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Abstract: Building extraction plays a significant role in many high-resolution remote sensing image
applications. Many current building extraction methods need training samples while it is common
knowledge that different samples often lead to different generalization ability. Morphological building
index (MBI), representing morphological features of building regions in an index form, can effectively
extract building regions especially in Chinese urban regions without any training samples and has
drawn much attention. However, some problems like the heavy computation cost of multi-scale and
multi-direction morphological operations still exist. In this paper, a multi-scale filtering building
index (MFBI) is proposed in the hope of overcoming these drawbacks and dealing with the increasing
noise in very high-resolution remote sensing image. The profile of multi-scale average filtering is
averaged and normalized to generate this index. Moreover, to fully utilize the relatively little spectral
information in very high-resolution remote sensing image, two scenarios to generate the multi-channel
multi-scale filtering index (MMFBI) are proposed. While no high-resolution remote sensing image
building extraction dataset is open to the public now and the current very high-resolution remote
sensing image building extraction datasets usually contain samples from the Northern American or
European regions, we offer a very high-resolution remote sensing image building extraction datasets
in which the samples contain multiple building styles from multiple Chinese regions. The proposed
MFBI and MMFBI outperform MBI and the currently used object based segmentation method on
the dataset, with a high recall and F-score. Meanwhile, the computation time of MFBI and MBI
is compared on three large-scale very high-resolution satellite image and the sensitivity analysis
demonstrates the robustness of the proposed method.

Keywords: building extraction; multi-scale filtering index; remote sensing dataset; very
high-resolution remote sensing image

1. Introduction

Building extraction plays a significant role in a series of high-resolution remote sensing
applications (e.g., urban extension monitoring, urban mapping and planning, spatial analysis) [1–4].
Especially in China, for the last thirty to forty years, rapid urbanization has been witnessed, resulting
in the eager need of these remote sensing applications [5–8].

In the 20th century, with only middle and coarse spatial resolution remotely sensed imagery,
built-up area extraction is usually a secondary product of land use and land cover classification [9–11].
Subject to the spatial resolution at that time, some applications mentioned above like illegal building
detection and geo-database updating were unable to implement. It has been reported that only
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with a spatial resolution of less than five meters, can the single building be clearly represented in
imagery [12,13].

For the last twenty to thirty years, the spatial resolution has been improved significantly.
For example, the well-known Quick Bird image has a spatial resolution of 0.6 m, and the newly
launched WorldView-3 image has a spatial resolution of 0.3 m. The largely increased spatial resolution
makes some applications like object detection, geo-database updating and illegal building detection
become possible [14–21]. Usually, remotely sensed imagery with a spatial resolution of about 4 to
1 m is called high-resolution remotely sensed imagery (HRRSI) and remotely sensed imagery with
a spatial resolution of less than 1 meter is called very high-resolution remotely sensed imagery
(VHRRSI) [22–25].

At the beginning of the 21st century, many studies focused on building extraction with HRRSI.
Mathematical morphology, a theory that has been widely used in remote sensing image processing,
provides a theoretical fundament for many methods like morphological profiles (MP) [26], differential
morphological profiles (DMP) [27], extended morphological profiles (EMP) [28] and attribute profiles
(AP) [29]. The basic idea of these methods is to extract features via morphological operations and
then feed these features into a classifier like SVM to extract building regions or realize land cover
classification. Object-based methods tend to segment an image using spectral, texture and contextual
information, and then use rule sets to extract building regions directly or implement supervised
classification with the features from segmented objects [30,31]. A series of built-up area indexes such as
texture-derived built-up presence index (PanTex) [32], multi-scale urban complexity index (MUCI) [33]
and morphological building index (MBI) [34], have been reported to achieve good performance on
building extraction tasks in HRRSI. The basic idea of these methods is to present features which can
discriminate building from other objects in an index form and then extract building regions with a
threshold segmentation rather than supervised classification. Meanwhile, some building extraction
methods based on active contour [35,36] and graph cut [37,38] have also been reported. In short,
many of these aforementioned building extraction methods belong to supervised learning thus need
training samples. The number of training samples, the time cost and the generalization performance
are all critical factors for the performance of these methods when being put into applications. Since
2012, deep learning has outperformed almost all traditional methods in many visual tasks. In the
field of building extraction, deep learning based methods usually need a dataset to train the model
first and then predict labels on each image pixel. But the question mainly lies in the lack of training
samples for HRRSI or VHRRSI and the generalization ability for a given method [39]. As it will be
discussed in Section 2, currently available building extraction datasets for VHRRSI and HRRSI have
some limitations and might be inappropriate for the building extraction tasks in Chinese regions due
to the different building styles between China and Western countries.

It should be noted that in spite of the fact that some other sensor data like LiDAR can also perform
well on building extraction [40,41], their applications are still subject to the access to these data. Since
this paper pays more attention to optical imagery and the convenience of a method for building
extraction, methods for building extraction with these sensors are beyond the scope of this paper.

When the spatial resolution reaches less than 1 m, several challenges make the built-up area
extraction task more difficult (demonstrated in Figure 1). The first is that in VHRRSI, building roofs
can be represented in detail while variant spectral values from the same roof make it difficult to
label all these building pixels as building area. The second is that road areas, once difficult to be
distinguished from building areas in HRRSI, are much wider in VHRRSI and are unable to be regarded
as line structures anymore, leading to the increasing difficulty to distinguish them from building
areas. The third is that the influence of noise from the sensors in VHRRSI is more apparent than that
in HRRSI. Hence, nowadays, many building extraction tasks are implemented via object-oriented
methods and deep learning based methods [42–44]. However, as is mentioned above, deep learning
based methods need a large number of training samples and the generalization ability of the trained
model might be poor in many cases. Meanwhile, the performance of object-oriented methods depends
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largely on the results of segmentation, which also challenge its reliability and generalization ability.
Meanwhile, automatic building extraction methods have also got much attention for its avoidance of
supervised learning and the possibility to bypass such problems mentioned above. For example, graph
theories [45,46], fully connected conditional random field [47] and multi-scale texture features [48]
have been used for building extraction in VHRRSI.

Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 25 

 

and the possibility to bypass such problems mentioned above. For example, graph theories [45,46], 
fully connected conditional random field [47] and multi-scale texture features [48] have been used 
for building extraction in VHRRSI. 

