
remote sensing  

Article

Refined Two-Stage Programming-Based
Multi-Baseline Phase Unwrapping Approach Using
Local Plane Model

Yang Lan 1,2 , Hanwen Yu 3,4,* and Mengdao Xing 1,2,*
1 National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China;

lanyangxd@hotmail.com
2 Collaborative Innovation Center of Information Sensing and Understanding, Xidian University,

Xi’an 710071, China
3 Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204, USA
4 National Center for Airborne Laser Mapping, University of Houston, Houston, TX 77204, USA
* Correspondence: yuhanwenxd@gmail.com (H.Y.); xmd@xidian.edu.cn (M.X.)

Received: 13 December 2018; Accepted: 23 February 2019; Published: 28 February 2019
����������
�������

Abstract: The problem of phase unwrapping (PU) in synthetic aperture radar (SAR) interferometry
(InSAR) is caused by the measured range differences being ambiguous with the wavelength.
Therefore, multi-baseline (MB) is a key processing step of MB InSAR. Compared with the traditional
single-baseline (SB) PU, MB PU is advantageous in solving steep terrain due to its ability to break
through the constraint of the phase continuity assumption. However, the accuracy of most of the
existing MB PU methods is still limited to its mathematical foundation, i.e., the Chinese remainder
theorem (CRT) is too sensitive to measurement bias. To solve this issue, this paper presents a refined
algorithm based on the two-stage programming MB PU approach (TSPA) proposed by H. Yu.
The significant advantage of the refined TSPA method (abbreviated as LPM-TSPA) is that it improves
the performance of stage 1 of TSPA through assuming terrain height surface in the neighborhood
pixels can be approximated by a plane to combine more information of the interferometric phase in
the local region to estimate the ambiguity number gradient. The experiment results indicate that the
LPM-TSPA method can significantly improve the accuracy of the MB PU solution.

Keywords: synthetic aperture radar interferometry (InSAR); multi-baseline; phase unwrapping

1. Introduction

Synthetic aperture radar (SAR) interferometry (InSAR) has created a new class of radar data for
remote sensing applications that has significantly developed over the last couple of decades. Most of
the InSAR-based applications, e.g., topographic mapping and deformation measuring, typically rely
on the phase unwrapping (PU) technique, because InSAR can directly extract only the absolute phase
modulo 2π, i.e., wrapped phase. Figure 1a shows an example of the filtered and flattened realistic
InSAR wrapped phase image (called interferogram in the rest of this paper) from the Etna volcano, Italy.
Figure 1b is the coherence of Figure 1a, which reflects the goodness of each pixel (the pixel value in
Figure 1b is from 0 (worst) to 1 (best)). Under this condition, the technique of phase-ambiguity removal,
i.e., PU, is an indispensable processing step of InSAR. It is known that the traditional single-baseline (SB)
PU is an ill-posed problem, because there are two unknowns, i.e., absolute phase and integer ambiguity,
need to be solved with one equation (the absolute phase can be directly converted to the topographic
information). However, the MB PU is well-posed through making use of the baseline diversity to
significantly increase the ambiguity intervals of interferometric phases. To be specific, MB PU does not
need to obey the Itoh condition (also known as phase continuity assumption) [1]. A statistic for the
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journal and conference publications of the MB PU is given in [2], and from 1997 to 2017, the average
annual growth rate of the number of papers published is about 42.83%. The exponential growth trend of
the number of papers reveals the rapid surge of study of MB PU.

In the past two decades, various MB PU methods with different advantages have been put
forward, many of which based on statistical framework or Chinese remainder theorem (CRT). The MB
PU methods based on statistical framework use the InSAR probability density function (PDF) to
establish the maximum likelihood (ML) or maximum a posteriori (MAP), so they are also called
the parametric-based MB PU methods [1,2]. Ref. [3] proposed a MB PU method with using a ML
formulation. Ref. [4] presented an unwrapping method based on a ML estimation technique. Ref. [5]
addressed the derivation of the phase difference-based ML PU algorithm. Ref. [6] proposed maximum
a posteriori (MAP) PU method to reconstruct terrain heights. Ref. [7] presented a Markovian approach
to solve the multichannel PU problem. Ref. [8] is a review paper of the ML- and MAP-based methods.
Furthermore, the height estimation accuracy between the ML- and MAP-based methods is analyzed
in [9]. Contrast to parametric-based MB PU methods, nonparametric-based MB PU methods have
also been put forward, which obtain the PU solution by translating the MB PU problem to an
unsupervised-learning problem, i.e., cluster-analysis (CA) problem [2]. A fast CA-based MB PU
method was proposed by [10], and was improved in [11,12]. In addition, many MB PU methods base
on CRT were presented as well. Ref. [13] described an iterative MB PU method which starts at the
shortest baseline and proceeds to longer and longer baselines. Ref. [14] presented a MB PU method
based on 3-D Kalman filtering. The wavelet approach was applied on MB PU in [15]. Ref. [16] proposed
three basic MB PU methods, i.e., CRT method, projection method and linear combination method.
Ref. [17] presented a method to reconstruct the digital elevation model (DEM) using the closed-form
robust CRT. To improve the robustness to noise, Ref. [18] put forward a MB PU method based on
the mix-integer optimization model. Ref. [19] presented an alternative algorithm for PU where only
a subset of data from the wrapped phase map is used to reconstruct the unwrapped phase map as
a linear combination of radial basis functions (RBF’s) so that the conventional PU step is not used.

Figure 1. (a) Realistic interferogram. (b) Coherence of (a).

