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Abstract: Ontology-driven Geographic Object-Based Image Analysis (O-GEOBIA) contributes to the
identification of meaningful objects. In fusing data from multiple sensors, the number of feature
variables is increased and object identification becomes a challenging task. We propose a methodological
contribution that extends feature variable characterisation. This method is illustrated with a case study
in forest-type mapping in Tasmania, Australia. Satellite images, airborne LiDAR (Light Detection
and Ranging) and expert photo-interpretation data are fused for feature extraction and classification.
Two machine learning algorithms, Random Forest and Boruta, are used to identify important and
relevant feature variables. A variogram is used to describe textural and spatial features. Different
variogram features are used as input for rule-based classifications. The rule-based classifications employ
(i) spectral features, (ii) vegetation indices, (iii) LiDAR, and (iv) variogram features, and resulted in
overall classification accuracies of 77.06%, 78.90%, 73.39% and 77.06% respectively. Following data
fusion, the use of combined feature variables resulted in a higher classification accuracy (81.65%). Using
relevant features extracted from the Boruta algorithm, the classification accuracy is further improved
(82.57%). The results demonstrate that the use of relevant variogram features together with spectral
and LiDAR features resulted in improved classification accuracy.

Keywords: GEOBIA; rule-based classification; ontology; machine learning; random forests; rules
extraction; variogram; semantic similarities; semantic variogram

1. Introduction

Geographic Object-Based Image Analysis (GEOBIA) is a widely used and still developing
new approach to image segmentation and classification [1]. The goal of GEOBIA is to extract
segments, derive meaningful objects, and in turn thematic classes from remotely sensed data. Unlike
more traditional approaches to image segmentation and classification, GEOBIA includes contextual
information together with a variety of image object properties that include size, shape, texture,
and spectral (colour) information. The data used in the segmentation may be internal, extracted
from the image and operate by grouping similar pixels into objects, or external to the image and
operate by including thematic layers, for example, known land use or other meaningful object
boundaries [2]. The aim of any GEOBIA application is to translate expert knowledge associated
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with real-world features into the GEOBIA process [1,3,4] in a manner that is formal, objective and
transferable. One approach to this challenge is to employ an ontology to formally capture and represent
the expert knowledge [4,5], referred to here as Ontology-driven GEOBIA (O-GEOBIA). Ontology
helps to reduce semantic gap between high-level knowledge and low-level information. Ontology
integrates qualitative (e.g., Forest canopy is dense) and subjective (description referred by subject
i.e., experts) high-level knowledge with the quantitative (e.g., spectral band value represented by
digital number) and objective (information refers to the object i.e., segmented image object) low-level
information [4]. A consequential challenge is to manage decisions regarding the extent to which a
prescribed ontology—both the relationships defined by that ontology and any quantitative attributes
associated with those relationships—can be treated as transferable or generalisable across different
study sites or data sources [6]. In turn, the question that arises is how best to generate the classification
rules that cannot be achieved only from the domain knowledge but may be discoverable in the data on
a site-specific basis.

An opportunity, but also a further challenge, arises from advances in remote sensing technology
that are extending the availability of different types of remotely sensed data, such as multispectral and
hyperspectral imagery, radar and LiDAR (Light Detection and Ranging). Thematic geo-information
retrieval from these stand-alone datasets would benefit with their fusion. Multi-sensor data fusion
techniques are therefore of growing importance [7–11]. In GEOBIA, particularly in forest classification,
recent research has shown that 3D LiDAR data can augment imagery data for improved and more
robust classification [12] and data fusion can be used to increase the robustness of forest-type
mapping [13].

Our research is exploring methodological approaches that integrate ontology into the GEOBIA
workflow, with the ontology purposely developed to capture rules that are generalisable and so
can be expected to be transferable across different study sites, with these rules supplemented by
non-transferable rules developed on a case-by-case basis using data fusion and machine learning.
An earlier paper [6] benchmarked how ontological rules, both generalised rules extracted from domain
knowledge and localised rules can be incorporated into GEOBIA.