Morphological building index (MBI) [33,34,49,50], outperforming some of state-of-the-art 
building extraction methods such as DMP [26], EMP [28] and PanTex [32], is a novel building 
extraction method in HRRSI (with a spatial resolution of 2 to 4 m in reported experiments). The basic 
idea of MBI is to first extract the spectral information of building areas with each pixel’s maximal 
gray value among all spectral bands and then extract the spatial information via the differential 
profiles of multi-scale and multi-direction linear morphological operations. The success of MBI lies 
in the automatic building extraction without supervised learning and the avoidance of high 
dimension features. However, some drawbacks still remain. Firstly, multi-scale and multi-direction 
morphological operations cause heavy computation cost especially in VHRRSI and might perform 
worse due to the three challenges mentioned above. Secondly, the strategy of selecting a maximal 
gray value from every spectral band ignores some spectral information that also contributes to 
building regions, while it is widely acknowledged that the performance of HRRSI interpretation tasks 
depends largely on the joint use of spatial and spectral information [51]. 

  

(a) (b) 

  

(c) (d) 

Figure 1. Examples of more noise and wider road in very high resolution remote sensing image 
(VHRRSI) than in high resolution remote sensing imagery (HRRSI). (a) and (c): The same region in 
VHRRSI and HRRSI respectively. Some salient noise is marked by yellow bounding boxes; (b) and 
(d): The same region in VHRRSI and HRRSI respectively. Some Road is marked by red bounding 
boxes. 

Inspired by MBI and the fact that basic filters can suppress noise, in Reference [Error! Reference 
source not found.52], we find that multi-scale filters can extract building features in VHRRSI. In this 

Figure 1. Examples of more noise and wider road in very high resolution remote sensing image
(VHRRSI) than in high resolution remote sensing imagery (HRRSI). (a,c): The same region in VHRRSI
and HRRSI respectively. Some salient noise is marked by yellow bounding boxes; (b,d): The same
region in VHRRSI and HRRSI respectively. Some Road is marked by red bounding boxes.

Morphological building index (MBI) [33,34,49,50], outperforming some of state-of-the-art building
extraction methods such as DMP [26], EMP [28] and PanTex [32], is a novel building extraction method
in HRRSI (with a spatial resolution of 2 to 4 m in reported experiments). The basic idea of MBI is to
first extract the spectral information of building areas with each pixel’s maximal gray value among all
spectral bands and then extract the spatial information via the differential profiles of multi-scale and
multi-direction linear morphological operations. The success of MBI lies in the automatic building
extraction without supervised learning and the avoidance of high dimension features. However,
some drawbacks still remain. Firstly, multi-scale and multi-direction morphological operations cause
heavy computation cost especially in VHRRSI and might perform worse due to the three challenges
mentioned above. Secondly, the strategy of selecting a maximal gray value from every spectral
band ignores some spectral information that also contributes to building regions, while it is widely
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acknowledged that the performance of HRRSI interpretation tasks depends largely on the joint use of
spatial and spectral information [51].

Inspired by MBI and the fact that basic filters can suppress noise, in Reference [52], we find that
multi-scale filters can extract building features in VHRRSI. In this paper, a novel multi-scale building
index (MFBI) is studied to automatically extract the feature map of building areas in VHRRSI. To fully
utilize the spectral information, two scenarios to extend MFBI to multiple channels (multi-channel
MFBI, MMFBI) are proposed. Exhaustive experiments on our newly published satellite image dataset
for building extraction have demonstrated the effectiveness of MFBI and MMFBI.

The main contribution of this paper is summarized as follows

1. A multi-scale filtering building index (MFBI) for building extraction in VHRRSI is presented.
It overcomes some drawbacks of MBI like the heavy computation cost, with better accuracy and
a much faster computational speed than MBI.

2. Two scenarios to generate multiple channel MFBI (MMFBI) are presented, in the hope of utilizing
more spectral information that contributes to urban regions in optical VHRRSI. These two
scenarios can reduce false alarms in MFBI and achieve better performance.

3. A new building extraction dataset for VHRRSI is introduced in this paper. It is especially
appropriate for building extraction task in Chinese region. It can serve as a benchmark for current
model-driven methods and a complementary of several available data-driven VHRRSI building
extraction datasets.

The remainder of this paper is organized as follows. In Section 2, we briefly summarize some
related work such as MP, MBI and the current building extraction datasets. In Section 3, we introduce
the proposed MFBI and Multi-channel MFBI (MMFBI). In Section 4, we first introduce our dataset for
building extraction in VHRRSI and present detail information of our experiments. Finally, in Section 5,
a brief conclusion is drawn.

2. Related Work

2.1. Morphological Profile

Morphological profile (MP) was first transferred into high spectral and high-resolution remotely
sensed imagery in References [26–29]. The basic idea of the morphological profile is to extract a series of
feature images by using a certain shape morphological operator (e.g., rectangular, circular) of different
structural element sizes. The series of difference images from any two images next to each other in
MP is called differential morphological profile (DMP). It has been acknowledged that DMP can utilize
more spatial information in HRRSI than MP. Later, by utilizing features from the difference of one
image to all other images in the profile, generalized differential morphological profile (GDMP) [53]
is studied and a better classification performance has been reported on several standard datasets
compared with DMP. The relationship of MP, DMP and GDMP is demonstrated in Figure 2. Some
other improvement on MP and DMP such as AP, MPs are also reported. These morphological features
are usually fed into a classifier like SVM to implement land use classification or extract built-up areas.
However, the generalization ability and the possible applications of all these methods are still limited
by the chosen training samples.
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2.2. Morphological Building Index

Morphological building index is calculated in the following steps [34].
Step 1. Brightness image is generated from each pixel’s maximal gray value among all spectral

bands. This is because that the maximums of multispectral bands correspond to high reflectance, while
in an aerial image such reflectance usually indicates candidate buildings [34,50].

Step 2. Opening by reconstruction operation is implemented on the brightness image to further
enhance the signal of building areas. Note that here the assumption is that the built-up area tends to
be brighter in imagery.

Step 3. A linear (line-shaped) morphological operator with a certain size is served as a structural
element and is operated on the aforementioned reconstructed imagery in multiple directions to
generate the feature image. It has been reported that four directions (i.e., 0◦, 45◦, 90◦ and 135◦) are
enough to extract building features [34,50].

Step 4. Given different structural element sizes (with the parameter setting of step size, minimal
window size and maximum window size) for the operator in step 3, a series of feature images can be
generated. Then, the differential profile of these feature images is obtained.

Step 5. All difference images in the differential profile are averaged and normalized to (0, 1) to
generate the morphological building index.

Step 6. Post-processing framework. After these five steps, a threshold is set to segment building
areas and a series of post-processing operations such as the removal of elongated areas and the removal
of false alarms caused by vegetation and water.

