subsequently, we propose a new machine learning
method to obtain the new classification criterion.

Particle swarm optimization (PSO) is a new evolutionary algorithm proposed by J. Kennedy
and R. Eberhart in 1995 [16]. This algorithm, which is similar to simulated annealing (SA), starts
with a random solution and applies iterations to obtain the optimal solution. Unlike other methods,
this method uses particles to represent the random solution. In each iteration, every particle will
renew its position based on the optimal position that it has bypassed (local optimal solution) and the
optimal position all the particles have bypassed (global optimal solution) [17,18]. It is in fact a method
to solve the extreme value of an objective function; therefore, we can change the objective function
called the fitness function to solve many different problems. The advantages of this algorithm is fast
convergence, high-quality solutions, and fewer parameters required for calculation. In recent years,
PSO has been applied to full waveform inversion [19,20], magnetotelluric sounding data inversion [21],
and unsupervised clustering analysis [22–25].

Machine learning has been applied widely in many types of disciplines. It primarily focuses on
designing algorithms that can obtain laws from a number of samples which are data sets containing the
features of targets, and the laws can be used to predict the characteristics of unknown data. In recent
years, many machine learning methods have been applied in the GPR field. For example, Xavier
Núñez-Nieto et al. applied logistic regression and neural network (NN) techniques to automated
landmine and UXO detection [26]; Tao Liu et al. used neural networks to inverse GPR data [27]; Haoqiu
Zhou et al. combined full polarimetric GPR and support vector machine (SVM) data for subsurface
target classification [28]; Minghe Zhang et al. used freeman decomposition and random forest (RF) to
perform underground object detection [29].

In this article, we define the sample center as the point with the smallest sum of distances from
all points in the same sample, the sample center is considered a better representation of the sample
without significant effects of the outliers. Subsequently, particle center supported plane (PCSP) is
proposed to perform the classification.

This article is organized as follows. Section 2 introduces the theory of H-Alpha decomposition,
and details the proposed the technique, i.e., particle center supported plane (PCSP). In Section 3,
the PCSP is applied to full polarimetric GPR data of four types of targets measured in the laboratory.
Section 4 verifies the feasibility of PCSP with real full polarimetric GPR data of underground pipes
measured outdoors. In Section 5, an additional experiment is performed for three pipes of different
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depths, diameters, and materials; subsequently, classical H-Alpha classification and support vector
machine (SVM) analysis are performed to compare with the PCSP method.

2. Theory

2.1. H-Alpha Decomposition

In full polarimetric GPR, the Sinclair matrix [S] is applied to describe the nature of target scattering.
The [S] matrix [13] can be represented as follows:

[S] =

[
SHH SHV
SVH SVV

]
(1)

where SXY represents the GPR data that is collected with an X type polarimetric receiving antenna and
Y type polarimetric transmitting antenna, H represents horizontal polarimetric antenna, V represents
vertical polarimetric antenna. According to the reciprocity theorem, SHV is equal to SVH.

The scattering vector ks is defined as follows [4]:

ks =
1√
2

[
SHH + SVV SHH − SVV 2SHV

]T
(2)

Coherency matrix [T] and its parameterization [4] is shown as (3), where λ1, λ2, λ3, represent
eigenvalues, and [U3] is composed with eigenvectors [4], [U3] is shown as (4):

[T] = ks·kT∗
s = [U3]

 λ1 0 0
0 λ2 0
0 0 λ3

[U3]
−1 (3)

[U3] =
[

e1 e2 e3

]T
=

 cos α1 cos α2 cos α3

sin α1 cos β1ejδ1 sin α2 cos β2ejδ2 sin α3 cos β3ejδ3

sin α1 cos β1ejγ1 sin α2 cos β2ejγ2 sin α3 cos β3ejγ3

 (4)

where e1 e2 e3 are the eigenvectors. The parameterization of a 3 × 3 unitary [U3] matrix in terms of
column vectors with different parameters α, β, δ and γ, which are the parameters of the dominant
scattering mechanism, is made so as to enable a probabilistic interpretation of the scattering process.

Finally, the mean scattering angle α and entropy H [4] can be calculated as follows:

α =
3

∑
i=1

piαi, H =
3

∑
i=1
−pi log3 pi (5)

where p1, p2, p3 are the false probabilities [4] calculated as follows:

pi(i=1,2,3) =
λi

∑3
k=1 λk

,
3
∑

k=1
pk = 1 (6)

Herein, H and α are the parameters used to perform the classification.