In summary, most of the aforementioned methods suffer from poor measurement bias robustness
(the measurement bias could be potentially caused by atmospheric artifact, surface deformation,
or system noise). Moreover, the ML-, MAP-, and CA-based MB PU methods are all derived from
machine learning techniques, so they usually include several parameters without clear PU meanings,
which needs the extra information to decide. In this case, it will set some limits on the application scope
of these MB PU methods. To solve these issues, Ref. [1] proposed a two-stage programming-based
MB PU method (TSPA) that builds a link between SB and MB PUs. In the first stage, according to the
formulation of CRT, TSPA estimates the ambiguity number difference between neighboring pixels
using multiple interferograms with different baseline lengths. Afterwards, the final PU result can be
obtained by using the SB PU framework. Compared with most of the aforementioned existing MB
PU methods, the fundamental contributions of the TSPA method are listed as follows. To begin with,
TSPA uses the information of all the pixels in the interferogram to improve the noise robustness [1].
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In addition, since TSPA makes the connection between SB and MB PUs, the framework of TSPA
can be transplanted into most of the SB PU-based InSAR techniques, e.g., two-pass and three-pass
differential InSAR (DInSAR) techniques [20]. Also, many existing classical SB PU concepts can be
transplanted into MB domain. However, because stage 1 of TSPA is dependent on CRT, which is too
sensitive to measurement bias that is potentially caused by atmospheric artifact, surface deformation,
or system noise, there is still room to further advance TSPA through refining the performance of
stage 1. To further improve the noise robustness of the original TSPA method, a refined TSPA MB PU
method based on local plane model (abbreviated as LPM-TSPA method) is proposed in this paper.
The LPM-TSPA method improves the performance of stage 1 of TSPA through assuming terrain height
surface in the neighborhood pixels can be approximated by a plane to combine more information
of the interferometric phase in the local region to estimate the ambiguity number gradient. In this
paper, the basic principle of the original TSPA is reviewed first, in which we discuss why there is still
room to further advance TSPA through refining the performance of stage 1 of TSPA. Then, we design
a local plane model, which introduces a relation among the profile at the given position and that in
neighboring positions, to combine more wrapped phase information to estimate the ambiguity number
gradient. Based on this model, the LPM-TSPA method with better noise robustness is proposed.
The experiment results indicate that the LPM-TSPA method can significantly improve the PU accuracy
of the original TSPA method.

The rest of this paper is organized as follows. Section 2 reviews the TSPA method and analyzes
its advantages and disadvantages. In Section 3, the LPM-TSPA method is described in detail. Then,
in Section 4, the proposed method is validated by a set of simulated and realistic MB InSAR datasets
and the results are discussed. Finally, Section 5 concludes this paper.

2. Review and Analysis of TSPA

In this section, we will review the original TSPA method under the dual-baseline (DB) case.
For the MB case, the readers can refer to [1]. If the size of the interferograms obtained by the DB InSAR
system is m× n and the pixel of the ith row and jth column in the interferograms is referred as pixel
(i, j). The InSAR measurement of a pixel can be given by

ϕr(i, j) = ψr(i, j)− 2π · kr(i, j), (1)

where ϕr(i, j), ψr(i, j) and integer kr(i, j) are the wrapped phase, absolute phase, and ambiguity
number of the pixel (i, j) in interferogram r(r = 1, 2), respectively. ϕr(i, j) can be measured by the
DB InSAR system, but ψr(i, j) and kr(i, j) are the unknowns that need to be solved. If the ambiguity
number kr(i, j) of each pixel can be solved, ψr(i, j) that contains the terrain information can be obtained
through Equation (1). The absolute phases of the two interferograms can be combined by using the
baseline lengths such as [1]

B2 · (ϕ1(i, j) + 2π · k1(i, j)) = B1 · (ϕ2(i, j) + 2π · k2(i, j)), (2)

where B1 and B2 represent two different normal baseline (or perpendicular baseline) lengths [8,11].
In the rest of this paper, normal baseline length is shortened as baseline length. According to
Equation (2), the TSPA method establishes the relationship of gradient information in different
interferograms with different baselines as shown in Equations (3) and (4)

B2 · (∆x
ϕ1
(i, j) + 2π · ∆x

k1
(i, j)) = B1 · (∆x

ϕ2
(i, j) + 2π · ∆x

k2
(i, j)), (3)

B2 · (∆
y
ϕ1(i, j) + 2π · ∆y

k1
(i, j)) = B1 · (∆

y
ϕ2(i, j) + 2π · ∆y

k2
(i, j)), (4)

where ∆x
ϕr (i, j) = ϕr(i, j + 1)− ϕr(i, j), ∆y

ϕr (i, j) = ϕr(i + 1, j)− ϕr(i, j), ∆x
kr
(i, j) = kr(i, j + 1)− kr(i, j),

∆y
kr
(i, j) = kr(i + 1, j)− kr(i, j), r = 1, 2. The superscript x and y represent the adjacent relationship
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on horizontal and vertical directions of adjacent pixels, respectively. ∆x
ϕr (i, j) and ∆y

ϕr (i, j) are the
wrapped phase differences between adjacent pixels of interferogram r. ∆x

kr
(i, j) and ∆y

kr
(i, j) are the

ambiguity number gradient between adjacent pixels of interferogram r. According to CRT, we can
obtain the solution to Equations (3) and (4) under some special combination of the baseline lengths
(because ∆x

kr
(i, j) and ∆y

kr
(i, j) are integer) [1]. Equations (3) and (4) can be solved by the optimization

model shown in (5) and (6) 
arg min

∆̂x
k1
(i,j),∆̂x

k2
(i,j)

ζx(i, j)

s.t. ∆̂x
kr
(i, j) ∈ integer, r = 1, 2.

