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Abstract: The tools available to farmers to manage grazed pastures and adjust forage demand to grass
growth are generally rather static. Unmanned aerial systems (UASs) are interesting versatile tools
that can provide relevant 3D information, such as sward height (3D structure), or even describe the
physical condition of pastures through the use of spectral information. This study aimed to evaluate
the potential of UAS to characterize a pasture’s sward height and above-ground biomass at a very
fine spatial scale. The pasture height provided by UAS products showed good agreement (R2 = 0.62)
with a reference terrestrial light detection and ranging (LiDAR) dataset. We tested the ability of
UAS imagery to model pasture biomass based on three different combinations: UAS sward height,
UAS sward multispectral reflectance/vegetation indices, and a combination of both UAS data types.
The mixed approach combining the UAS sward height and spectral data performed the best (adj.
R2 = 0.49). This approach reached a quality comparable to that of more conventional non-destructive
on-field pasture biomass monitoring tools. As all of the UAS variables used in the model fitting
process were extracted from spatial information (raster data), a high spatial resolution map of pasture
biomass was derived based on the best fitted model. A sward height differences map was also
derived from UAS-based sward height maps before and after grazing. Our results demonstrate the
potential of UAS imagery as a tool for precision grazing study applications. The UAS approach to
height and biomass monitoring was revealed to be a potential alternative to the widely used but
time-consuming field approaches. While reaching a similar level of accuracy to the conventional field
sampling approach, the UAS approach provides wall-to-wall pasture characterization through very
high spatial resolution maps, opening up a new area of research for precision grazing.

Keywords: unmanned aerial vehicles; unmanned aerial systems; drone; precision grazing; pasture
biomass modeling; sward height; pasture height
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1. Introduction

Grasslands cover 26% of the world’s total land area and 69% of the agricultural area and are
the least expensive way to feed ruminants, such as cattle reared for milk or meat production [1].
In the European Union, permanent pastures and meadows occupy 34% of the utilized agricultural
area. A significant share of the cultivated fields include temporary pastures in their rotation [2].
Grazed pastures benefit the sustainability of dairy production in multiple ways, such as lower feeding
costs [3], higher animal welfare and a lower occurrence of lameness and mastitis, good public image,
and increased milk quality [4]. In addition, grasslands have an important role in the provision of
social and environmental services [5]. The selection of an adequate choice of diverse grass and legume
species and varieties with adequate management could also support the growth of a wider range of
micro-fauna and crop auxiliaries. Finally, pastures could play a significant role in trapping atmospheric
CO2 through soil carbon sequestration [6].

Managing pastures through direct grazing is not an easy task, as it requires combining actions to
allow the dynamic growth of multispecies grassland vegetation while managing animals that consume
it selectively and non-homogeneously. The plant and the animal components of the grazed pasture
system have mutual influences in addition to the influences of environmental factors. Both components
also have different biological dynamics. Unfortunately, the tools available to farmers to manage grazed
pastures and adjust forage demand to grass growth are generally rather static, for example, the use of
stocking rates, fences, grazing pressure, resting times, locations of water troughs, locations of salt licks,
fertilization, and irrigation [7].