2.2. Particle Center Supported Plane

We define the sample center as the point with the smallest sum of distances from all points in
the same sample. Typically, some outliers will be present in the sample. These outliers will affect the
training result of the classification significantly (Figure 1a), but the effect on the sample center is small.
For example, in the quadrilateral ABCD of Figure 1b, the diagonal intersection O is the point with the
smallest sum of distances from four points A, B, C, D; therefore, point O is the sample center of points
A, B, C, D. However, wherever the outlier C is at the extension line of AC, the sample center O will
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never change. Therefore, the sample center is considered a better representation of the sample without
the significant effects of the outliers.Remote Sens. 2019, 11, 405  4 of 19 
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Figure 1. Outlier and sample center. (a) The influence of outlier, where Class 1 and Class 2 represent
the samples of two different type of targets. (b) Sample center of four points.

In this research, we propose a new machine learning method based on sample centers, i.e., particle
center supported plane (PCSP), to perform the classification. The sample centers are obtained by
particle swarm optimization (PSO). For PSO, particles are used to represent the random solutions of the
optimization problem. The coordinate and velocity of mth particle at kth iteration can be represented
as follows [22]:

xk
m =

(
xk

mH , xk
mα

)
, m = 1, 2, . . . , M (7)

vk
m =

(
vk

mH , vk
mα

)
, m = 1, 2, . . . , M (8)

where M represents the number of particles, and k is the time of iteration, xk
mH and xk

mα correspond to
H and α coordinates, respectively. The initial position x0

m and initial velocity v0
m are random.

In this problem, the sample contains H and α, therefore, the training sample can be represented as
follows:

ztni = [Htni, αtni], n = 1, 2, . . . , Ni, i = 1, 2, . . . , P (9)

where ztni represents the nth training sample point in ith type; t represents “training”; Ni is the number
of sample points in ztni; P represents the number of types.

We want the sum of the distances between the particles and all the points in the same sample to
be minimum. Therefore, the objective function (fitness function) is defined as follows:

Fit(xk
m) =

N

∑
n=1

√(
xk

mH − Htni
)2

+
(
xk

mα − αtni
)2, m = 1, 2, . . . , M (10)

From the first iteration to the kth iteration, the minimum value of the fitness function for mth
particle is known as the local optimal solution of mth particle at kth iteration, i.e., Bk

m, m = 1,2, . . . ,M;
the minimum value of the fitness function for all the particles is known as the global optimal solution
at kth iteration, i.e., Bk

g [22].
For all particles, we use the formulas below to renew their positions and velocities [22]:

vk+1
m = ωvk

m + c1r1

(
Bk

m − xk
m

)
+ c2r2

(
Bk

g − xk
m

)
(11)

xk+1
m = xk

m + vk+1
m (12)

where k represents the time of iteration; ω is the inertia weight; r1, r2 are the random numbers between
0 to 1; c1, c2 are the learning factors. In fact, for the right part of Equation (11), the first item represents
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the impact of the current position, the second item represents the impact of the current optimal
position of this one particle, and the third item represents the influence of current optimal position
of all particles. When the fitness function becomes minimum, the particles are at the center of the
sample, the coordinate of sample center is Bg, subsequently, we can obtain the sample centers of all
types of samples:

Fit
(

Bg
)
= minFit(x) (13)

Bg =
(

Bg1, Bg2, . . . , BgP
)

(14)

where P represents the number of classes.
After the sample centers of different samples are achieved from PSO, a classification law can be

constructed based on these sample centers. Figure 1a indicates that the outliers can affect the slope of
the classification boundary significantly. In this method, straight lines are used as the classification
boundary, and the slope of every line is determined by the sample centers. Subsequently, the intercepts
are calculated by the classification accuracy for training samples.