(5)


arg min

∆̂y
k1
(i,j),∆̂y

k2
(i,j)

ζy(i, j)

s.t. ∆̂y
kr
(i, j) ∈ integer, r = 1, 2.

(6)

where ∆̂x
kr
(i, j) and ∆̂y

kr
(i, j)(r = 1, 2) are the decision variables, and the objective functions (i.e., ζx(i, j)

and ζy(i, j)) of Equations (5) and (6) are defined in Equations (7) and (8)

ζx(i, j) = |B2 · (∆x
ϕ1
(i, j) + 2π · ∆̂x

k1
(i, j))− B1 · (∆x

ϕ2
(i, j) + 2π · ∆̂x

k2
(i, j))|, (7)

ζy(i, j) = |B2 · (∆
y
ϕ1(i, j) + 2π · ∆̂y

k1
(i, j))− B1 · (∆

y
ϕ2(i, j) + 2π · ∆̂y

k2
(i, j))|. (8)

It can be seen that ζx(i, j) and ζy(i, j) are the CRT biases, so Equations (5) and (6) are to find the
ambiguity number gradient (i.e., ∆̂x

kr
(i, j) and ∆̂y

kr
(i, j)) with minimum CRT biases [1]. Based on the

gradient information obtained by Equations (5)–(8), TSPA uses the framework of the L1-norm SB PU
to respectively obtain the final PU result of each interferogram by Equation (9),

min
m
∑

i=1

n−1
∑

j=1
ωx

r (i, j)· | kr(i, j + 1)− kr(i, j)− ∆̂x
kr
(i, j) | +

m−1
∑

i=1

n
∑

j=1
ω

y
r (i, j)· | kr(i + 1, j)− kr(i, j)− ∆̂y

kr
(i, j) |

s.t. kr(i, j) ∈ integer, r = 1, 2.

(9)

where ωx
r (i, j) and ω

y
r (i, j) are the weights that can usually be obtained by using any kind of quality

maps of the input interferograms [1], and kr(i, j) is the decision variable.
As described in Section 1, many important SB PU concepts can be transplanted into MB domain

through using the framework of TSPA [1]. For example, under the framework of TSPA, we can define
the MB residue, i.e., the loop integration value of the gradients obtained by Equations (5) and (6) of any
2× 2 neighboring pixels. Because the MB PU does not follow the SB PU using the Itoh condition to
estimate the gradient information, the MB residue polarity is±N, N ∈ Integer, but that in SB is±1 [20].
It can be seen that the TSPA method consists of two stages. In stage 1, the ambiguity number gradient
is estimated according to the CRT formulation. In stage 2, the final PU result of each interferogram is
obtained by the framework of the SB L1-norm PU method. However, as described, CRT is too sensitive
to measurement bias that is potentially caused by atmospheric artifact, surface deformation, or system
noise, so the gradient information obtained in stage 1 will be very noisy. For example, Figure 2a,b
are two realistic interferograms with different baseline lengths (6.40 m and 40.29 m respectively).
Other system interferometric parameters of Figure 2a,b are the same to those of the TerraSAR-X MB
InSAR dataset employed in Experiment 2. Figure 2c,d are the SB residue distributions of Figure 2a,b.
Figure 2e,f are the MB residue distributions of Figure 2a,b obtained by the TSPA method. The statistical
information of Figure 2c–f is shown in Table 1.
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Figure 2. (a,b) TerraSAR-X interferogram with (a) short and (b) long baseline length. (c,d) The SB
residue distributions of (a,b). (e,f) The MB residue distributions of (a,b) obtained by TSPA.

Table 1. Statistical Information of Residue Distribution.

SB MB

Figure 2c Figure 2d Figure 2e Figure 2f

Polarity range of the residues [−1, 1] [−1, 1] [−1, 1] [−8, 7]
Number of the residues 144 175 146 3494

Total polarity of the residues 144 175 146 4277

Table 1 indicates that although the MB gradient information does not need to obey the Itoh
condition (the polarity of MB residue is not restricted as ±1), it is much more noisy than that under the
SB situation (because the SB residue distribution is sparser and its total polarity is lower). In other
words, although TSPA uses the global information to prevent the influence of the noise, there is still
room to further advance TSPA through refining the performance of stage 1.

3. LPM-TSPA Method

From the discussion in Section 2, we know that our object is to design a method to help the CRT
to resist the influence of noise from stage 1 of TSPA. From Equation (5), we can see that only the
information of the four pixels from two interferograms, i.e., ϕ1(i, j + 1), ϕ1(i, j), ϕ2(i, j + 1) and ϕ2(i, j),
are used to estimate ∆̂x

k1
(i, j) and ∆̂x

k2
(i, j). It is not difficult to believe that better performance can

surely be achieved if more information of the interferometric phase can be combined to estimate the
ambiguity number gradient. In other words, if we introduce some relation among the deformation
values in an assigned cluster of neighboring pixels so that more pixels will be jointed in stage 1,
the effect of noise on the ambiguity number gradient estimation will be reduced. The basic idea for
obtaining such a solution is presented as follows.

We know that the absolute phase corresponds to the elevation of topography surface. Under this
condition, if we take a small enough local area on the surface, such as a rectangular window, we can
assume that the height surface of this rectangular window can be approximated by a plane. Through
using the plane equation, we will have

ψr(i′, j′) = ∆y
ψr
(i, j) · (i′ − i) + ∆x

ψr (i, j) · (j′ − j) + ψr(i, j), (i′, j′) ∈ Ω(i, j) (10)

where Ω(i, j) is the set in which the elements are points within the plane containing (i, j). ∆x
ψr
(i, j),

∆y
ψr
(i, j) and ψr(i, j) are the parameters constructing the local plane, and ∆x

ψr
(i, j) = ψr(i, j+ 1)−ψr(i, j),
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∆y
ψr
(i, j) = ψr(i + 1, j)− ψr(i, j). We can see that the relation among pixels built by Equation (10) could

potentially joint all the pixels in the rectangular window. Hence, we will refine stage 1 of the TSPA
method through assuming terrain height surface in the neighborhood pixels can be approximated by
a plane to combine more information of the interferometric phase in the local region to estimate the
ambiguity number gradient.