The application of precision livestock farming to grazing has the potential to promote more
dynamic management of ruminants on grasslands by switching from management at the herd
level to the management of each individual on the pasture. In the past decade, several works
have demonstrated how the development in sensors and information technology can be used
to improve the monitoring of grazing animals, especially cattle [8–11]. Monitoring the grazing
process to the finest scale, namely at the consumption level, in space and time is now possible [8],
and the development of such technology as a research tool is likely to enter farms progressively as
a complement to virtual fences [12]. In addition to the monitoring of individual grazing animals,
improvements in the monitoring of the grazed vegetation are also called for. French et al. [12]
presented a rising plate meter that automatically communicates the pasture height and biomass data to
a geographic information system (GIS). Other techniques, such as satellite-based remote-sensing [13]
and on-field 2-D and 3D-cameras, have been used to measure photosynthetic activity and forage
height [14] or to identify weeds in grasslands [15]. Handcock et al. [16] proposed combining satellite
remote sensing and collar-based georeferenced information to characterize animal behavior and
environmental interactions. Even though the accessibility and the spatial resolution of satellite
imagery are continuously improving, generally, they are too coarse to describe pastures at the scale of
individual animals on the pasture. On the other hand, field-based remote sensing methods, such as
terrestrial light detection and ranging (LiDAR), allow for the fine 3D characterization of vegetation
structure [17]. LiDAR technology was also successfully combined with a vegetation index (normalized
difference vegetation index, NDVI) by Schaeffer and Lamb [18] to estimate the standing biomass
on tall fescue pastures. Nevertheless, terrestrial remote sensing remains spatially limited. At the
interface of satellite-based remote sensing and on-field approaches, unmanned aerial systems (UASs)
can cover substantial areas (>10 ha in a single flight), providing imagery at a very high spatial
resolution (<0.1 m). Moreover, UASs are very versatile tools that can be deployed by the end user
on-demand. Over the past decade, UASs have been widely used in various environmental applications
including forest characterization [19], wildlife census [20], invasive species mapping [21], and precision
agriculture [22]. In precision agriculture, UASs have been used for quantitative crop monitoring [23],
weed detection [24], and plant phenotyping [25]. They have also been used for grazing applications in
research, including biomass monitoring [26] and adventive species detection [27]. The success of UASs
is linked to the development of structure from motion (SFM) photogrammetry [28], which allows 3D
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data (digital surface model in case of aerial survey) to be derived from overlapping images acquired
with consumer-grade digital cameras. In the agricultural field, SFM photogrammetry can be used to
derive the crop surface/height model (CSM/CHM) from UAS imagery at very low cost compared to
LiDAR. In the context of precision grazing, pioneer studies [29,30] have demonstrated the quality of
height and biomass information derived from the UAS. However, these previous studies have mostly
focused on ungrazed, experimental pastures while leaving open the question of monitoring grazing
through the use of a multi-temporal approach. Such approaches are needed to develop innovative
tools to provide quick responses to allow the adaptation of grazing schedules or other decision-making
tools for farmers.

Pastures should be consumed by animals when they display a specific structure that is principally
defined by height and density, ensuring the removal of only grass leaves during bites [31]. Pasture
height information is very important for farmers to maximize the intake rate of animals. However,
such measurements are still taken using low frequency and time-consuming instruments, notably
sward-sticks or rising plate meters [14]. The use of UAS imagery could be a solution to provide higher
frequency, higher spatial resolution, and more precise information about the biomass productivity of
a pasture.

In this context, this study aimed to evaluate the potential of UAS as a tool for the characterization
of pasture 3D structure (sward height) and above-ground biomass at a very fine spatial scale.
More specifically, it evaluated the suitability of UAS for monitoring sward height differences and
pasture biomass. Based on the hypothesis that UAS products (e.g., sward height model and orthophotos
mosaic) can reflect the pasture biomass and sward height multi-temporal differences, this approach
investigated the potential of UASs to monitor grazing at the feeding station level.

2. Materials and Methods

2.1. Study Site and Field Sampling

The study site consisted of experimental Lolium perenne (ryegrass) and Trifolium repens (clover)
based pastures (Figure 1) located in Gembloux (Belgium). Each individual plot represented an area
of ca. 4000 m2. The study took place from 9 May to 12 May 2017. All pastures had been deferred
from grazing since October 2016 (seven months), and grass was allowed to regrow ungrazed until the
beginning of the experiment. Six dry red-pied cows were introduced to the first pasture (see Figure 1,
plot P1) for two consecutive days (9 May to 10 May) and were moved to the next test pasture (P2) for the
last two days (11 May to 12 May). Forty above-ground biomass samples were taken for dry-weighing
from both pastures (P1 and P2) within a square of 0.09 m2 centered on the marked point (four squares
and center) along the sampling grid (Figure 1) before cows were set to graze. No distinction between
the different species was made in the data collection. The center of the biomass samples was precisely
geo-referenced using an RTK GPS (±0.04 m mean XYZ accuracy).