For all the training samples {ztn1, ztn2, . . . ,ztnP} and their sample centers {Bg1, Bg2, . . . , BgP}, where
P is the number of classes, we use {ztni, ztnj} and their sample centers {Bgi, Bgj} as examples. In Figure 2a,
red points and purple points belong to the ith type, green points and blue points belong to the jth type.
A critical point Qij between two sample centers is calculated based on the classification accuracy of the
boundary Lineij. The Lineij is through the critical point Qij and is perpendicular to the connection line
of Bgi and Bgj; the equation of Lineij is as follows:

Lineij :
(

Bgj − Bgi
)
·
(
z−Qij

)
= 0 (15)

where z = (H, α) is the point on the flat.
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The points that are on the same side of Lineij with Bgi are considered to belong to the ith type.
The accuracy of Lineij for classifying ith type and jth type are as follows, respectively:

Accuracyi =
Ni
((

ztni −Qij
)
·
(

Bgi −Qij
)
> 0

)
Ni

(16)

Accuracyj =
Nj
((

ztnj −Qij
)
·
(

Bgj −Qij
)
> 0

)
Nj

(17)

where Ni ((ztni − Qij)·(Bgi − Qij) > 0) represents the number of points in the ith sample which is on
the same side of Lineij with Bgi. Subsequently, the points in the ith sample that are far away from the
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sample center Bgi are considered as outliers; therefore, Accuracyi and Accuracyj do not have to be 1.
We chose Accuracyi,j = 0.8 as the threshold. The objective function is defined as follows:

f cost = Accuracyi + Accuracyj (18)

Accuracyi,j ≥ 0.8 (19)

Subsequently, the optimal Qij as well as the particle center supported plane Lineij can be
determined by solving the maximum value of (18) under the condition of (19).

By repeating the above steps, all the boundary lines between every two samples of {ztn1, ztn2,
. . . ,ztnP} can be determined. Subsequently, classification can be performed for the new data zcn where
c represents “classified”. The discriminant function for the ith type with the other jth type is as follows:

fij
(

Bgj, zcn
)
= sign

{(
Bgi −Qij

)
·
(
zcn −Qij

)}
(20)

where j = 1,2, . . . ,P, j 6= i. The complete discriminant function of the ith type is:

Fi(zcn) = −1 +
1

P− 1

P

∑
j=1,j 6=i

fij
(

Bgj, zcn
)

(21)

If Fi (zcn) = 0, zcn belongs to the ith type. As Figure 2b shows, if the new sample point is on the
same side of the red line with Bg1, it belongs to the type of Bg1.

2.3. Data Processing Flow Chart

The Data processing flow chart of the proposed method is in Figure 3. Firstly, the H-Alpha
decomposition is performed to obtain the H and α data for training; subsequently the particle center
supported plane (PCSP) is performed to obtain the classification boundaries; finally, the new H-Alpha
data is applied to the PCSP to obtain the classification result.
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3. Data Analysis of Typical Targets in the Laboratory and Outdoors

In this section, full polarimetric GPR data measured in the laboratory was applied to the proposed
method to obtain the classification boundaries and verify its feasibility.

3.1. Full polarimetric GPR Measurement

The full polarimetric measurements of four types of targets (Figure 4) were performed in the
laboratory. The survey lines were right on the targets, the number of measurement points was 101,
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the measurement point interval was 1 cm, the frequency ranges between 800 MHz and 4000 MHz,
and the number of sampling points was 1024. The four typical targets are as follows: metallic sphere,
representing Bragg surface scattering; metallic cylinder, representing linear body scattering; metallic
dihedral, representing double-bounce scattering; and metallic multibranch, representing multiple
scattering. The diameter of the sphere was 15 cm. The length of the cylinder was 31.5 cm, the diameter
was 5 cm. The dihedral was made of two plates at a 90◦ angle whose length and width were 35 cm and
20 cm, respectively. The length of the multibranch scatterer was approximately 40 cm. The four targets
were immersed in a dry sand trough whose length, width and depth were 2.53 m, 2.53 m, and 0.85 m,
respectively; the wave velocity of the sand was approximately 0.2 m/ns. The buried depths for the top
of the sphere and cylinder were 8 cm; the buried depth for the intersection of two plates was 20 cm;
the buried depth for the trunk of the multibranch scatterer was 10 cm.

In the measurement, a vector network analyzer and a Cartesian coordinate robot (Figure 5)
with different antenna combinations (Figure 6) were used for data collection, the interval between
feeding points of transmitting and receiving antennas was 8 cm for all three polarimetric modes with
the same axis direction. The data of the sphere, cylinder, dihedral, and multibranch are shown in
Figures 7–10, respectively.
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3.2. H-Alpha Decomposition for GPR Data

After the collection for the full polarimetric GPR data of four types of targets, H-Alpha
decomposition is applied to obtain the H and α data. Subsequently, the data of four targets are
divided into two equal parts: the training data and the testing data. Figure 11a shows the spatial
distribution of the training H and α data of four types of targets.