In the following, through using Equation (10), the model of the LPM-TSPA method under the
DB case is described in detail, and that of the MB case is given in the Appendix. Taking a rectangular
window centered on pixel (i, j), we assume that the window size is (2p + 1)× (2q + 1), where p and
q are positive integers (how to choose the values of p and q will be discussed later). For a given
(i, j), define a set S = {(i′, j′)|i′ = i− p, . . . , i + p; j′ = j− q, . . . , j + q}, then, two refined optimization
models for the ambiguity number gradient estimation will be shown in Equations (11) and (12).

arg min
∆̂x

k1
(i,j),∆̂x

k2
(i,j)

Zx(i, j)

s.t. ∆̂x
kr
(i, j) ∈ integer, r = 1, 2.

(11)


arg min

∆̂y
k1
(i,j),∆̂y

k2
(i,j)

Zy(i, j)

s.t. ∆̂y
kr
(i, j) ∈ integer, r = 1, 2.

(12)

In Equations (11) and (12), the new objective functions Zx(i, j) and Zy(i, j) are defined as

Zx(i, j) = ∑
(i′ ,j′)∈S

ζx(i′, j′), p + 1 ≤ i ≤ m− p, q + 1 ≤ j ≤ n− q− 1, (13)

Zy(i, j) = ∑
(i′ ,j′)∈S

ζy(i′, j′), p + 1 ≤ i ≤ m− p− 1, q + 1 ≤ j ≤ n− q. (14)

ζx(i′, j′) and ζy(i′, j′) in Equations (13) and (14) are

ζx(i′, j′) = |B2 · (∆x
ϕ1
(i′, j′) + 2π · ∆̂x

k1
(i′, j′))− B1 · (∆x

ϕ2
(i′, j′) + 2π · ∆̂x

k2
(i′, j′))|, (15)

ζy(i′, j′) = |B2 · (∆
y
ϕ1(i

′, j′) + 2π · ∆̂y
k1
(i′, j′))− B1 · (∆

y
ϕ2(i

′, j′) + 2π · ∆̂y
k2
(i′, j′))|, (16)

where ∆̂x
kr
(i′, j′) and ∆̂y

kr
(i′, j′)(r = 1, 2) are shown in Equations (17) and (18)

∆̂x
kr
(i′, j′) = ∆̂x

kr
(i, j) + [(∆x

ϕr (i, j)− ∆x
ϕr (i
′, j′))/2π], (17)

∆̂y
kr
(i′, j′) = ∆̂y

kr
(i, j) + [(∆y

ϕr (i, j)− ∆y
ϕr (i
′, j′))/2π]. (18)

In Equations (17) and (18), [·] is the rounding operation.
Here, we will further explain the forms of ∆̂x

kr
(i′, j′) and ∆̂y

kr
(i′, j′) in Equations (17) and (18).

As we know, for any two points within the plane, Equation (10) is always satisfied. According to
Equation (10), for the points (i′, j′) 6= (i, j) and (i′, j′ + 1), we have

ψr(i′, j′ + 1) = ∆x
ψr (i, j) + ψr(i′, j′), (19)

and, for the points (i′, j′) 6= (i, j) and (i′ + 1, j′), we have

ψr(i′ + 1, j′) = ∆y
ψr
(i, j) + ψr(i′, j′). (20)

According to Equation (1), Equations (19) and (20) can be transformed to

ϕr(i′, j′ + 1) + 2π · kr(i′, j′ + 1) = ∆x
ϕr (i, j) + 2π · ∆x

kr
(i, j) + ϕr(i′, j′) + 2π · kr(i′, j′), (21)
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ϕr(i′ + 1, j′) + 2π · kr(i′ + 1, j′) = ∆y
ϕr (i, j) + 2π · ∆y

kr
(i, j) + ϕr(i′, j′) + 2π · kr(i′, j′). (22)

We can further transform Equations (21) and (22) to

∆x
kr
(i′, j′) = ∆x

kr
(i, j) + (∆x

ϕr (i, j)− ∆x
ϕr (i
′, j′))/2π, (23)

∆y
kr
(i′, j′) = ∆y

kr
(i, j) + (∆y

ϕr (i, j)− ∆y
ϕr (i
′, j′))/2π. (24)

From Equations (23) and (24), it can be seen that (∆x
ϕr (i, j) − ∆x

ϕr (i
′, j′))/2π and (∆y

ϕr (i, j) −
∆y

ϕr (i
′, j′))/2π should be integer because ∆x

kr
(i′, j′), ∆x

kr
(i, j), ∆y

kr
(i′, j′) and ∆y

kr
(i, j) are all integers.

However, measurement bias may make that (∆x
ϕr (i, j)− ∆x

ϕr (i
′, j′))/2π and (∆y

ϕr (i, j)− ∆y
ϕr (i
′, j′))/2π

are not always integers, so rounding operation is used to get the estimations ∆̂x
kr
(i′, j′) and ∆̂y

kr
(i′, j′) in

Equations of (17) and (18).
After obtaining the ambiguity number gradients of the input interferograms by using

Equations (11) and (12), the LPM-TSPA method will obtain the ambiguity number of each pixel in
each interferogram by Equation (9) (i.e., stage 2 of TSPA and LPM-TSPA are the same). Finally, we can
obtain the PU result, i.e., ψr(i, j)(r = 1, 2), which is equal to ϕr(i, j) + 2π · kr(i, j)(r = 1, 2).