However, drawbacks like heavy computation cost caused by a series of morphological operations
still remain.

2.3. Building Extraction Datasets

For the last ten years, some datasets have been served as benchmark for the task of built-up area
extraction in HRRSI. Several typical datasets among them are summarized in Table 1. These datasets
are designed for the experiment of model-driven methods. Each of these datasets is usually an image
of small size and is not available to the public.
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Table 1. Four HRRSI datasets for model-driven building extraction methods [34,50,54,55].

Name Spatial Resolution Sources Sizes Region Channels

Hangzhou 2.0 m WorldView2 unknown China 5 *
Wuhan 2.0 m GeoEye1 645 × 564 China 4
Tehran 2.0 m GeoEye1 750 × 750 Iran 4

Shanghai 2.0 m WorldView2 645 × 564 China 4

* Three other bands in WorldView2 imagery are abandoned.

Until now, two well-known datasets have been published for the task of building extraction in
VHRRSI, that is, the Massachusetts dataset and the Inria dataset [56,57]. These two datasets were
firstly for the validation and comparison of data-driven methods. The first and the second row in
Table 2 summarizes the basic information of these two datasets.

Table 2. Two available data-driven building extraction datasets for VHRRSI.

Spatial
Resolution

Sources Sizes Tiles Region Channels

Massachusetts 1.0 m Aerial 1500 × 1500 151 America 3 RGB
Inria 0.3 m Aerial 5000 × 5000 180 America,

Europe
3 RGB

However, the current datasets in HRRSI and VHRRSI still have some gap to satisfy building
extraction tasks, mainly because of the following reasons:

No dataset for HRRSI is open to the public till now. This situation makes it hard to validate and
compare traditional model-driven methods.

1. Every dataset for HRRSI usually consists of a few small-size pieces of images and is often
incapable to represent the performance of a proposed method in different situations.

2. Till now almost all datasets for VHRRSI are from aerial imagery which covers some regions in
the US or Europe, with a good imaging condition. No VHRRSI dataset designed for Chinese
region is available now, while urban and suburban landscapes in China and Western countries
are quite different (examples are demonstrated in Figure 3). Note that it is acknowledged that
different training samples usually lead to quite different performance for data-driven methods
and that in many cases the imaging condition of satellite image is different from aerial images.

3. No open VHRRSI building extraction dataset from satellite imagery is available now, let alone
the requirement to fit into both model-driven and data-driven methods since for model-driven
methods, the near infrared channel is quite important for their implementation and performance.
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3. Methodology

3.1. Multi-Scale Building Index

Image filtering was first studied to remove noise and was then widely used to extract features
in a series of visual tasks. Filtering can be divided into two categories, that is, linear filtering and
nonlinear filtering. Average filtering is typical linear filtering while morphological operations belong
to nonlinear filtering.

Inspired by the fact that average filtering is effective to remove noise and is of less computation
cost, in this work, average filters are tested to generate Multi-scale building index (MFBI) for the
extraction of building areas. Compared with MBI, multi-scale and multi-direction linear morphological
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filtering is replaced by multi-scale filtering, and the top-hat transformation in MBI is abandoned.
In other words, with similar parameter settings of window size, all morphological operations are
abandoned to alleviate computation cost. Instead, the average filter is implemented and it can
overcome noise in VHRRSI.

As Figure 4 has demonstrated, the proposed MFBI has the following steps.
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Step 1. The generation of brightness image I(x). In MFBI, the brightness image is generated from
each pixel’s maximal spectral value among three optical bands, as (1) expresses. Here, red, green and
blue denote the red, green and blue band of an image respectively. The reason why we choose only
optical bands is that recently it is reported that visual bands contribute significantly to the spectral
property of building areas [55].

I(x) = Max{Red(x), Green(x), Blue(x)}. (1)

Step 2. The generation of filtering profiles. A series of filters with window sizes of an equal
difference (parameters include initial window size Smin, final window size Smax and step size ∆s) on
brightness image is applied. It should be noted that these parameter settings are similar to MBI in
VHRRSI [50]. Here, FPavr and s denote filtering profiles of average filters and window size respectively.
Let (x, y) be a pixel of brightness image I, and i, j belong to an integer, we have:

FPavr(s) =
1

s× s ∑
− s−1

2 ≤i≤ s−1
2

− s−1
2 ≤j≤ s−1

2

I(x + i, y + j) (2)

FPavr = {FPavr(s), s ∈ {Smin, Smin + ∆s, · · · , Smax − ∆s, Smax}}. (3)
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Step 3. The generation of differential filtering profiles. After step 2, we can get k− 1 corresponding
differential images. Here, k is calculated via k = (Smax − Smin)/∆s + 1. Let DFPavr denote the
differential filtering profile of average filters, and it can be expressed in Formula (4).

DFPavr(s) = |FPavr(s + ∆s)− FPavr(s)| (4)

Step 4. The generation of MFBI. k − 1 corresponding differential images in step 3 are averaged
and normalized into [0, 1] to generate MFBI.

MFBI =
Smax

∑
s=Smin

DFPavr(s)/k (5)

Step 5. Extraction of building areas. Similar to the extraction framework of MBI, after the
generation of MFBI, the extraction of building areas are implemented according to a series of rule sets.
Since the size of the original image and MFBI feature image is the same, let (x, y) denote a pixel of the
MFBI feature image. Then, it is segmented by the rule set defined in (6). Here, T denotes threshold
value for MFBI.

MFBI(x, y) > T (6)

Step 6. Post processing framework. The image is composed of a series of segmented regions that
could belong to building regions. Let NDVI, and TNDVI denotes threshold value for NDVI of an image,
and the NDVI segmentation value respectively. Meanwhile, Let l, Ratio, R1, Area and A1 denote such a
region, the length-width ratio of such a region, the corresponding threshold of length-width ratio, the
area and the corresponding threshold value of the area, the post-processing framework is composed
of a series of operations denoted in the rule set (7). Note that the length-width ratio of each object
is calculated via oriented bounding boxes so that objects at different orientations can be described
more accurately. 

NDVI(x, y) < TNDVI
Ratio(l) < R1

Area(l) > A1

. (7)

A threshold value T is set to segment pixels that possibly belong to building areas. Due to the fact
that the framework and operations of MFBI are similar to that of MBI, the threshold value of MFBI is
similar to the threshold value of MBI, which has been carefully studied in References [34,51]. Pixels
belonging to building areas usually have an MFBI between 0.4 and 0.6. The three operations in rule
set (7) are strategies to remove the false alarms (e.g., removal of vegetation, elimination of elongated
roads), similar to the implementation in References [34,51,58]. It should be noted that after the NDVI
threshold, we first fill holes in the binary image and then we implement the second and the third
operation in (7). Compared with the former works [34,50], filling holes before region selection can
alleviate the problem that some parts of a building roof are excluded by calculating NDVI when these
parts of a roof are covered by vegetation.