3.3. Particle Center Supported Plane

Subsequently, PSO is performed for the H and α data to obtain the sample centers of the four types
of targets. Twenty particles are used in the calculation (M = 20), and we chose w = 0.5, c1 = 1.5, c2 = 2.5;
when the relative error between the kth iteration and (k+1)th iteration is under 0.01, the calculation
will stop. Figure 11b shows the sample centers of the training data.
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In Figure 12, the objective functions of every two sample centers are presented, the right part of
the blue line is the range where Accuracyi > 0.8, and the left part of the red line is the range where
Accuracyj > 0.8. Therefore, we must obtain the maximum value of fcost (shown in (18)) between the blue
line and red line. The “Distance” coordinate corresponding to the maximum value of fcost indicates
the best position of Qij at the connection line of Bgi and Bgj. The obtained boundaries are shown in
Figure 13 and the classification types of six boundaries are shown in Table 1.
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Table 1. The types of six boundaries.

Boundary L1 L2 L3 L4 L5 L6

Type multibranch multibranch multibranch dihedral dihedral cylinder
dihedral cylinder sphere cylinder sphere sphere

L1 is the line between the multibranch and dihedral; L2 is the line between the multibranch and
cylinder; L3 is the line between the multibranch and sphere; L4 is the line between the dihedral and
cylinder; L5 is the line between the dihedral and sphere; L6 is the line between the cylinder and sphere.
We used these six lines to classify the testing data; the classification results and accuracy are shown in
Figure 14 and Table 2, respectively.
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(d) Multibranch.

Table 2. Accuracy of particle center supported plane.

Target Accuracy (%)

Sphere 91.63
Cylinder 86.76
Dihedral 80.89

Multibranch 92.74

The Figure 14 and Table 2 indicate that PCSP can classify these four types of targets with good
accuracy. All the correct rates are greater than 80%. In fact, not all the lines contributed to the classification.
After some analyses, the real plane partition is shown in Figure 15. The red lines in Figure 15a are the
lines which contributed to the classification, the real classification plane is as Figure 15b.
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4. Identification for Real Data of Subsurface Pipes

According to Yue Yu [30], we can use the single polarimetric GPR to obtain the full polarimetric
GPR data. Three time measurements with different measuring angles of antenna directions and survey
direction are applied in this method as Figure 16 shows. We assume that the data collected by using
this method are M0◦ , M45◦ , and M90◦ , respectively, the real matrix [S] can be represented as (22) [30].

S =

[
M0◦ M45◦ −

M0
◦+M90

◦

2

M45◦ −
M0
◦+M90

◦

2 M90◦

]
(22)
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We applied this method to the data collection of subsurface pipes using 500 MHz shielded MALA
GPR. The buried depths of two pipes were approximately 0.5 m and 0.55 m; the pipes extend two
hundred meters in the north-south direction; the estimated pipe diameters were both approximately
20 cm; the applied GPR system had two horizontal polarimetric antennas whose interval is 18 cm.
The number of measurement points was 98; the measurement point distance was 2 cm; the number of
sampling points was 600. The applied GPR system and three types of measuring methods are shown in
Figure 17. The full-polarimetric data obtained by using (22) are shown in Figure 18; the red rectangles
indicate the positions of two subsurface pipes. The classification result of PCSP is shown in Figure 19.
The accuracy is shown in Table 3.
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Table 3. Classification probability of subsurface pipes.

Target Probability of
Sphere (%)

Probability of
Cylinder (%)

Probability of
Dihedral (%)

Probability of
Multibranch (%)

Pipe 1 1.26 68.91 28.57 4.62
Pipe 2 0.51 72.31 7.69 6.15

Figure 19 shows that majority of the data points of three pipes focused on the blue zone. Table 3
shows that for the two pipes, the probabilities that they belonged to the type of cylinder were far
higher than the other three types, the probabilities were 68.91% and 72.31%, respectively.
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5. Discussion

5.1. Identification for Three Pipes of Different Depths, Diameters and Materials.

To verify the feasibility of the proposed method. An additional experiment was performed.
In this experiment, three pipes (Figure 20) of different depths, diameters, and materials were buried
in the dry sand trough. The measurement environment and instruments were the same with that of
Section 3.1. The parameters and buried states of three pipes are in Table 4 and Figure 21, respectively.
The distance between the three pipes was 45 cm. The survey lines were right on the targets, the number
of measurement points was 89, the measurement point interval was 2 cm, the frequency ranged
between 800 MHz and 4000 MHz, and the number of sampling points was 1024.