3.1. Analysis of the Noise Robustness

It can be seen that the objective function of Equations (11) and (12) minimizes the summation
of all the CRT biases in the local region to increase the number of observation samples, which is
similar to a processing of multilooking. In other words, even if the wrapped phase of pixel (i, j) is
noisy, the optimization models used in Equations (11) and (12) still can estimate the correct ambiguity
number difference through using the neighboring pixels’ information. Figure 3a,b reveal the MB
residue distributions of Figure 2a,b obtained by Equations (11) and (12). In Figure 3a, there are 136
residues with the polarity range from −1 to 1, and the total polarity of the residues is 136. In Figure 3b,
there are 445 residues with the polarity range from −4 to 4, and the total polarity of the residues is 530.
It can be seen that the residue distribution obtained by LPM-TSPA is much sparser than that of TSPA,
and the total polarity is much smaller as well. The residue theory [2] points out that the lower polarity
and the sparser residue distribution usually provide us the more credible PU solution. Therefore,
we can see that LPM-TSPA significantly improves the noise robustness of TSPA.

Figure 3. (a) The residue distribution of Figure 2a obtained by LPM-TSPA. (b) The residue distribution
of Figure 2b obtained by LPM-TSPA.

3.2. Analysis of the Time Complexity

If the brute force method is selected to solve Equations (11) and (12), the computational complexity
for solving Equations (11) and (12) will be O([(m− 1) · n + m · (n− 1)] · R1 · R2 · (2p + 1) · (2q + 1)),
where R1 and R2 are the search window ranges of ∆̂x

kr
(i, j) and ∆̂y

kr
(i, j), respectively. It is worth

mentioning that the aforementioned brute force method can be totally parallelized since computing
the ambiguity number gradient in each window is independent of each other. In addition, to solve
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the L1-norm PU model in stage 2 of LPM-TSPA, there are several strongly polynomial algorithms
(e.g., minimum mean cycle-canceling algorithm) in previous studies can be selected [1]. Hence, the total
time complexity of LPM-TSPA is practical.

3.3. Analysis of the Parameter Selection

It should be noted that there are two user-defined parameters, i.e., p and q, in the LPM-TSPA
method. As described, the LPM-TSPA method combines more information of the interferometric
phases in the local region through approximating terrain height surface of this local region as a plane.
Therefore, under the condition that this assumption is satisfied, the larger the window size is, the higher
accuracy on ambiguity number gradient estimation will be obtained (it is because that more observed
samples of interferometric phases are involved). In this case, the approximate terrain information can
be used to decide p and q. To be specific, if the topography varies sharply, to satisfy the local plane
assumption, the window size should be small. Otherwise, it should be large. In the next Section, some
detailed experiments on LPM-TSPA will be presented.

4. Result and Discussion

In this Section, the LPM-TSPA method is compared with two representative PU methods (one is
from SB PU domain, and the other is from MB), i.e., the SB L1-norm and TSPA methods, through four
independent experiments. In fact, the SB L1-norm PU method has another name, i.e., minimum-cost
flow (MCF) PU method [1,21]. The source code of TSPA is downloaded from [22]. The first experiment
tests the PU performance of the LPM-TSPA method using the simulated MB InSAR dataset. The second
one verifies LPM-TSPA through using a real TerraSAR-X MB InSAR dataset with two interferograms.
The third experiment measures the noise robustness of LPM-TSPA when applied to a real MB InSAR
dataset with four interferograms acquired by Advanced Land Observing Satellite (ALOS) Phased
Array type L-band Synthetic Aperture Radar (PALSAR). The last one explores the effect of the window
size parameter on the LPM-TSPA method.

4.1. Experiment 1

In the first experiment, the PU performance of the LPM-TSPA method is quantitatively evaluated
on the simulated DB InSAR dataset. The simulation data comes from the Isolation Peak region of
Colorado [21]. The reference unwrapped phases with two different baselines are shown in Figure 4a,b.
Figure 4c,d are the simulated interferograms of Figure 4a,b. The PDF for simulating the noisy wrapped
phase, which obeys hyperogeometric distribution, is given in [23]. The major simulated parameters
of the interferograms shown in Figure 4c,d are listed in Table 2. Figure 4e–g show the PU results of
Figure 4c obtained by the SB L1-norm, TSPA and LPM-TSPA methods, respectively. Figure 4h–j are the
errors between Figure 4a and Figure 4e–g, respectively. Figure 4k–m show the PU results of Figure 4d
obtained by the SB L1-norm, TSPA and LPM-TSPA methods, and the corresponding errors between
Figure 4b and Figure 4k–m are shown in Figure 4n–p. In this experiment, the window size of the
LPM-TSPA method is 13 (i.e., p = q = 6). To fairly evaluate the PU results, the same reference point
and range of the color bar are used in the PU results obtained by the SB L1-norm, TSPA and LPM-TSPA
methods of the same interferogram, respectively. The color bar range is from the minimum pixel value
of each three corresponding PU results to the maximum pixel value of those (similarly hereinafter in
experiments 2 and 3). The statistical information of Figure 4h–j,n–p is shown in Table 3, where MSE is
the abbreviation for mean-square error, which is defined as

η =
1
L
· ‖Ψ̂−Ψ‖2, (25)

where Ψ is the vector collecting from the reference unwrapped phase, Ψ̂ is the vector collecting from
the estimated unwrapped phase, L is the length of the vector Ψ and Ψ̂, and ‖ · ‖2 is the quadratic norm.
It should be mentioned that the units of Ψ and Ψ̂ are both radian in this paper. Because the trend of the
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fringes in Figure 4c is simple, we can see that the PU accuracy of the interferogram with short baseline,
i.e., Figure 4c, of the SB L1-norm, TSPA and LPM-TSPA methods are almost identical to each other
(LPM-TSPA is still slightly better than rest two methods). However, when the trend of the fringes in
the interferogram is very complicated and difficult for the PU process, the accuracy of the estimated
gradients will significantly affect the PU accuracy. For the SB L1-norm PU method, the absolute phase
difference is estimated by the Itoh condition that usually does not work well when the interferometric
fringe fiercely changes. Moreover, the gradient estimation step of TSPA suffers from the poor noise
robustness of CRT. Those are the reasons why the PU result of Figure 4d obtained by LPM-TSPA is
much better than those of the SB L1-norm and TSPA methods.