This paper extends that work by developing a methodology for extracting localised rules using
machine learning techniques. The methodology develops classification rules using fused multi-sensor
data, features extracted from image-based spectral indices and point-cloud derivatives, together with
semivariogram features derived within the GEOBIA environment. The methodology employs Boruta
algorithm in selecting all-relevant features and includes characterisation of thematic classes using
semantic similarities.

Research questions addressed in this paper are:

• Why is multi-sensor data fusion necessary in O-GEOBIA?
• How can spatial features be incorporated for accurate classification in O-GEOBIA?
• How can relevant features be extracted to construct rules required when identifying classes for

O-GEOBIA?
• How can semantic similarity be used to characterise thematic classes in an ontological

environment?

The novelty of this work lies in its extension of an ontological geographic object-based image
analysis framework with respect to data fusion. We aimed to identify the challenges and their remedies
in the context of O-GEOBIA. The contributions of this paper are:

• It presents a methodology for improving classification accuracy using feature selection from fused
multi-sensor data.

• It evaluates the employment of semivariogram features alongside image-based spectral indices
and point-cloud based airborne LiDAR derivatives.

• It presents a methodology for the selection of semantic similarities for semantic characterisation.
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The application of our methodology is illustrated using a suitably complex case study: the
classification of forest types. The case study demonstrates how existing domain knowledge can be
represented by an ontology that is generalisable and how machine learning can be used to supplement
the classification with local, case-specific and non-transferable rules. The case study is not intended
to establish the robustness or efficacy of our approach, but to illustrate how the method is applied
in practice.

The remainder of the paper is organised as follows. Section 2 provides necessary theoretical
background. Section 3 outlines the methodology for ontology-based image classification using machine
learning algorithms and experimental design. Section 4 presents the case study of Tasmanian forest-type
mapping. Section 5 elaborates the implementation of the proposed methodology for the forest-type
case study. In Section 6, the results of the case study is presented and discussed in Section 7. In the
concluding Section 8, the contribution of the current work is presented.

2. Background

Ontology has been used in the field of image interpretation [4,14–19]. The application of
ontology in GIScience for extraction of geo-information has been demonstrated by [20–24]. GEOBIA
framework was introduced in 2000 and has proven to be a powerful tool for information extraction
from imagery [1,25–27]. There is now an opportunity to incorporate ontological concepts into the
GEOBIA framework to improve extraction of meaningful GIS-ready information for further analysis
and interpretation [4].

In O-GEOBIA, remote-sensing techniques are used to interpret physical properties (e.g., an NDVI
may be used to discriminate vegetated areas from urban) while domain knowledge is used to provide
contextual information (e.g., that vegetated areas in an urban setting may be municipal parks) [28].
Low-level information extracted from sensor data in combination with high-level information from
domain knowledge provides a basis for creating rule sets for a rule-based classifier.

An ontological framework that can formalise such knowledge for analysis of remote sensing
images has been proposed in [6]. An ontology is a formal description of knowledge as a set of concepts
and their relationships within a domain. The domain concepts in an ontology represent thematic
classes. Gruber [29] states that an ontology is a “specification of a shared conceptualisation”. Ontology
is a shared understanding of a domain that formally defines components such as individuals (instances
of objects), classes, attributes and relations as well as restrictions, rules and axioms.

Data fusion aims to integrate multi-sensor data to extract information that cannot be derived
from the data from any single sensor. In remote sensing, data fusion can take place at three different
processing levels: pixel level, feature level and decision level [30]. Pixel level data fusion is a low
processing level merging of raw data from multiple sources into common resolution data. An example
of pixel level image fusion is pan-sharpening, which aims to improve spatial and spectral resolution
along with structural and textural details [11]. Feature level fusion is a high-level fusion that
involves the extraction of objects identified in different data sources using segmentation techniques.
The alignment of similar objects from multiple sources is performed and various spectral, textural
and spatial features are extracted and fused together for statistical or neural network assessment [30].
Decision level fusion merges the extracted information such as selection of a relevant feature from
extracted features. Benefits of data fusion embrace the issues of correlated, spurious, or disparate
data. Highly correlated data can lead to positively biased results and artificially high confidence levels;
spurious data leads to outliers; disparate data leads to conflicting information [7].