Remote Sens. 2019, 11, 405  14 of 19 

 

5. Discussion 

5.1. Identification for Three Pipes of Different Depths, Diameters and Materials. 

To verify the feasibility of the proposed method. An additional experiment was performed. In 
this experiment, three pipes (Figure 20) of different depths, diameters, and materials were buried in 
the dry sand trough. The measurement environment and instruments were the same with that of 
section 3.1. The parameters and buried states of three pipes are in Table 4 and Figure 21, 
respectively. The distance between the three pipes was 45 cm. The survey lines were right on the 
targets, the number of measurement points was 89, the measurement point interval was 2 cm, the 
frequency ranged between 800 MHz and 4000 MHz, and the number of sampling points was 1024. 

 
Figure 20. Three different pipes in the try sand trough. 

Table 4. The parameters of three pipes. 

Target Depth(cm) Diameter(cm) Material 

Pipe 1 15 3 PVC 

Pipe 2 15 2 Metallic 

Pipe 3 20 4 Metallic 

 
Figure 21. Three different pipes in the try sand trough. 

The measurement data are shown in Figure 22. Subsequently, we perform the PCSP to identify 
these three pipes. The identification results and accuracy are shown in Figure 23 and Table 5, 
respectively. 

Figure 20. Three different pipes in the try sand trough.

Table 4. The parameters of three pipes.

Target Depth (cm) Diameter (cm) Material

Pipe 1 15 3 PVC
Pipe 2 15 2 Metallic
Pipe 3 20 4 Metallic

Remote Sens. 2019, 11, 405  14 of 19 

 

5. Discussion 

5.1. Identification for Three Pipes of Different Depths, Diameters and Materials. 

To verify the feasibility of the proposed method. An additional experiment was performed. In 
this experiment, three pipes (Figure 20) of different depths, diameters, and materials were buried in 
the dry sand trough. The measurement environment and instruments were the same with that of 
section 3.1. The parameters and buried states of three pipes are in Table 4 and Figure 21, 
respectively. The distance between the three pipes was 45 cm. The survey lines were right on the 
targets, the number of measurement points was 89, the measurement point interval was 2 cm, the 
frequency ranged between 800 MHz and 4000 MHz, and the number of sampling points was 1024. 

 
Figure 20. Three different pipes in the try sand trough. 

Table 4. The parameters of three pipes. 

Target Depth(cm) Diameter(cm) Material 

Pipe 1 15 3 PVC 

Pipe 2 15 2 Metallic 

Pipe 3 20 4 Metallic 

 
Figure 21. Three different pipes in the try sand trough. 

The measurement data are shown in Figure 22. Subsequently, we perform the PCSP to identify 
these three pipes. The identification results and accuracy are shown in Figure 23 and Table 5, 
respectively. 

Figure 21. Three different pipes in the try sand trough.

The measurement data are shown in Figure 22. Subsequently, we perform the PCSP to identify these
three pipes. The identification results and accuracy are shown in Figure 23 and Table 5, respectively.
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materials, most of the data points focused on the blue zone; the probabilities that they belonged to 
the type of cylinder are far higher than that of other three types, the probabilities were 88.69%, 
80.56%, and 88.24%, respectively. The results prove that, for the pipes of different depths, diameters, 
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Figure 23. The identification results of three different pipes in the try sand trough. (a) Pipe 1. (b) Pipe 2.
(c) Pipe 3.

Table 5. Identification accuracy of three pipes.

Target Probability of
Sphere (%)

Probability of
Cylinder (%)

Probability of
Dihedral (%)

Probability of
Multibranch (%)

Pipe 1 0.00 88.69 10.71 0.30
Pipe 2 7.22 80.56 6.67 2.78
Pipe 3 6.54 88.24 2.61 1.31

The Figure 23 and Table 5 indicate that for the three pipes of different depths, diameters,
and materials, most of the data points focused on the blue zone; the probabilities that they belonged
to the type of cylinder are far higher than that of other three types, the probabilities were 88.69%,
80.56%, and 88.24%, respectively. The results prove that, for the pipes of different depths, diameters,
and materials, the PCSP method can identify them with good accuracy, therefore the proposed method
is appropriate.