Figure 4. (a,b) Reference unwrapped phases ((a) short and (b) long baseline length). (c,d) Simulated
wrapped phases of (a,b). (e–g) PU results of (c) obtained by (e) SB L1-norm, (f) MB TSPA, and (g) MB
LPM-TSPA. (h–j) Errors between (a) and PU results (e–g). (k–m) PU results of (d) obtained by (k) SB
L1-norm, (l) MB TSPA, and (m) MB LPM-TSPA. (n–p) Errors between (b) and PU results (k–m).

Table 2. Major Parameters of Simulated InSAR System and Interferograms.

Orbit Altitude Incidence Angle Wavelength

600 km 30◦ 0.24 m

Interferogram Baseline Length Mean Correlation Coefficient

Figure 2c 112.1m 0.70
Figure 2d 389.2m 0.65
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Table 3. Statistical Information of PU Performance in Figure 4h–j and n–p.

Short Baseline Long Baseline

PU Method Figure MSE Figure MSE

L1-norm Figure 4h 1.26 Figure 4n 48.05
TSPA Figure 4i 1.74 Figure 4o 104.22

LPM-TSPA Figure 4j 1.06 Figure 4p 6.62

4.2. Experiment 2

The second experiment is performed on the TerraSAR-X MB InSAR dataset with two
interferograms (repeat-pass) of Lanzhou, Gansu Province, China. Figure 5a shows the Google Earth
image of the study area. We can see that Figure 5a is the area whose topography is rugged and
mountainous. Under this condition, as discussed in Section 1, the phase continuity assumption
may not be satisfied, which causes that the SB PU cannot be performed correctly. Figure 5b,c are
interferograms with short and long baseline lengths, respectively. The major interferometric parameters
of Figure 5b,c are listed in Table 4. Figure 5d–f show the PU results of Figure 5b obtained by the SB
L1-norm, TSPA and LPM-TSPA methods, respectively. Figure 5g–i are those of Figure 5c. The window
size of the LPM-TSPA method is 7 (i.e., p = q = 3). It can be seen that in Figure 5d,g, there are
many obvious long horizontal and vertical discontinuous topographic jumps (marked by rectangle
box). Through comparing Figure 5d,g with Figure 5a and the fringe trends of Figure 5b,c respectively,
we know that these discontinuous variations should be the SB L1-norm PU artifact errors. Because the
MB PU does not need to obey the phase continuity assumption, the PU results obtained by TSPA and
LPM-TSPA seem more credible and seamless. However, because the LPM-TSPA method has a better
strategy on gradient estimation, the PU results of LPM-TSPA are smoother than those of TSPA. From
aforementioned comparison, we can see that the LPM-TSPA method outperforms the SB L1-norm and
TSPA methods in estimating the absolute phase when the topography changes fiercely.

Figure 5. (a) Google Earth image of the study area. (b,c) TerraSAR-X interferograms with (b) short,
and (c) long baseline lengths. (d–f) PU results of (b) obtained by (d) SB L1-norm, (e) MB TSPA, and (f)
MB LPM-TSPA. (g–i) PU results of (c) obtained by (g) SB L1-norm, (h) MB TSPA, and (i) MB LPM-TSPA.
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Table 4. Major Interferometric Parameters of Real DB Dataset of TerraSAR-X.

Orbit Altitude Incidence Angle Wavelength Latitude longitude

512 km 28.7◦ 0.03 m 36.04◦ 103.78◦

Interferogram Figure 5b Figure 5c
Date of Master Channel 8 March 2010 8 March 2010
Obit of Master Channel 15,142 15,142
Date of Slave Channel 25 February 2010 19 March 2010
Obit of Slave Channel 14,975 15,309

Baseline Length 6.51 m 40.29 m

Resolution Range (Vertical) 0.91 m Azimuth (Horizontal) 1.89 m
Image Size Range 2000 pixels Azimuth 2000 pixels

4.3. Experiment 3

Figure 6a shows the Google Earth image of the study area in the third experiment, which is
located at the Himalayan mountain. Figure 6b–e are four interferograms with different baseline lengths
acquired by the ALOS PALSAR. The major interferometric parameters of the ALOS PALSAR dataset
are listed in Table 5. Figure 6f–i are the corresponding reference unwrapped phase of Figure 6b–e,
which are generated by the PALSAR DEM. Figure 6j–m are the PU results of Figure 6b–e obtained
by the SB L1-norm PU method. Figure 6n–q are those obtained by TSPA, and Figure 6r–u are those
obtained by LPM-TSPA, where the window size is 11 (i.e., p = q = 5). The corresponding errors
between the PU results of SB, TSPA, LPM-TSPA and reference unwrapped phase are shown in Figure 7.
The statistical information of Figure 7 is listed in Table 6. From Table 6, we can see that when the
baseline length is short and the fringe trend in the interferogram is simple, the PU performance of all
three methods are similar to each other. However, for the long baseline interferogram, because the
phase variation is rapid, the PU performance of LPM-TSPA is much better than that of SB L1-norm
and TSPA. Therefore, we can conclude that LPM-TSPA is more accurate and credible than the SB
L1-norm and TSPA methods.