3.2. Joint Use of MFBI and Spectral Information

To fully and jointly utilize spectral and spatial information, two scenarios to extend MFBI to
multiple channels (Multi-channel MFBI, MMFBI) are proposed in this paper, as is demonstrated in
Figure 5. As is pointed in Section 3.1, related work has pointed out that visual bands contribute
significantly to the spectral property of building areas [55].
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To further discriminate the spectral information of building areas from others, principal
component analysis (PCA) [59,60], one of the most commonly used methods to improve the feature
separability, is implemented in these two scenarios.

Let z and x denote a lower dimension and higher dimension matrix respectively, PCA tends to
find a mapping w which can present the relation between z and x.

z = wTx. (8)

The most paramount component w1 satisfies the condition that after projected to w1, samples
become the most distinctive. Hence, we have:

Var(z1) = E
[(

wTx− wTµ
)2
]
= w1

T∑ w1. (9)

The objective is to find and maximize w1. It can be regarded as a Langulan problem, in the below
form as the formula (9) is expressed:

max
w1

w1
T∑ w1 − α

(
w1

Tw1 − 1
)

. (10)

With the utilization of PCA, two scenarios are described in detail as follows.
Scenario 1. Principal component analysis (PCA) is implemented on three visual bands (Red,

Green and Blue) of VHRRSI. Then, information of the first component PC1(x) is regarded as the
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brightness image to generate MFBI feature image, since much information of the building areas has
been transformed into PC1(x) after PCA.

Scenario 2. For each channel in the three channel RGB image, MFBI feature image is generated and
a three channel MFBI image is obtained. Then, a principal component analysis is implemented on this
three-channel MFBI feature image. We continue to step 3 and 4 on the first component PC1(x) of this
feature image. Similarly, it is reported in Reference [48] that after texture-derived feature extraction,
the first component is selected since it contains much signal of building regions. In our experiments,
the first component also contains much signal from building areas.

4. Experiments and Analysis

4.1. Dataset

MBI was proposed to extract single building in imagery in HRRSI, especially effective in Chinese
urban regions. As an improvement of MBI, MFBI is also capable of building extraction.

However, as is mentioned in Section 2.3, no open dataset for building extraction task in HRRSI is
available now to compare these model-driven methods, while the aforementioned VHRRSI datasets
sampled from Western countries are more appropriate for data-driven methods since they do not
contain the near infrared channel which is of importance for many model-driven methods.

Hence, to fairly compare these model-driven methods like MBI and MFBI on VHRRSI, and to
offer a benchmark for these algorithms’ performance on Chinese regions, an open dataset named
Wuhan University Building Extraction Dataset (WHUDBE) is introduced in this paper (download link:
https://drive.google.com/open?id=1TfyNPSRSs8jMtbeSiP90SbGLW7fhjj6z).

The consideration of selecting samples for the dataset mainly include the following aspects:

1. The inter-class similarity and intra-class dissimilarity in VHRRSI. It is widely acknowledged that
with the increase of spatial resolution, both the similarity between different types of land cover
and the dissimilarity of the same type of land cover have largely increased, resulting in a series of
problems for the automatic interpretation of VHRRSI. Hence, to test the performance of a specific
algorithm, the variety of building shapes, building sizes and building roofs must be considered
when selecting samples for our datasets.

2. Land covers hard to be distinguished in the building extraction task. In Reference [61], Mohsen
concludes that one of the major challenges in building extraction tasks in VHRRSI is the existence
of shadow, vegetation, water regions, and man-made non-building features. These types of land
cover should also appear in the samples of our datasets to test the performance of an algorithm.

3. The covering of typical Chinese landscape in different regions as many as possible. It is known
that different regions in China usually have different building structures due to a series of factors
such as the influence of economy, climate, population and so on. Meanwhile, the urban, suburban
and rural areas should also be covered.

31 pan-sharpened VHRRSI from 7 provinces in China are the data source of our dataset. These
seven provinces come from the Eastern, North-western, Southern, and the middle Chinese regions
respectively. Sensors include Quick Bird, Gaofen-2, WorldView2, with a spatial resolution of 0.6,
0.8 and 0.5 m respectively. Based on the principles mentioned above, we carefully choose 57 pieces
of image patches with a row and column of 512 pixels and 512 pixels respectively to validate the
performance of the proposed method. Figure 6 illustrates all the samples from our dataset. When
choosing samples, effort has been made to present the complexity of building area landscape and to
include those challenge elements mentioned in Reference [61] as much as possible. After that, ground
truth is labeled by two experts who are not involved in our study.

https://drive.google.com/open?id=1TfyNPSRSs8jMtbeSiP90SbGLW7fhjj6z
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When compared with the other two aforementioned VHRRSI building extraction datasets with our
newly published dataset, several aspects are listed as follows. In terms of the data source, our dataset,
all from VHRRS satellite imagery, serves as a good complementary of the other two aerial image
datasets. In terms of the study region, our dataset can well represent the reality and complexity of
the building areas among China, and can also be regarded as a good complementary for these two
datasets covering America and Europe. More importantly, our dataset offers the near infrared band
from the satellite sensors and thus can be utilized to validate both the model-driven and data-driven
building extraction algorithms. Note that in Section 2.3, we have mentioned that the near infrared
information is important for many model-driven building extraction methods.

4.2. Parameter Settings

In all experiments mentioned below, parameter settings for MBI and MFBI are listed in Table 3.
The most significant parameter for both MBI and MFBI is the segmentation threshold, which will
be discussed later. The window size of profiles also has a strong influence on the effectiveness
of extracted feature maps. For MBI, these window sizes are all set the same as Reference [50],
while for MFBI a smaller maximum window size and a larger threshold value is needed. For the
object-oriented-based method, we use eCognition to extract building regions. Allowing for the
multiple scales of building areas, a 2-scale segmentation stratagem, with the scale parameters of
120 and 60 respectively, is implemented to segment image and the rule sets are the same as Huang did
in Reference [34].

Table 3. Parameter settings of MBI and MFBI.