5.2. Comparison with Classical H-Alpha Classification and Support Vector Machine (SVM)

In this section, classical H-Alpha classification and support vector machine (SVM) were performed
to compare with the PCSP method. Classical H-Alpha classification is based on the classical template
of SAR with nine zones (Figure 24), and the physical scattering characteristic associated with each
zone provides information for classification [14].
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Support Vector Machine (SVM) is a new method of pattern recognition which was put forward
by Corinna Cortes and Vapnik in 1995 [31]. It has been applied to target classification for GPR [27].
This method uses a hyper-plane to classify two different samples. The support vector is defined as the
points in the two samples which are nearest to the hyper-plane, they are the most significant points to
determine the hyper-plane and hard to be classified. The key idea is to minimize the spaces between
support vectors and the plane to search for the optimal hyper-plane (Figure 25).
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Figure 25. Support vector machine, where Class 1 and Class 2 represent the samples of two different
type of targets.

The classical H-Alpha classification is an unsupervised method which does not need a training
process; SVM is a supervised method which needs a training process. Therefore, the training data
used in the SVM was the same as that of PCSP. The same testing data was applied in three methods.
The sample points of testing data are projected into the classical H-Alpha classification space as
Figure 26 presents.

From Figure 26, we can find that most sample points were in the zones they belong to, but the
proportions were not high, particularly for cylinder and multibranch. Subsequently, the proportions of
the sample points of the four targets in their zones were calculated; the SVM with linear kernel (L-SVM)
was performed. The comparison of accuracy is shown in Table 6; the comparisons of operation time
and RAM usage for L-SVM and PCSP are shown in Table 7.
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Table 6. Comparison of accuracy.

Targets
Methods

L-SVM H-Alpha PCSP

Sphere 90.99 91.87 91.63
Cylinder 81.29 47.35 86.76
Dihedral 77.89 87.70 80.89

Multibranch 92.74 74.53 92.74

Table 7. Comparisons of operation time and RAM usage.

Comparison Parameters L-SVM PCSP

Operation time (s) 10.067 5.841
RAM usage (MB) 2825 3034

Table 6 shows that the accuracy of L-SVM and PCSP were in the acceptable range, and the accuracy
of PCSP was slightly higher than that of L-SVM. The correct rates were different with different targets.
However, for the H-Alpha method, the accuracy of cylinder classification was under 50%, which means
the cylinder can not be identified by using this method.

Table 7 shows that the RAM usage of PCSP is slightly higher than that of L-SVM. However,
the operation time of PCSP was obviously less than that of L-SVM. In general, when RAM is sufficient,
the accuracy of PCSP is slightly higher than that of L-SVM, and the calculation speed of PCSP is
obviously faster than that of L-SVM.

5.3. Limitations of the Proposed Technique

However, the proposed technique for the underground object classification of GPR data are based
on the classical parameters (H, α) obtained by H-Alpha decomposition; the type of objects we classified
in this study was limited. Follow-up studies are underway to perform the classification for more types
of objects using different polarimetric attributes and machine learning methods.

6. Conclusions

In this article, we proposed the particle center supported plane (PCSP) as a classification method
based on sample centers to classify the H-Alpha data of ground penetrating radar. To verify the
method, the PCSP method was performed to classify both data measured in the laboratory and real
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data measured on the road outdoors. The results indicate that this method could classify the four
types of targets and subsurface pipes with good accuracy. To verify the feasibility of the proposed
method, the identification for three pipes of different depths, diameters, and materials were performed,
the results indicate that the PCSP method can identify the pipes of different depths, diameters,
and materials with good accuracy. To verify the superiority of the proposed method, comparisons
between the new method and classical H-Alpha classification, as well as L-SVM, were performed.
The comparison of accuracy indicates that the accuracy of L-SVM and PCSP are in the acceptable range,
and the accuracy of PCSP is slightly higher than that of L-SVM. However, for the H-Alpha method,
the accuracy of cylinder classification was under 50%, which means the cylinder can not be identified
by using the H-Alpha method. Moreover, the comparison of operation time and RAM usage indicate
that if RAM usage is sufficient, the calculation speed of PCSP is obviously faster than that of L-SVM.