In order to describe complex thematic classes and to achieve better classification accuracy, the
feature dimension can be further increased with the addition of derivatives computed from existing
features. For example, several vegetation indices may be calculated using combinations of different
spectral bands. Spectral vegetation indices are commonly used to characterise forests and monitor
forest resources [31]. Further, there is a need to understand the spatial dependency of feature variables
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for e.g., spatial autocorrelation. In understanding spatial patterns, semivariograms may be used to
measure spatial dependencies of feature variables [32].

Increased dimensionality provides new input variables for classification rules, but it also can
make it difficult to identify feature variables that play an important role in classifying a particular class.
Increasing the feature dimensions adds complexity to segmentation and classification. To tackle the
complexity associated with high dimensionality, previous research has proposed the use of filtering
and wrapping approaches for feature selection and reduction [33,34]. In our classification work, we
adopt a wrapper method because of its strong relationships with the classifier. Wrapper methods
are computationally costly compared with filter methods. However, the Boruta algorithm [35] uses
a Random Forest (RF) classifier [36] which makes it relatively fast due to its simple heuristic feature
selection procedure. In the work reported here, we used Boruta algorithm for feature selection. Boruta
is a feature reduction algorithm and it follows an all-relevant variable selection method rather than
a minimal-optimal method, taking account of multiple relationships among variables [35]. Boruta
runs several Random Forest models to obtain a statistically significant division between relevant
and unimportant feature variables. The feature reduction produces a reduced dataset, which can be
expected to improve classification accuracy due to the elimination of noise.

Machine learning (ML) has the potential to contribute to improved feature selection and to
generate implicit knowledge from the fused data. Rules may be extracted using ML very quickly and
extracted rules are often comparable to human-crafted rules [37,38]. Data fusion of multi-sensor data
can assist in defining accurate classification rules. In our work, ML is used to develop new rules by
extracting them from the data itself and applying those rules in an O-GEOBIA framework.

In this paper, we present an ontology-based approach to determine the similarity between two
classes and recommend semantic similarity measures that work for multi-sensor data. Semantic
similarity is one approach to quantifying the similarity between two different classes. Semantic
similarity measures are widely used in Natural Language Processing [39] and Ontology Alignment [40]
and are becoming important components of knowledge-based and information retrieval systems.
Ontology-based semantic similarity measures are categorised into hierarchy-based, information content
based, and feature-based [39].

In our case study, we implemented feature level data fusion from multispectral RapidEye satellite
imagery, airborne LiDAR data, and PI (Photo Interpretation) data. The fusion of multi-sensor data
contributed to the extraction of spectral, spatial, and contextual features, which were used to develop
classification rules in GEOBIA. The Boruta algorithm was employed to extract all relevant variables
in order to define more accurate classification rules. Semantic similarity methods were used to
characterise the similarities between different classes and we identified similarity measures that are
appropriate for an O-GEOBIA framework.

3. Methodology

In this section, we first present an overall methodological workflow for extended ontology driven
object-based image analysis. Next, we explain the contextual experimental design developed for
this study.

3.1. Extension of an Ontology-Driven Geographic Object-Based Image Analysis (O-GEOBIA) Framework

This study proposes an extension of an O-GEOBIA framework [6] that uses ML techniques
method for automatic generation of rules. Figure 1 shows the methodological steps, which comprises:
(1) data pre-processing, (2) feature selection based on ML, (3) rules generation using ML and ontology,
(4) ontology based image classification, and (5) semantic characterisation. These 5 steps are categorised
into 3 different stages. Our research work is largely focussed on Stage 1 (data fusion and feature
selection) and Stage 3 (semantic characterisation). The Stage 2 (rules generation and ontology based
image classification) is applied based on our previous work [6].
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Figure 1. An overall methodological workflow for Ontology-driven Geographic Object-Based Image
Analysis (O-GEOBIA).