Table 5. Major Interferometric Parameters of Employed Real MB Dataset of ALOS PALSAR.

Orbit Altitude Incidence Angle Wavelength Latitude longitude

698.51 km 38.75◦ 0.236 m 30.91◦ 94.23◦

Interferogram Figure 6b Figure 6c Figure 6d Figure 6e
Date of Master Channel 18 August 2007 18 August 2007 18 August 2007 18 August 2007
Date of Slave Channel 3 October 2007 3 July 2007 3 January 2008 8 October 2009

Baseline Length 113.36 m 193.15 m 406.00 m 440.68 m

Resolution Range (Vertical) 9.37 m Azimuth (Horizontal) 19.00 m
Image Size Range 601 pixels Azimuth 501 pixels

Table 6. Statistical Information of PU Performance in Figure 7a–l.

Interferogram 1 Interferogram 2 Interferogram 3 Interferogram 4

PU Method Figure MSE Figure MSE Figure MSE Figure MSE

L1-norm Figure 7a 0.69 Figure 7b 1.11 Figure 7c 112.96 Figure 7d 100.31
TSPA Figure 7e 1.17 Figure 7f 3.68 Figure 7g 86.40 Figure 7h 74.93

LPM-TSPA Figure 7i 0.76 Figure 7j 1.23 Figure 7k 48.52 Figure 7l 67.95
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Figure 6. (a) Google Earth image of the study area. (b–e) ALOS PALSAR interferograms with different
baseline lengths. (f–i) The Reference unwrapped phases of (b–e). (j–u) PU results of (b–e) obtained by
(j–m) SB L1-norm, (n–q) MB TSPA, and (r–u) MB LPM-TSPA.

4.4. Experiment 4

In the last experiment, we will test the effect of the window size (i.e., p and q values) of the
LPM-TSPA method on two simulated MB InSAR dataset (one with two baselines, and the other with
four baselines). This experiment explores the PU performance of LPM-TSPA with different window
sizes. In this experiment, we consider that the window size is from 3× 3 to 21× 21 with an increment
of 2 rows and 2 columns (i.e., p, q = 1, 2, . . . , 10).
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Figure 7. (a–d) SB L1-norm errors of Figure 6j–m. (e–h) MB TSPA errors of Figure 6n–q. (i–l) MB
LPM-TSPA errors of Figure 6r–u.

4.4.1. Experiment 4-1

We test the effect of the window size of the LPM-TSPA method on the simulated MB InSAR
dataset employed in Experiment 1. Figure 8 exhibits the curves of the PU performance with window
size increasing. From Figure 8, it can be seen that the MSE of the PU results on long and short baselines
are both relatively stable when the window size is getting increasingly larger (the means of the curves
with short and long baselines are 1.0458 and 1.0292, and the variances are 0.0095 and 0.1585).
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Figure 8. MSE curves of LPM-TSPA method with different window sizes.

4.4.2. Experiment 4-2

Next, we will consider a simple simulated terrain to explore the dependency of the window size
on the steepness of terrain, i.e., the window size and terrain gradient both changing. The terrain
employed in this experiment is shown in Figure 9a (201× 201 pixels), which is obtained by the function
membrane provided by MATLAB software. We use d ·membrane to simulate the reference unwrapped
phases, where d is the parameter that is equal to the height of the peak. The larger the value of
d is, the higher the mountain is, and thus the steeper the slope of the terrain is. Figure 9b shows an
example of the reference unwrapped phase in 2D space. We consider four groups MB simulated
reference unwrapped phases with different ds (i.e., 17.5, 35.0, 52.5 and 70.0 radians). In each group,
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there are four reference unwrapped phases with different baseline lengths (i.e., 2 m, 3 m, 5 m and 7 m).
In simulated interferograms, the phase noise is added with using 0.75 mean correlation coefficient [23].
Figure 9c–f shows a group of examples of simulated interferograms (d = 70.0) with four different
baseline lengths, respectively. We compared the unwrapped phases obtained by LPM-TSPA with the
reference unwrapped phases and get the MSE of errors of each PU result. Figure 9g–j show the MSE
curves with different ds, respectively. From the trends of the curves shown in Figure 9g–j, we can see
that the MSE curves of the PU results are stable for different terrain gradients when the window size is
greater than or equal to 5. The mean and variance of each curve is given in Table 7. Table 7 reveals that
for each baseline, the means and variances of MSEs between different ds are very close to each other.
It mean that the user-defined window size is not sensitive to the steepness of the terrain.
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Figure 9. (a,b) The examples of simulated terrain in 3D space and reference unwrapped phase in 2D
space. (c–f) The examples of simulated wrapped phases with baseline lengths 2 m, 3 m, 5 m, and 7 m
(d = 70, coherence coefficient is 0.75). (g–j) MSE curves with different values of ds.

Table 7. Statistical Information of PU Performance in Figure 9g–j.