Smin Step Size Smax Threshold

MBI 2 5 42 0.45
MFBI 3 6 33 0.45

For the framework of post-processing, since this paper mainly pays attention to the development
of MFBI and MMFBI, we do not fine-tune those parameters on our datasets. Instead, in all test images,
NDVI to remove false alarms caused by vegetation, area threshold to remove small objects, and
length-width ratio threshold to remove elongated roads, are set to be 0.1, 30, and 5.6, respectively,
the same as Huang did in Reference [50]. It should be noted that since we do not fine-tune these
parameters on our own dataset, there is much possibility that after the fine-tuning of parameters in the
post-processing framework, MFBI could achieve a better accuracy on our dataset.

All of our experiments are implemented on a personal computer with CPU i5-7500 and RAM 8GB.
All codes are programmed in Visual Studio 2015, with API from OpenCV3.0.

4.3. Experiments on Basic MFBIs

4.3.1. Experiment on Computation Time

Three large-scale VHRRSIs are chosen to test the computation time of MBI and MFBI. The basic
information of these images (i.e., image size, sensor type, spatial resolution) and computation time are
listed in Table 4. In Figure 7, these three images, the corresponding MBI and MFBI feature map are
demonstrated. Note that some false alarms caused by vegetation have been removed via calculating
NDVI in these feature maps.
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Table 4. Computation time of MBI and MFBI on three large-scale images.

Image Size
(in Pixel)

Spatial
Resolution
(in Meters)

Sensors Computation
Time of MBI
(in Seconds)

Computation
Time of MFBI
(in Seconds)

Image1 15392 × 16384 0.6 Quick Bird 2177.76 26.91
Image2 16384 × 16384 0.5 World View 2 1565.07 29.03
Image3 19464 × 18573 0.8 Gaofen 2 2191.13 38.49
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Image Size 
(in pixel) 

Spatial 
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Sensors Computation time 
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Computation time of 
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Image1 15392×16384 0.6 Quick Bird 2177.76 26.91 
Image2 16384×16384 0.5 World View 2 1565.07 29.03 
Image3 19464×18573 0.8 Gaofen 2 2191.13 38.49 

Figure 7. (a–c), the original image of Image 1, Image 2, and Image 3, respectively; (d–f), the MBI feature
map of Image 1, Image 2, and Image 3, respectively; (g–i), the MFBI feature map of Image 1, Image
2, and Image 3, respectively; (j–l), examples of the extracted building feature shape of MBI (left) and
MFBI (right) in Image 1, Image 2 and Image 3, respectively.
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From Table 4, we can observe that the proposed MFBI outperforms MBI with much less
computation time on large scale satellite images. From Figure 7, in terms of visual effect, in many
regions of these feature maps, MFBI are more capable of preserving features of building areas than
MBI with less noise, while MBI could cause cracks on building roofs. It can be explained by the fact
that average filtering is more capable of generating homogeneous regions with similar gray values
while multi-scale and multi-direction morphological operations could lead to the exclusion of a few
pixels in the building roof due to their different gray value.

4.3.2. Experiments on WHUBED

The developed MFBI are compared with MBI and the widely used object-oriented segmentation
method on our newly published WHUBED. In this section, we will compare them from both the visual
effect and quantitative analysis.

In Figure 8, the extraction results and the corresponding ground truth maps of four samples from
different landscapes are demonstrated for the comparison of visual effect. The first row is the original
images, the second row is the corresponding ground truth maps, and from the third to the seventh row,
the extraction results of the object based segmentation method, MBI, MFBI, the first scenario of MMFBI
and the second scenario of MMFBI are listed respectively. Although these four samples look simple at
a first glance, they are challenging if a relatively high accuracy can be obtained mainly because of the
following characteristics.

Sample 1: On the upper area, several informal settlements are located and on the right of the
lower area, several buildings with a dark roof are located. Note that for MBI, two weaknesses lie in the
incapable of extracting informal settlements and the dark built-up regions [34]. Meanwhile, on the left
of the lower region, the wide road and the boat on the river is also easy to introduce false alarms.

Sample 2: The difficulty lies in the imaging condition and the land covers on the river bank. Under
this unsatisfactory imaging condition, ground objects on the image are a little bit obscure. The bright
and wide roads and other man-made objects are easy to cause false alarms.

Sample 3: The difficulty lies in the low intensity of the image and the dark building roofs of
the informal settlements. As is mentioned in Sample 1, these two problems are challenging for MBI.
Since the elongated road can be easily eliminated by the morphological operations, it should not be
considered as difficult as some former researchers do.

Sample 4: Building areas are relatively small in size and are irregular in geometry, tending to
cause omission errors. Meanwhile, the texture from the farmland and the road makes it easier to
introduce false alarms.

In terms of the visual effect, those informal settlements and building in small sizes are more
effectively extracted in these samples with our proposed MFBI and the false alarms introduced by
road or other small man-made objects are relatively less, when compared to other methods. These
better-performed regions are marked by red bounding boxes in Figure 8.

For accuracy assessment, we choose the commonly used recall, precision and F1-score for the
assessment of building extraction tasks as our measurement to evaluate the performance of building
extraction results [45,62]. Usually, recall reflects an algorithm’s ability to find true positives, while
precision reflects an algorithm’s cost to find true positives. In addition, F1-score measures the ability of
both precision and recall.

precision =
tp

tp + f p
(11)

recall =
tp

tp + f n
(12)

F1 = 2× precision× recall
precision + recall

(13)

where tp, fp, tn, and fn denote true positive, false positive, true negative and false negative, respectively.
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Figure 8. Performance on four samples in WHUBED. The first row and the second row are original
images and the corresponding ground truth maps. The third, the fourth, the fifth, the sixth and the
seventh row are the extraction results of objected based segmentation method, MBI, MFBI, the first
scenario of MMFBI and the second scenario of MMFBI.
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The accuracy of three building extraction methods on every sample in our dataset is listed in
Table 5. In addition, the mean and standard deviation of these three indices of all 57 samples in
WHUBED is listed in Table 6. From these results, some important observation can be found:

1. For most of the samples in our dataset, the proposed MFBI achieves the highest F1-score and
recall, while MBI tends to have higher precision (see Table 5). From Table 6, both MBI and the
proposed MFBI can outperform the widely used object-oriented method.

2. From the perspective of performance on different types of samples, all of the three methods,
namely, objected based segmentation, MBI and MFBI, tend to perform better on urban or suburban
areas. It can be explained that in these regions, many buildings are in regular shape while roads,
one of the main false alarms, can be easily removed by post-processing when calculating shape
index and length-width ratio. However, although MFBI performs better than the other two
methods on rural areas, neither of these three methods are robust enough on rural areas, where
the farmland with a regular geometric shape and too much bright bare soil can cause severe
false alarms.