Author Contributions: Conceptualization, C.L.; Methodology, X.F., H.Z., E.N., M.Z. and Z.D.; Software, H.Z. and
Z.D.; Validation, H.Z. and Z.D.; Formal Analysis, H.Z. and Z.D.; Investigation, X.F.; Resources, X.F., C.L., Y.Z. and
W.L.; Data Curation, H.Z., W.L. and Z.D.; Writing-Original Draft Preparation, X.F., H.Z. and Z.D.; Writing-Review
& Editing, X.F., H.Z. and Z.D.; Visualization, H.Z. and Z.D.; Supervision, Y.Z.; Project Administration, X.F., C.L.
and Z.D.; Funding Acquisition, X.F.

Funding: This research was funded by the Technology Development Program of Jilin Province:
Suppression of polarization accompanying interference for full polarimetric Ground Penetrating Radar under
Grant 20180101091JC.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ukaegbu, I.K.; Gamage, K.A.A.; Aspinall, M.D. Nonintrusive Depth Estimation of Buried Radioactive Wastes
Using Ground Penetrating Radar and a Gamma Ray Detector. Remote Sens. 2019, 11, 141. [CrossRef]

2. Li, W.T.; Cui, X.H.; Guo, L.; Chen, J.; Chen, X.H.; Cao, X. Tree Root Automatic Recognition in Ground
Penetrating Radar Profiles Based on Randomized Hough Transform. Remote Sens. 2016, 8, 430. [CrossRef]

3. Park, B.; Kim, J.; Lee, J.; Kang, M.S.; An, Y.K. Underground Object Classification for Urban Roads Using
Instantaneous Phase Analysis of Ground-Penetrating Radar (GPR) Data. Remote Sens. 2018, 10, 1417.
[CrossRef]

4. Feng, X.; Yu, Y.; Liu, C.; Fehler, M. Subsurface polarimetric migration imaging for full polarimetric
ground-penetrating radar. Geophys. J. Int. 2015, 202, 1324–1338. [CrossRef]

5. Feng, X.; Yu, Y.; Liu, C. Combination of H-Alpha Decomposition and Migration for Enhancing Subsurface
Target Classification of GPR. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4852–4861. [CrossRef]

6. Feng, X.; Sato, M. Pre-stack migration applied to GPR for landmine detection. Inverse Prob. 2004, 20, 99–115.
[CrossRef]

7. Böniger, U.; Tronicke, J. Subsurface Utility Extraction and Characterization: Combining GPR Symmetry and
Polarization Attributes. IEEE Trans. Geosci. Remote Sens. 2011, 50, 736–746. [CrossRef]

8. Sassen, D.S.; Everett, M.E. 3D polarimetric GPR coherency attributes and full-waveform inversion of
transmission data for characterizing fractured rock. Geophysics 2008, 74, J23–J34. [CrossRef]

9. Kevin, O. Discrimination of UXO in Soil Using Broadband Polarimetric GPR Backscatter. IEEE Trans. Geosci.
Remote Sens. 2001, 39, 356–367.

10. Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci.
Remote Sens. 1996, 34, 498–518. [CrossRef]

11. Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR Data. IEEE Trans.
Geosci. Remote Sens. 1998, 36, 963–973. [CrossRef]

12. Feng, X.; Yu, Y.; Lu, Q. Application of freeman decomposition to full polarimetric GPR. In Proceedings of the
2013 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, VIC, Australia, 21–26 July
2013; pp. 3534–3537.

13. Feng, X.; Liang, W.J.; Liu, C. Application of Freeman decomposition to full polarimetric GPR for improving
subsurface target classification. Signal Process. 2017, 132, 284–292. [CrossRef]

14. Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR.
IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [CrossRef]

http://dx.doi.org/10.3390/rs11020141
http://dx.doi.org/10.3390/rs8050430
http://dx.doi.org/10.3390/rs10091417
http://dx.doi.org/10.1093/gji/ggv208
http://dx.doi.org/10.1109/TGRS.2015.2411572
http://dx.doi.org/10.1088/0266-5611/20/6/S07
http://dx.doi.org/10.1109/TGRS.2011.2163413
http://dx.doi.org/10.1190/1.3103253
http://dx.doi.org/10.1109/36.485127
http://dx.doi.org/10.1109/36.673687
http://dx.doi.org/10.1016/j.sigpro.2016.07.030
http://dx.doi.org/10.1109/36.551935


Remote Sens. 2019, 11, 405 19 of 19

15. Lee, J.S.; Grunes, M.R. Unsupervised Classification Using Polarimetric Decomposition and the Complex
Wishart Classifier. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2249–2258.

16. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International
Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.

17. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE World Congress
on Computational Intelligence, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73.

18. Kennedy, J. The particle swarm: social adaptation of knowledge. In Proceedings of the 1997 IEEE
International Conference on Evolutionary Computation (ICEC ’97), Indianapolis, IN, USA, 13–16 April 1997;
pp. 303–308.

19. Zhu, T.; Li, X.F. PSO-gradient algorithm and its application to seismic waveform inversion for velocity
structure in frequency domain. Prog. Geophys. 2013, 28, 0180–0189.

20. Zheng, S.; Zhang, A.X. Ground Penetrating Radar Inversion Algorithm Based on Improved Particle Swarm
Optimization. J. Electron. Inf. Technol. 2014, 36, 2717–2722.

21. Shi, X.M.; Xiao, M. The damped PSO algorithm and its application for magnetotelluric sounding data
inversion. Chinese J. Geophys. 2009, 52, 1114–1120. (In Chinese)

22. Wang, Y.F. The Particle Swarm Optimization and its Application. Master’s Thesis, Huazhong University of
Science and Technology, Wuhan, China, 2008.

23. Chouhan, R.; Purohit, A. An approach for document clustering using PSO and K-means algorithm.
In Proceedings of the 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore,
India, 19–20 January 2018; pp. 1380–1384.

24. Mir, M.; Tadayon Tabrizi, G. Improving data clustering using fuzzy logic and PSO algorithm. In Proceedings
of the 20th Iranian Conference on Electrical Engineering (ICEE2012), Tehran, Iran, 15–17 May 2012;
pp. 784–788.

25. Davodi, M.; Modares, H. Coherency approach by hybrid PSO, K-Means clustering method in power system.
In Proceedings of the 2008 IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia,
1–3 December 2008; pp. 1203–1207.

26. Núñez-Nieto, X.; Solla, M.; Gómez-Pérez, P.; Lorenzo, H. GPR Signal Characterization for Automated
Landmine and UXO Detection Based on Machine Learning Techniques. Remote Sens. 2014, 6, 9729–9748.
[CrossRef]

27. Liu, T.; Su, Y.; Huang, C.L. Inversion of Ground Penetrating Radar Data Based on Neural Networks. Remote
Sens. 2018, 10, 730. [CrossRef]

28. Zhou, H.Q.; Feng, X. Combination of Support Vector Machine and H-Alpha Decomposition for Subsurface
Target Classification of GPR. In Proceedings of the 17th International Conference on Ground Penetrating
Radar (GPR), Rapperswil, Switzerland, 18–21 June 2018; pp. 635–638.

29. Zhang, M.H.; Feng, X. Full-polarimetric Ground Penetrating Radar Underground Objects Classification
Using Random Forest. In Proceedings of the 17th International Conference on Ground Penetrating Radar
(GPR), Rapperswil, Switzerland, 18–21 June 2018; pp. 689–693.

30. Yu, Y. Development of H-Alpha Feature Decomposition Technology for Full-polarimetric Ground Penetrating
Radar. Ph.D. Thesis, Jilin University, Changchun, China, 2016.

31. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs6109729
http://dx.doi.org/10.3390/rs10050730
http://dx.doi.org/10.1007/BF00994018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Theory 
	H-Alpha Decomposition 
	Particle Center Supported Plane 
	Data Processing Flow Chart 

	Data Analysis of Typical Targets in the Laboratory and Outdoors 
	Full polarimetric GPR Measurement 
	H-Alpha Decomposition for GPR Data 
	Particle Center Supported Plane 

	Identification for Real Data of Subsurface Pipes 
	Discussion 
	Identification for Three Pipes of Different Depths, Diameters and Materials. 
	Comparison with Classical H-Alpha Classification and Support Vector Machine (SVM) 
	Limitations of the Proposed Technique 

	Conclusions 
	References