2.2. UAS Imagery Acquisition and Processing

An octocopter drone (X frame type) equipped with an off-the-shelf high resolution (20 Mpx) RGB
camera (Sony RX 100, 8.8 mm focal length) and a multispectral camera (Parrot Sequoia) was used.
The multispectral camera had a lower spatial resolution (1.2 Mpx), but provided fine multispectral
information, covering green (550 nm), red (660 nm), near infrared (735 nm), and red-edge (790 nm)
wavelengths. The full width at half maximum was 40 nm for red, green, and near infrared, and 10 nm
for the red-edge wavelength. The flight height was set to 50 m above ground level, with a cruise speed
of 5 m.s-1 and front and side overlaps above 80%. The UAS flight surveys were performed before
(May 8) and after the cows grazed the pastures (15 May).
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Figure 1. Study site location in Belgium (Western Europe) and locations of the field measurements
(biomass sampling and terrestrial LiDAR scans)). P1 and P2 were grazed for two consecutive days.

Eight ground control points (GCPs) consisting of 0.4 m white square plastic plates were placed in
the surveyed area to ensure geometric calibration. The GCPs were georeferenced with an RTK GPS
(±0.04 m mean XYZ accuracy).

The images provided by the high spatial resolution RGB sensor (Sony RX100 III) were processed
with Agisoft Photoscan 1.3 to produce a high spatial resolution digital surface model (DSM, 0.025 m
GSD). Agisoft Photoscan is widely used by the UAS scientific community to perform high resolution
and reliable 3D models from UAS surveys (e.g., [32–34]). The sparse and dense clouds were processed
using the “high” level of accuracy for parameters. The depth filtering strategy was set to “aggressive”.
The optimization process was based on the GCP location and was applied to all of the available
parameters (except for the rolling shutter parameter). As Agisoft Photoscan 1.3 does not allow
radiometric calibration workflow, we used Pix4D Suite 3.1 (Lausanne, Switzerland) to perform
a photogrammetric 3D reconstruction of the multispectral imagery using the “Ag Multispectral”
predefined workflow. Radiometric calibration of the multispectral camera was undertaken before
each flight with a calibration target (Airinov). The images acquired by the multispectral sensor were
used to derive reflectance maps (0.05 m ground sampling distance, GSD) of the four wavelengths
(green, red, near-infrared, and red-edge). The four reflectance layers were combined to produce four
straight-forward vegetation indices (0.05 m GSD) covering the different layers of the multispectral
camera (Table 1). We did not include the spectral information provided by the visible camera in the
analysis because of its lower spectral resolution.

Using the same approach as Michez et al. [23] with Zea mays field crops, a height model
was derived by subtracting a LiDAR digital terrain model (DTM) from the high spatial resolution
photogrammetric DSM in order to provide a raster of the sward height at the study site (0.025 m GSD).
This height model will be further referred to as the sward height model (SHM). The LiDAR DTM
used in this study was derived from a relatively low-density LiDAR survey (<1 point/m2) acquired
during the years 2013 and 2014 (see http://geoportail.wallonie.be/forfurtherinformation). As the
pastures were installed before the LiDAR survey and have not been tilled since, this LiDAR DTM was
considered to be relevant for describing the topography of the study site.

http://geoportail.wallonie.be/ for further information
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Table 1. Vegetation indices computed from the reflectance layers provided by the multispectral camera.

Vegetation Index Formula Parameter Reference

Normalized Difference Vegetation
Index (NDVI) (NIR − RED)/(NIR + RED) Photosynthetic activity,

plant stress [35]

Normalized Difference Red
Edge (NDRE) (NIR − REDEDGE)/(NIR + REDEDGE) Chlorophyll and

nitrogen content [36]

Green NDVI (GNDVI) (NIR − GREEN)/(NIR + GREEN)
More sensitive to

chlorophyll-a concentration,
monitoring of plant stress

[37]

Green Ratio Vegetation Index (GRVI) NIR/GREEN Photosynthetic activity [38]

At the center of the field measurement locations, we extracted the UAS information (height and
reflectance values) as the median values of the considered layers’ pixels in a 0.15 m radius circular
buffer. The UAS variables used for the analysis are listed in Table 2.