Step 1 Data pre-processing

This component comprises a fusion of multi-sensor data, image segmentation and feature
extraction. Different multi-sensor data such as satellite imagery and LiDAR are fused, resulting
in a new group of features. Image segmentation is carried out to delineate image objects. For
each image object, their underlying features value is calculated. Depending on the kind of
data used for fusion, different feature variables, such as spectral and spatial, are extracted. The
output of this module are extracted feature variables from multi-sensor data, which are input
for the next module.

Step 2 Feature selection based on ML

With data fusion, a high number of features are available. In this component, we select relevant
features using machine learning techniques. To achieve this, we use the Boruta algorithm
developed as a wrapper around the Random Forest classifier for identification of important
and relevant variables. In this work, we aim to illustrate the importance of feature selection in
multi-sensor data with experimental results.

Step 3 Rules generation using ML and Ontology

After selection of features, we use the inTrees (interpretable Trees) framework for automatic
extraction of classification rules from the datasets. These rules are added to an ontology along
with the expert-defined rules from the next module.

Step 4 Ontology based image classification

For image classification, the ontological framework proposed in [6] is adopted. The classification
experiments are based on spectral, LiDAR and variogram based features.

Step 5 Semantic characterisation

Finally, for semantic characterisation, semantic similarities between the different domain classes,
as defined in an ontology, are measured. Based on semantic distances, a semantic variogram
is calculated for the characterisation of domain classes. The semantic variogram is used as a
metric to characterise the variability between classes based on semantic distances.

3.2. Contextual Experimental Design

The experimental design for forest characterisation is carried out using three approaches:
(1) feature attributes; (2) spatial relations; and (3) semantic relations:

1. The feature attributes approach helps in the creation of classification rules but ignores spatial
relationships. The measurement data used in this approach include spectral and LiDAR data.
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2. The spatial relationships approach addresses spatial relationships and specifically contributes to
the classification using measures of autocorrelation. A variogram is used in this approach.

3. The semantic relations approach is based on the semantic relations between classes and uses an
ontology. A semantic variogram is used for this approach.

3.2.1. Feature Attributes

Different spectral bands from the sensors are used as feature attributes. From the LiDAR data,
we extracted various derivatives such as elevation, height and intensity. From the PI data (described
in Section 4) we extracted the forest structural group and class (FC2011) information. The feature
variables from different data sources are listed in Table 1.

Table 1. Variables extracted from multi-sensor data for classification.

Type Name

Spectral Brightness
Blue
Green
NIR
Red
Red Edge

LiDAR Canopy Height (CH)
Height
Canopy Intensity (CI)
Intensity
Elevation
Soil Wetness
Wind Fetch

PI data FC2011

Together with the feature variables listed in Table 1, we added spectral vegetation indices
calculated using a different combination of spectral bands as shown in Table 2.

Table 2. Spectral vegetative indices used as feature variables for classification.

Name Equation Notes References

RVI
ρNIR
ρRED

Ratio Vegetation Index Pearson & Miller (1972) [41]

NDVI
ρNIR − ρRED
ρNIR + ρRED

Normalised Difference Vegetative Index Rouse, J.W., Jr. (1974) [42]

NDRE
ρNIR − ρRE
ρNIR + ρRE

Normalised Difference Red Edge Index Gitelson et al. (1994) [43]

SAVI
(1 + L)(ρNIR − ρRED)

ρNIR + ρRED + L
Soil Adjusted Vegetation Index Huete, A.R. (1988) [44]

OSAVI
1.5 ∗ (ρNIR − ρRED)

ρNIR + ρRED + 0.16
Optimised Soil Adjusted Vegetation Index Rondeaux et al. (1996) [45]

NLI
ρ2

NIR − ρRED

ρ2
NIR + ρRED

Non Linear Index Goel & Qin (1994) [46]

MNLI
(ρ2

NIR − ρRED) ∗ (1 + L)
ρ2

NIR + ρRED + L
Modified Non Linear Index Yang et al. (2008) [47]

BAI
1

(0.1− ρRED)2 + (0.06− ρNIR)2 Burn Area Index Chuvieco et al. (2002) [48]