Means of the MSE Curves Variances of the MSE Curves

Baseline Length d = 17.5 d = 35.0 d = 52.5 d = 70.0 d = 17.5 d = 35.0 d = 52.5 d = 70.0

B1 = 2 m 1.1586 1.1811 1.1602 1.1470 0.0019 0.0027 0.0018 0.0015
B2 = 3 m 1.2140 1.2022 1.2305 1.2114 0.0101 0.0086 0.0103 0.0062
B3 = 5 m 1.4230 1.4226 1.5324 1.4268 0.0861 0.0855 0.1292 0.0904
B4 = 7 m 1.7189 1.7359 1.7659 1.6736 0.3365 0.3778 0.3665 0.2248

According to two aforementioned experiments, we can conclude that the PU performance of the
LPM-TSPA method is not sensitive to the user-defined window size. In other words, even if under
the case that the user does not have the accuracy priori knowledge to use, the LPM-TSPA method is
still practical.
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5. Conclusions

MB PU can effectively expand the applications of SAR interferometry (InSAR) that have not been
available to the science community using traditional SB PU, since it does not need to make the phase
continuity assumption. In this study, the local plane model-based TSPA (LPM-TSPA) MB PU method,
which refines the original TSPA through approximating terrain height surface in the neighborhood
pixels as a plane to increase the information of the interferometric phase in the gradient estimation
step, has been proposed. Both theoretical analysis and experiment results demonstrate that compared
with two representative established PU methods (i.e., the L1-norm SB PU method and the TSPA MB PU
method), the noise robustness of the LPM-TSPA method is more practical. The performance reliability
of LPM-TSPA will help the current or future single-pass and repeat-pass MB InSAR systems, such as,
NASA-ISRO Synthetic Aperture Radar (NISAR) mission and bistatic TerraSAR-X add-on for Digital
Elevation Measurement (TanDEM-X) mission, to deliver the interferometric data product with high
accuracy for science and application communities.
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Appendix A

Assume that there are R interferograms whose size is m× n. The corresponding baseline length
vector is β = [B1, B2, . . . , BR]. In this case, Equation (2) can be extended to

ϕ1(i, j) + 2π · k1(i, j)
B1

=
ϕ2(i, j) + 2π · k2(i, j)

B2
= · · · = ϕR(i, j) + 2π · kR(i, j)

BR
, (A1)

where ϕr(i, j) and kr(i, j)(r = 1, 2, . . . , R) are the wrapped phase and the ambiguity number of the
pixel (i, j) in interferogram r(r = 1, 2, . . . , R), respectively. Taking a rectangular window centered
on pixel (i, j), we assume that the window size is (2p + 1) × (2q + 1), where p and q are positive
integers. For a given (i, j), define a set S = {(i′, j′)|i′ = i − p, . . . , i + p; j′ = j − q, . . . , j + q}.
Equations (11) and (12) can be transformed to

arg min
∆̂x

k1
(i,j),...,∆̂x

kR
(i,j)

∑
1≤u<v≤R

Zx
uv(i, j)

s.t. ∆̂x
kr
(i, j) ∈ integer, r = 1, 2, . . . , R.

(A2)


arg min

∆̂y
k1
(i,j),...,∆̂y

kR
(i,j)

∑
1≤u<v≤R

Zy
uv(i, j)

s.t. ∆̂y
kr
(i, j) ∈ integer, r = 1, 2, . . . , R.

(A3)

where u, v ∈ {r|r = 1, 2, . . . , R} , u 6= v. Zx
uv(i, j) and Zy

uv(i, j) in Equations (A2) and (A3) are defined
in Equations (A4) and (A5).

Zx
uv(i, j) = ∑

(i′ ,j′)∈S
ζx

uv(i
′, j′), p + 1 ≤ i ≤ m− p, q + 1 ≤ j ≤ n− q− 1, (A4)
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Zy
uv(i, j) = ∑

(i′ ,j′)∈S
ζ

y
uv(i′, j′), p + 1 ≤ i ≤ m− p− 1, q + 1 ≤ j ≤ n− q. (A5)

ζx
uv(i′, j′) and ζ

y
uv(i′, j′) in Equations (A4) and (A5) are

ζx
uv(i

′, j′) = |Bv · (∆x
ϕu(i

′, j′) + 2π · ∆̂x
ku
(i′, j′))− Bu · (∆x

ϕv(i
′, j′) + 2π · ∆̂x

kv
(i′, j′))|, (A6)

ζ
y
uv(i′, j′) = |Bv · (∆y

ϕu(i
′, j′) + 2π · ∆̂y

ku
(i′, j′))− Bu · (∆y

ϕv(i
′, j′) + 2π · ∆̂y

kv
(i′, j′))|, (A7)

where ∆̂x
kr
(i′, j′) and ∆̂y

kr
(i′, j′)(r = u, v) are shown in Equations (A8) and (A9)

∆̂x
kr
(i′, j′) = ∆̂x

kr
(i, j) + [(∆x

ϕr (i, j)− ∆x
ϕr (i
′, j′))/2π], (A8)

∆̂y
kr
(i′, j′) = ∆̂y

kr
(i, j) + [(∆y

ϕr (i, j)− ∆y
ϕr (i
′, j′))/2π]. (A9)

After obtaining the ambiguity number gradients of each input interferogram by using
Equations (A2) and (A3), the LPM-TSPA method will obtain the ambiguity number of each pixel
in each interferogram by Equation (A10)

min
m
∑

i=1

n−1
∑

j=1
ωx

r (i, j)· | kr(i, j + 1)− kr(i, j)− ∆̂x
kr
(i, j) | +

m−1
∑

i=1

n
∑

j=1
ω

y
r (i, j)· | kr(i + 1, j)− kr(i, j)− ∆̂y

kr
(i, j) |

s.t. kr(i, j) ∈ integer, r = 1, 2, . . . , R.

(A10)

Finally, we can obtain the PU result, i.e., ψr(i, j)(r = 1, 2, . . . , R). In addition, under the MB case,
the time complexity of stage 1 in LPM-TSPA is O([(m− 1) · n + m · (n− 1)] · R1 · R2 · (2p + 1) · (2q + 1) ·
C2

R), where C2
R is the combinatorial number.
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