3. The proposed MFBI tends to have relatively high recall and the precision value is lower than the
recall value. The high recall and relatively high false alarm of MFBI might be explained by the
utilization of rectangular filtering windows. Rectangular filters tend to stress the influence of
bright pixels belonging to building areas but pixels around the building areas could also have a
high gray value after calculating MFBI. In other words, the rectangular filtering window might
not fully utilize the abundant spatial information of building areas in VHRRSI.

Table 5. Accuracy of the proposed MFBI and two scenarios of Multi-channel MFBI (MMFBI) compared
with MBI and eCognition on WHUBED (in percentage). Note that: R, P and F denote recall, precision
and F1-score respectively. eC, S1 and S2 denote the multi-scale segmentation based method operated
on eCognition, Scenario 1 and Scenario 2 of MMFBI respectively. The best performance of the recall,
precision and F1-score on each sample is marked bold.

R P F R P F R P F

Sample1

eC 58.04 61.53 61.53

Sample2

eC 60.74 66.74 63.60

Sample3

eC 50.25 80.72 61.94

MBI 65.79 73.81 69.57 MBI 80.41 63.60 71.02 MBI 61.03 76.55 67.92

MFBI 94.87 68.58 79.61 MFBI 96.99 60.56 74.56 MFBI 90.93 68.17 77.92

S1 92.82 70.57 80.18 S1 92.92 67.02 77.87 S1 84.24 75.61 79.69

S2 93.56 70.91 80.68 S2 91.29 64.26 75.42 S2 88.06 72.02 79.23

Sample4

eC 58.08 79.08 66.97

Sample5

eC 57.23 62.27 59.64

Sample6

eC 67.95 38.70 49.32

MBI 83.22 74.21 78.46 MBI 69.13 78.72 73.61 MBI 88.85 70.85 78.84

MFBI 95.86 71.99 82.23 MFBI 82.49 72.10 76.95 MFBI 98.57 67.62 80.21

S1 95.69 73.91 83.40 S1 95.52 74.82 83.91 S1 95.29 71.51 81.70

S2 94.28 68.29 79.21 S2 96.21 73.66 83.41 S2 96.17 69.58 80.74

Sample7

eC 62.29 74.12 67.69

Sample8

eC 64.04 38.74 48.27

Sample9

eC 48.00 30.61 37.38

MBI 83.87 73.09 78.11 MBI 81.92 69.08 74.95 MBI 65.72 74.95 70.03

MFBI 97.65 68.10 80.24 MFBI 91.10 67.45 77.51 MFBI 89.68 66.98 76.69

S1 94.63 71.56 81.49 S1 91.45 68.28 78.19 S1 85.18 71.43 77.70

S2 92.67 73.04 81.69 S2 91.87 67.25 77.65 S2 85.27 70.49 77.18

Sample10

eC 54.75 45.91 49.94

Sample11

eC 47.61 36.29 41.19

Sample12

eC 29.97 39.38 34.04

MBI 67.23 74.18 70.53 MBI 67.59 74.18 70.73 MBI 67.01 71.98 69.40

MFBI 88.37 69.77 77.97 MFBI 81.25 63.93 71.56 MFBI 87.57 66.64 75.69

S1 85.11 72.02 78.02 S1 79.61 71.77 75.48 S1 83.39 68.58 75.26

S2 85.97 74.45 79.80 S2 79.73 70.97 75.09 S2 82.04 69.15 75.05
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Table 5. Cont.