Table 2. Variables extracted from the UAS imagery.

Name Type Ground Sampling Distance
of the Layer (m) Sensor

NDVI Vegetation index (VI) 0.05 Multispectral (Sequoia)
NDRE Vegetation index (VI) 0.05 Multispectral (Sequoia)

GNDVI Vegetation index (VI) 0.05 Multispectral (Sequoia)
GRVI Vegetation index (VI) 0.05 Multispectral (Sequoia)

Red (R) Reflectance 0.05 Multispectral (Sequoia)
Green (G) Reflectance 0.05 Multispectral (Sequoia)

Near Infra-Red (NIR) Reflectance 0.05 Multispectral (Sequoia)
Red-Edge (RE) Reflectance 0.05 Multispectral (Sequoia)

Sward Height Model (SHM) 3D 0.025 RGB (Sony RX100)

2.3. Validation of UAS Sward Height

Five static LiDAR laser scans were performed using a FARO Focus 3D 120 (FARO, 250 Technology
Park Lake Mary, FL 32746, United States) to produce reference sward height data. The LiDAR scanner
uses phase-shift-based LIDAR technology to measure the XYZ locations of objects surrounding the
scanner. The FARO scanner has a maximum range of 120 m with an accuracy of 2 mm at 10 m.
The Focus 3D 120 has a 360◦ horizontal field of view and a 305◦ vertical field of view. Due to the 55◦

missing vertical field of view, a disc of 1.5 m of radius was not scanned under the scanner (the position
height of the scanner was 1.3 m). The scanner was located in the center of five subsamples of the plots.
The resolution of the scans was set to one-quarter of the full resolution. The different locations of
the scanner were recorded with an RTK GPS (±0.04 m mean XYZ accuracy). The LiDAR scans were
performed on May 7 before cows were set to graze.

The five generated point clouds were georeferenced using the FARO SCENE software
(version 6.2.4). The LASTools suite (version 171124, http://rapidlasso.com/LAStools) was used
to produce five digital surface models corresponding to a triangulation (0.01 m grid) of the highest
points. In order to remove the noise, triangulation was performed over the 95th percentile points
(Z values) within a XY grid of 0.01 m. The five DSM were subtracted to the above-referenced aerial
LiDAR DTM to produce a LiDAR sward height model (SHM) at 0.01 m spatial resolution. This last step
was performed to counter the low ground point density in the terrestrial laser scans due to occlusion
by the pasture canopy.

The five grass LiDAR-derived SHM were compared to the UAS SHM (before grazing) using a
0.5 m grid within a circular area of interest (2 m < radius < 5 m) centered on the location of the scans
(Figure 2). For every grid cell, a median value of the compared SHM was computed within a circular
buffer of 0.1 m. A linear regression model was fitted to evaluate the correspondence between the
sward height estimated with the UAS imagery and a reference SHM extracted with highly accurate
LiDAR data:

Model 1: Ref. LiDAR sward height = f (UAS sward height). (1)

http://rapidlasso.com/LAStools
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Model 1 was a linear regression model fitted between the pasture height in the study area obtained
from the LiDAR SHM and the UAS SHM (575 observations before cattle grazing). Considering the high
quality of the LiDAR 3D products, the LiDAR pasture height was considered as a reference pasture
height. The goodness of fit of Model 1 was considered as a proxy of the ability of the UAS height to
describe the pasture height in further analyses, notably to produce sward height maps before and after
grazing as well as sward height difference maps from multitemporal sward height models. A cross
validation of Model 1 was performed using the repeated k-fold approach (k = 5; repetitions = 100).
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Figure 2. Sampling scheme for the UAS sward height model (SHM) validation with the LiDAR sward
height model. The SHMs were compared within a circular area of interest (2 m < radius < 5 m),
following a 0.5 m square grid.