R P F R P F R P F

Sample13

eC 22.10 28.71 24.98

Sample14

eC 54.33 45.71 49.65

Sample15

eC 53.46 61.00 56.98

MBI 51.03 65.94 57.53 MBI 74.65 82.15 78.22 MBI 78.44 72.54 75.37

MFBI 62.21 59.94 61.05 MFBI 84.25 76.98 80.45 MFBI 89.15 68.90 77.73

S1 67.82 59.87 63.59 S1 86.74 78.04 82.16 S1 90.20 70.49 79.14

S2 68.75 57.91 62.86 S2 86.48 78.67 82.39 S2 89.78 70.39 78.91

Sample16

eC 51.41 37.26 43.21

Sample17

eC 56.72 48.63 52.36

Sample18

eC 78.38 59.81 67.85

MBI 71.42 77.76 74.45 MBI 79.48 73.98 76.63 MBI 67.88 78.00 72.59

MFBI 89.30 70.40 78.73 MFBI 88.00 68.60 77.10 MFBI 87.65 71.19 78.56

S1 88.64 76.51 82.13 S1 89.07 67.22 76.62 S1 86.62 77.20 81.64

S2 89.85 79.51 84.36 S2 87.19 74.16 80.15 S2 86.65 76.47 81.24

Sample19

eC 69.99 28.71 40.72

Sample20

eC 56.30 47.88 51.75

Sample21

eC 58.89 47.81 52.77

MBI 68.50 71.00 69.73 MBI 71.86 70.56 71.20 MBI 73.49 74.35 73.91

MFBI 91.21 65.84 76.48 MFBI 87.78 67.15 76.09 MFBI 89.57 67.09 76.72

S1 90.56 68.06 77.71 S1 87.66 69.93 77.79 S1 90.07 66.96 76.81

S2 90.15 69.40 78.43 S2 87.08 68.36 76.59 S2 87.05 72.14 78.90

Sample22

eC 72.56 46.72 56.84

Sample23

eC 76.57 63.26 69.28

Sample24

eC 79.11 38.45 51.74

MBI 82.17 66.67 73.61 MBI 59.98 74.24 72.04 MBI 73.56 75.01 74.28

MFBI 91.58 66.97 77.37 MFBI 89.80 71.21 79.43 MFBI 99.38 65.64 79.06

S1 91.31 76.38 83.18 S1 89.36 74.57 81.30 S1 97.97 69.57 81.36

S2 91.75 75.46 82.82 S2 89.12 78.10 83.24 S2 98.10 70.72 82.19

Sample25

eC 48.90 50.61 49.74

Sample26

eC 57.06 48.44 52.39

Sample27

eC 57.32 50.83 53.88

MBI 69.50 78.89 73.90 MBI 70.58 69.24 69.91 MBI 83.81 78.33 80.98

MFBI 80.40 74.52 77.35 MFBI 82.51 65.83 73.23 MFBI 89.04 73.21 80.35

S1 84.03 73.01 78.14 S1 82.02 72.20 76.80 S1 88.27 77.44 82.50

S2 83.99 73.33 78.30 S2 81.60 68.28 74.35 S2 89.72 76.40 82.53

Sample28

eC 48.22 60.16 53.53

Sample29

eC 58.40 53.60 55.90

Sample30

eC 49.12 73.77 58.98

MBI 67.27 75.79 71.28 MBI 63.53 79.05 70.44 MBI 72.88 78.89 75.77

MFBI 80.37 71.41 75.63 MFBI 89.66 69.53 78.32 MFBI 88.14 75.59 81.38

S1 76.44 75.90 76.17 S1 84.32 79.76 81.98 S1 88.34 78.55 83.16

S2 75.96 75.85 75.91 S2 88.27 74.63 80.88 S2 89.06 76.86 82.51

Sample31

eC 56.11 59.01 57.52

Sample32

eC 61.19 65.94 63.48

Sample33

eC 72.82 52.61 61.09

MBI 76.51 73.36 74.90 MBI 71.91 79.62 75.57 MBI 70.44 83.30 76.33

MFBI 88.16 66.14 75.58 MFBI 86.84 71.49 78.42 MFBI 89.44 76.37 82.39

S1 88.85 75.78 81.80 S1 87.06 83.72 85.35 S1 88.73 79.30 83.75

S2 87.55 68.25 76.70 S2 89.62 77.81 83.30 S2 88.07 78.53 83.02

Sample34

eC 74.07 52.79 61.64

Sample35

eC 80.10 43.14 56.08

Sample36

eC 80.59 37.43 51.12

MBI 76.83 73.54 75.15 MBI 67.27 72.60 69.83 MBI 72.95 76.43 74.65

MFBI 86.08 68.21 76.11 MFBI 99.51 66.15 79.47 MFBI 86.77 70.91 78.05

S1 88.60 74.13 80.72 S1 95.27 69.37 80.28 S1 90.63 74.12 81.55

S2 87.67 72.51 79.37 S2 96.79 68.11 79.95 S2 91.48 75.73 82.86

Sample37

eC 57.76 32.30 41.43

Sample38

eC 55.72 14.68 23.24

Sample39

eC 69.03 42.90 52.91

MBI 67.96 61.47 64.55 MBI 62.78 78.75 69.86 MBI 73.81 75.64 74.71

MFBI 84.26 59.77 69.93 MFBI 91.79 72.90 81.27 MFBI 89.36 67.93 77.17

S1 96.08 61.34 71.63 S1 90.79 75.81 82.63 S1 87.07 72.89 79.35

S2 93.71 65.27 73.35 S2 89.65 76.20 82.38 S2 89.58 71.54 79.55

Sample40

eC 74.53 70.15 72.27

Sample41

eC 30.80 50.63 38.30

Sample42

eC 63.55 57.60 60.43

MBI 70.27 75.49 72.79 MBI 70.12 80.87 75.11 MBI 72.90 78.38 75.54

MFBI 87.93 76.63 81.89 MFBI 83.54 75.48 79.31 MFBI 87.49 74.73 80.61

S1 85.21 79.09 82.04 S1 89.09 79.42 84.43 S1 85.94 78.09 81.83

S2 86.25 78.28 82.07 S2 89.41 77.84 83.22 S2 84.74 78.67 81.59
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Table 5. Cont.

R P F R P F R P F

Sample43

eC 17.31 71.80 27.89

Sample44

eC 16.82 29.49 21.42

Sample45

eC 25.13 80.99 38.36

MBI 53.10 84.99 65.36 MBI 64.57 73.27 68.65 MBI 51.31 76.92 61.56

MFBI 83.84 63.69 72.39 MFBI 86.20 62.23 72.28 MFBI 84.64 57.90 68.76

S1 81.14 67.22 73.53 S1 84.92 67.14 74.99 S1 83.07 62.96 71.63

S2 83.87 66.04 73.90 S2 84.30 64.62 73.16 S2 81.59 62.77 70.95

Sample46

eC 18.32 32.48 23.43

Sample47

eC 25.65 82.17 39.10

Sample48

eC 18.18 73.89 29.18

MBI 57.13 75.22 64.94 MBI 64.47 75.01 69.34 MBI 54.29 89.63 67.63

MFBI 76.81 60.92 67.95 MFBI 84.66 65.31 73.73 MFBI 82.67 74.86 78.57

S1 75.50 69.17 72.20 S1 86.06 72.31 78.59 S1 82.08 80.50 81.28

S2 73.27 91.74 72.50 S2 84.51 73.38 76.80 S2 83.24 81.95 82.59

Sample49

eC 10.52 53.07 17.56

Sample50

eC 12.53 31.65 17.95

Sample51

eC 72.11 59.17 65.00

MBI 57.77 78.54 66.57 MBI 61.63 67.97 64.64 MBI 57.31 67.44 61.96

MFBI 83.77 73.91 78.53 MFBI 86.69 61.76 72.13 MFBI 91.41 60.81 73.04

S1 84.79 75.24 79.73 S1 85.98 63.98 73.37 S1 88.27 65.04 74.90

S2 84.53 76.68 80.41 S2 86.87 65.68 74.81 S2 86.56 87.04 95.56

Sample52

eC 57.25 12.38 20.36

Sample53

eC 48.18 31.88 38.37

Sample54

eC 32.27 42.69 36.76

MBI 59.12 70.96 64.50 MBI 55.59 68.97 61.56 MBI 63.10 70.80 66.73

MFBI 86.45 69.12 76.82 MFBI 86.12 61.35 71.66 MFBI 68.92 73.02 70.91

S1 88.68 73.98 80.67 S1 85.11 64.12 73.13 S1 68.72 75.86 72.12

S2 85.55 75.55 80.24 S2 85.31 64.67 73.57 S2 67.04 78.99 72.53

Sample55

eC 47.30 38.74 42.59

Sample56

eC 68.94 57.28 62.57

Sample57

eC 42.83 46.80 38.05

MBI 62.09 72.35 66,83 MBI 64.33 75.65 69.54 MBI 53.71 65.98 59.22

MFBI 83.47 65.33 73.29 MFBI 75.12 64.81 69.58 MFBI 78.26 60.83 68.46

S1 82.80 68.48 74.96 S1 81.99 66.55 73.47 S1 83.71 67.99 75.04

S2 82.25 68.10 74.51 S2 82.31 67.02 73.88 S2 85.17 66.04 74.40

4.3.3. Sensitivity Analysis

As is mentioned in Section 3.1, sharing a similar framework and operation, the threshold value
of MFBI and MBI tends to be similar. While the influence of MBI’s segmentation threshold value T
has been carefully studied in References [34,50], in this section, we illustrate the influence of MFBI’s
segmentation threshold value T on the results of building extraction.

Different light conditions and landscapes are taken into account for the illustration. Four samples,
from different lighting conditions (i.e., bright, moderate and dark) while including different landscapes
(i.e., urban regions, suburban regions and rural regions) are demonstrated in Figure 9. In the first
and the second column of Figure 9, we demonstrate the samples and the corresponding MFBI feature
map. In the third column of Figure 9, we offer the relation between different MFBI threshold and the
corresponding recall, precision and F-score. From these figures, the observation is in accordance with
the conclusion in References [34,50].

1. With the increase of MFBI, the F-score tends to increase first and then decrease. While the recall
tends to decrease, the precision tends to increase. This trend fits the general regulation of the
recall and precision curves offered in References [34,50]. A small threshold usually leads to the
selection of a relatively large amount of samples. Although we will get a high recall from these
samples, a large number of false positives are among these samples, leading to the relatively low
precision. On the contrary, when the threshold is set high, the algorithm will select a relatively
small number of samples with relatively high precision, while some true positives are missed.

2. When the threshold is set from 0.4 to 0.6, the proposed method can usually achieve the best
performance with a high recall value and a modest precision value, no matter in urban, suburban
or rural regions. It can be explained that after the feature extraction of MFBI, pixels belonging
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to building areas often have an MFBI value at about 0.4 to 0.6. Such regulation has also been
reported in Reference [34].
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Figure 9. Performance on different samples on WHUBED. The first column: Five samples in WHUBED;
the second column: Corresponding MFBI feature maps. Note that some false alarms caused by
vegetation have been removed by normalized differential vegetation index (NDVI). The third column:
the relationship between the threshold value of MFBI and precision, recall and F1-score.

4.4. Experiments on Two Proposed Scenarios

Before discussing the extraction results of MMFBI, we first demonstrate and discuss the feature
map of these two scenarios to generate MMFBI. In Figure 10, the results after PCA in the first and
the second scenario to generate MMFBI are demonstrated. As is mentioned in Section 3.2, we choose
the first component of these results (these results are shown in the second and third component
of Figure 10) to get the MMFBI feature maps for building extraction. From these results we can
observe that:
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1. The implementation of PCA can help extract building features. In the first scenario, the PCA is
implemented on the original image from our datasets. Much of the information from building
pixels can be enhanced (see from the second column of Figure 10) and these homogenous regions
are salient in the first component.

2. For the second scenario to generate MMFBI, after the calculation of MFBI in each channel and the
PCA transformation, the MMFBI feature map is more capable to enhance building areas than
the MMFBI feature map in our first scenario, which simply implements PCA on optical images.
It can be explained that the calculation of MFBI on each channel selects pixels that could belong
to building areas and later PCA refines these selected pixels. For example, some pixels belonging
to vegetation are selected in the red channel but are not selected in the green and blue channel,
and the PCA implementation can exclude these pixels from the feature map.

The proposed two scenarios in Section 3.2 are tested on our dataset and their performance on
each sample is listed in Table 5. And the mean and standard deviation of these three indices of all 57
samples in WHUBED is listed in Table 6. From these results, we can observe that:

1. The feature extraction ability of the two proposed scenarios is better than the basic MFBI,
especially when we take account of the precision and the F-score. This result is reasonable
since information that contributes greatly to building areas and other man-made objects in the
red, green and blue channel are all taken into account and the signal of some false alarms from
one single channel can be suppressed. This phenomenon is clearly demonstrated in Figures 8
and 11. From the sixth and seventh row of Figure 8 and the first column of Figure 11, much noise
mainly from wide roads can be observed in the MFBI feature map, while in the second and the
third column of Figure 11, noise is much less in the MMFBI feature maps.

2. The first scenario can make the feature map more compactness since the first component of
the three channel optical image contains more information on the building structures while
suppresses much information from other types of land cover. This phenomenon is clearly
demonstrated in the second row of Figure 11.

3. The second scenario can improve the accuracy mainly because of the calculation of MFBI on three
channels separately and PCA transformation after that. Calculating MFBI on each channel makes
full use of information that can present the signal of building areas and the PCA transformation
on this image can refine the result by eliminating some pixels belonging to other land ground
types such as road or bare soil. The situation that some roads mixed with building areas in the
feature map of MFBI and the first scenario of MMFBI can be removed in the feature map of the
second scenario MMFBI is obvious in the image of Figure 11c,f,i. Meanwhile, as is mentioned
in Section 3.2, after PCA, while the first component contains much signal from building areas,
the second component contains much information from other land covers such as roads and bare
soil. However, simply using the second component also takes the risk of excluding some building
areas whose material is similar to roads. It should be emphasized that in pixel-level building
detection, one of the major differences between HRRSI and VHRRSI is that roads are much wider
in VHRRSI and are more difficult to be eliminated.

Table 6. Mean and standard deviation of several methods compared on WHUBED (in percentage).

Recall Precision F1-Score

eCognition 53.40 ± 19.37 50.21 ± 16.43 48.40 ± 14.47
MBI 68.51 ± 8.84 74.40 ± 5.17 70.93 ± 5.15

MFBI 86.94 ± 6.67 68.15 ± 4.87 76.22 ± 4.22
MMFBI Scenario1 86.71 ± 5.80 72.15 ± 5.21 78.60 ± 4.19
MMFBI Scenario2 86.64 ± 5.93 71.87 ± 5.10 78.40 ± 4.16
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and Scenario 2 in Image 3.

5. Conclusions

In this paper, a multi-scale filtering building index (MFBI) is proposed with the objective to avoid
complex morphological operations and use basic average filters instead. After a detailed study of
current datasets for building extraction, in the hope of offering a VHRRSI dataset for model-driven
based methods, we introduce our newly published dataset WHUBED and use it as a benchmark to
compare our proposed method with the widely used object-oriented method and MBI. Experiments
demonstrate that the proposed MFBI can generate building feature maps much faster than MBI, and
can outperform the other two methods in terms of accuracy. To fully utilize spectral information that
contributes to urban regions in VHRRSI, two scenarios to extend MFBI into multiple channels (MMFBI)
are studied. Related experiments demonstrate that these two scenarios can reduce false alarms in
MFBI and therefore can achieve higher accuracy.

However, some weaknesses for the proposed MFBI include: (1) It does not fully utilize spatial
information especially multi-direction structural information, and can introduce artefacts. (2) The
brightness image might not truly present building features when a sensor is too sensitive at many
pixels in a particular channel.
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Feature work includes the implementation of MFBI’s post-processing framework systematically
and the utilization of more directional and structural information in MFBI.
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