2.4. Modeling Biomass of Pasture with UAS Imagery

The modeling of pasture biomass (before grazing) was investigated comparatively with different
UAS products (3D and/or spectral):

Model 2: Pasture biomass = f (UAS height) (2)

Model 3: Pasture biomass = f (UAS Reflectance, UAS VI) (3)

Model 4: Pasture biomass = f (UAS height, UAS Reflectance, UAS VI). (4)

Models 2, 3 and 4 evaluated the strictly 3D, spectral, and mixed (3D + spectral) UAS biomass
modeling approaches, respectively (see Table 2 for a detailed list of variables). The UAS heights
and spectral data averaged (median) within a circle of 0.15 m radius were compared to the pasture
biomass values measured on the 0.09 m2 georeferenced spots. We checked for non-linearity between
the predictors and the field measured pasture biomass. To reduce the number of predictors in the fitted
multivariate models (Models 3 and 4), stepwise selection (both directions) was performed using the
Akaike information criterion [39] implemented in the StepAIC tool from the “MASS” R package [40].
Within the selected set of variables, only significant variables (as determined by p-value) were kept
in the final model. To determine the pasture biomass model that presented the best performance,
the relative importance of the selected variables was computed by a decomposition of the models’
explained variance into non-negative contributions, following the approach of Lindeman et al. [41].
This was implemented in the “relaimpo” package in R. For all of the UAS pasture biomass models,
cross validation using the repeated k-fold approach was performed (k = 5; repetitions = 100).
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2.5. Mapping Sward Height Differences and Biomass with UAS

As all of the UAS variables used in the model fitting process were extracted from spatial
information (raster data), a high spatial resolution map of pasture height and pasture biomass was
derived based on the previously fitted models. The multitemporal height maps were combined to
produce a high resolution map of sward height differences (height map ‘before’ MINUS height map
‘after’). As field biomass sampling only occurred ‘before grazing’, the pasture biomass map was
subsequently computed for this time window.

3. Results

3.1. Validation of UAS Sward Height

The sward height provided by UAS products agreed well (R2 = 0.62, RMSE = 0.04 m) with the
reference (LiDAR) sward height information (Figure 3). The results of the cross validation process
showed a similar performance and can be found in Appendix A.
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Figure 3. The linear regression (Model 1) between the reference sward height data (LiDAR) and UAS
sward height data had good agreement between the two methods. The dashed line represents the fitted
model and the solid line represents the 1:1 line (i.e., x = y).

Regarding our objectives, the accuracy of the sward height estimated with UAS imagery was
consequently considered to be sufficient to produce sward height maps for the study site (before and
after grazing) to derive a sward height differences map.

3.2. Modeling Biomass of Pasture with UAS Imagery

The quality of the fitted pasture biomass models (Figure 4) presented adjusted R2 values ranging
from 0.23 (Model 2) to 0.49 (Model 4) with a RMSE of ca. 0.1 kg/m2. These results also show that
the spectral information provided by the UAS imagery was meaningful, as the spectral biomass
model (Model 3) displayed better performance than the UAS sward height biomass model (Model 2).
The complementarity of spectral information and sward height information provided by UAS in the
mixed model (Model 4) was also highlighted, as Model 4 had the best performance (adj. R2 = 0.49,
R2 = 0.62). Despite the complementarity of the UAS height and the UAS spectral information, 45% of
the variance of the mixed biomass model (Model 4) is associated with the UAS height (Table 3).
The results of the cross validation (found in Appendix A) highlighted a similar performance for all of
the pasture biomass UAS models.
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3.3. Mapping Sward Height Differences and Biomass with UAS 

Figure 4. Comparison of different approaches of pasture biomass modeling with UAS. The Model 2 (I)
is a biomass model based on UAS height. Model 3 (II) and Model 4 (III) are multilinear models using
UAS spectral data (Model 3) and a combination of UAS spectral and height data (Model 4). For Model
2, the dashed lines represent the fitted models. The solid lines represent the 1:1 lines (i.e., x = y).

Table 3. Relative importance (% of R2), estimates of coefficients, and p-values of the fitted linear model
with the selected variables computed for Model 4, which combines the UAS sward height and UAS
spectral data.

Rel. Importance (%) Regression Coefficients Pr (>|t|)

UAS height (SHM) 45 1.1 0.00105 **
GRVI 27 −0.1 0.00139 **

GNDVI 17 6.5 0.01162 *
NDRE 11 0.8 0.04675 *

Intercept / −4.2 0.01725 *
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3.3. Mapping Sward Height Differences and Biomass with UAS

The maps of the UAS sward height before and after grazing (Figure 5I,II) presented interesting
spatial patterns with a clearly distinguishable area with higher values in the center of the study site in
the ‘before grazing’ height map (Figure 5I). The combination of sward height maps ‘before’ and ‘after’
grazing allowed for the computation of a sward height differences map (Figure 5III). Considering the
distribution represented in the density curve (Figure 5IV), it can be seen that most of the study site
was grazed or trampled as the peak was associated with positive values. The area with a higher sward
height valued in the ‘before’ map (Figure 5I), located in the center of the area, was more intensively
grazed or trampled.
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Figure 5. Sward height before (I) and after (II) cattle grazing, sward height differences (III)
(sward height ‘before’ minus sward height ‘after’) and associated Kernel density plot (IV). The majority
of the pixel values were associated with positive values (intakes or trampling by cattle).

Figure 6 allowed us to visualize the spatial pattern of the pasture biomass and its heterogeneity at
a very fine scale. This map was produced through the use of Model 4 applied to the associated UAS
variables (i.e., UAS sward height, GRVI, GNDVI, and NDRE). The northwestern part of the study site
presented lower biomass values. Some abnormal values were shown on the empirical cumulative
distribution function (ECDF) plot (Figure 6II) that were well above the usual averages observed for
such pastures or were even negative. Nevertheless, these values can be considered as noise when
considering that the 5th and 95th percentiles of the predicted (and mapped) pasture biomass values
were 0.04 kg/m2 and 0.36 kg/m2, respectively.
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4. Discussion

4.1. Modeling Biomass of Pasture with UAS Imagery

The performance (adj. R2 = 0.49) of the best performing UAS-based biomass model (Model 4)
was similar to the state-of-art field pasture biomass non-destructive monitoring tools for swards—turf
grasses such as the rising plate meter [42,43]. There are still very few references for the application
of UAS imagery products to pasture biomass modeling on such intensively managed pastures with
rather low pasture heights. Lee et al. [26] achieved a better model performance (R2 = 0.77) than this
study, but their work was performed on a multisite dataset in Korea, which had a higher diversity
and more contrasting biomass values. In contrast, Rowbottom [44], in a comparison between the
rising plate meter (RPM) height and UAS as monitoring tools for pasture biomass, reached a lower
modeling quality with the UAS imagery than with the RPM height. It is worth noting that this last
study only used spectral information from a consumer grade digital camera and that their results in
terms of variance explanation were similar to the ones found for the spectral biomass model in this
study (Figure 4, Model 3). Our approach, which used both sward height and spectral information,
allowed us to take advantage of a top canopy parameter (sward height) and subcanopy parameters,
reflecting the activity of the swards over most of their depths (spectral data).

4.2. Mapping Sward Height Differences and Biomass with UAS

Our approach highlights pasture biomass spatial heterogeneity, which cannot be easily captured
using classical pasture field monitoring tools for research or grazing management purposes. Capturing
this spatial heterogeneity is essential as it plays a crucial role in animal grazing behavior and the
selection of feeding stations across a given area.

The mapping of sward height and sward height differences at such a fine spatial resolution scale
are essential to accommodate the full potential of virtual fencing, and they could give new perspectives
to more traditional grazing management, such as the quick response to the adaptation of grazing
schedules, provided that adequate automated data acquisition and treatment applications and decision
support tools are developed for farmers.
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4.3. Operational Recommendation

Considering the targeted spatial resolution of the UAS products and the scale of the study site
(2 × 2000 m2 plots), the choice of an octocopter seemed to be appropriate and is recommended for
potential users of the developed approach. The use of fixed-wing UAS would induce higher and
faster flights, with a negative impact on the spatial resolution of the UAS imagery and the quality of
the 3D reconstruction. Moreover, the relatively low shutter speed of multispectral sensors (1/500 for
the multispectral sensors of the Parrot Sequoia) can induce blurry images if acquired at higher flight
speeds (>12 m.s−1 at 50 m above ground level for the Parrot Sequoia).

Our study leveraged the height information provided by the combination of photogrammetric
DSM and a LiDAR digital terrain model acquired on a regional scale by public administration.
The availability of aerial LiDAR for an entire region/country is becoming quite common in Western
Europe, but is still rare in other parts of the world. As an alternative, a UAS flight survey after an
early mowing of studied pastures before growing could produce a reference initial digital surface
model, which could then be used to normalize the DSM acquired later. Moreover, the computation
of a high resolution photogrammetric DSM requires a long computational time and more specific
photogrammetric expertise. Although these elements could reduce the replication of our approach
in diverse contexts, they can be circumvented by the use of UAS LiDAR. Bringing a LiDAR sensor
onboard would allow the direct production of a height model while decreasing the computing time
and error in terms of sward height estimation. The cost of such an UAS LiDAR approach is still
prohibitive for many, but one can assume that prices will drop in the near future.

The regression models proposed in our study must be calibrated if used in different contexts
(species, season, stocking rates, etc.). Nonetheless, they still represent a valuable improvement
compared to the use of state-of-art field approaches regarding model performance and the production
of high resolution maps.

5. Conclusions

Our results demonstrate the potential of UAS imagery to be used as a tool for precision grazing
study applications. The best performing pasture biomass model combined UAS sward height
information with UAS vegetation indices. The quality of the fitted models (sward height or biomass)
using UAS imagery opens up a new area of research in precision grazing. The UAS approach of
height and biomass monitoring was revealed to be a potential alternative to more conventional
time-consuming field methods. In addition, the quality of the models based on UAS imagery,
UAS spectral information, and 3D imagery can be used to derive sward height differences and
biomass maps at a very fine spatial scale. Considering the versatility of the UAS, future research
should integrate pasture monitoring at a very fine spatial scale using denser time series at a sub-daily
(even hourly) scale. As the products of UAS imagery are georeferenced precisely, they can be compared
with other types of spatial information to monitor the grazing of single individuals. This study also
demonstrated that 3D information (sward height) derived from the UASs could be useful for pasture
biomass modeling. Even if it requires additional photogrammetric skills, UAS 3D information is a
direct product of the photogrammetric process used to obtain the spectral orthoimages. The use of
UAS 3D data should be promoted in further studies, as this information has been used relatively less
often in agricultural studies, while other research fields, such as forestry, have been evaluating its use
quite extensively. The use of other modeling approaches, such as mechanist models, could further
improve the reliability of predicted and mapped pasture biomass results.

In terms of grazing behavior research, our approach could be combined with information provided
by motion capture collars, such as those described by Andriamandroso et al. [45]. Regarding the
very fine spatial scale of the UAS products, attention must be paid to the quality of the positioning
associated with the information to which it is compared. The recent arrival on the market of low-cost
centimetric precision GPS and inertial measurement units will soon allow for the development of new
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motion capture systems, which combined with UAS imagery, will provide new research opportunities
in terms of precision grazing and the characterization of grazing animal behavior.
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Appendix A

Table A1. Repeated k-fold cross validation of the models (k = 5; repetitions = 100) mean performance
metrics for the different UAS models. R-squared: coefficient of determination; RMSE: Root Mean
Squared Error; MAE: Mean Absolute Error.

Reference R Squared RMSE MAE

Model 1 0.62 0.04 0.03
Model 2 0.33 0.11 0.09
Model 3 0.40 0.10 0.08
Model 4 0.52 0.09 0.08
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