3.2.2. Spatial Relations

Researches have advocated the use of semivariograms for the improvement of object-based image
analysis [32,49,50]. To explore spatial relations for GEOBIA, we applied semivariogram features.
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A semivariogram is used to display the variability between data points as a function of distance.
In remote sensing, semivariograms are calculated as half of the average squared difference between
the reflectance value of a given spectral band separated by a given lag [51]. The semivariogram is
computed as:

γ(h) =
1

2N(h)

N(h)

∑
i=1

[z(xi)− z(xi + h)]2 (1)

where γ(h) is the semivariance value at a certain lag distance h, and where z(xi) and z(xi + h) represent
digital values at location xi and xi + h respectively. N(h) is the number of paired pixels at a lag distance
h. The use of semivariogram features in GEOBIA follows the segmentation of the satellite image.
The semivariogram features used for classification are presented in Table 3.

Table 3. Semivariogram features taken from [49].

Name Equation Notes

RVF
variance

γ1
Ratio between total variance and first semivariance

RSF
γ2

γ1
Ratio between the first and the second semivariance

FDO
γ2 − γ1

h
First derivative near the origin

SDT
γ4 − 2γ3 + γ2

h2 Second derivative at third lag

FML hmax1 First maximum lag value

MFM γmean
max1

=
1

max1

max1

∑
i=1

γi Mean of the semivariogram values up to the first
maximum

VFM
1

max1

max1

∑
i=1

(γi − γmean
max1

)2 Variance of the semivariogram values up to the first
maximum

DMF γmean
max1
− γ1 Difference between MFM and the first semivariance

RMM
γmax1

γmean
max1

Ratio between the first local maximum
semivariance and MFM

SDF γmax1 − 2γ max1
2

+ γ1 Second-order difference between first lag and first
maximum

AFM
h
2

(
γ1 + 2

(
max1−1

∑
i=2

γi

)
+ γmax1

)
− (γ1(hmax1 − h1)) Second-order difference between first lag and first

maximum

DMS hmax2 − hmax1 Distance between the first and the second local
maxima

DMM hmin1 − hmax1 Distance between the first local maximum and the
first local minimum

HA
h
2 (γmax1 + 2(∑max2−1

i=max1+1 γmax2 ))

1
2 (hmax2 − hmax1 )(γmax2 + γmax1 )

Hole area

3.2.3. Semantic Relations

In regular variograms, the variability between the observed numerical values of attributes are
considered. In the case of semantic variograms, the difference between numerical values are replaced
by semantic distances. The calculation of semantic distance is based on the semantic similarities
between two classes. Thus, a semantic variogram is a measure of the variability between two classes
based on the semantic similarities between classes at two different locations as opposed to their spatial
distance [52,53]. The semantic variogram γSD(h) for a lag distance h is computed as:

γSD(h) =
1

2N(h)

N(h)

∑
i=1

sd[z(xi); z(xi + h)]2 (2)
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where N(h) is the number of pairs separated by h, and sd[z(x); z(x + h)] is the semantic distance
between the class of cell xi and class of cell xi + h.

3.2.4. Semantic Similarities

A semantic variogram is calculated based on the semantic distances between classes defined in an
ontology [52]. Semantic distances can be quantified as the semantic similarity between two ontological
classes based on the semantics associated between the objects [54,55]. Semantic similarity measures
have been broadly categorised into hierarchy-based, information content based and feature-based [39].

• Hierarchy-based

The hierarchy-based similarity measure is a distance-based similarity measure that uses the
conceptual hierarchy to calculate the distance between concepts. This distance is a count of the
number of edges on the path or a count of the number of nodes in the path linking the two concepts.
Thus it is also known as the path-based similarity or edge-counting similarity measures [39,55].
The semantic distance is measured by calculating the number of edges or the number of nodes that
have to be traversed in a hierarchy from one concept to other. In Wu and Palmer’s hierarchy-based
measure [56], the similarity is calculated using the distance from the root to the common subsumer
of C1 and C2 using the equation below.

SimWP(C1, C2) =
2× len(root, C3)

len(C1, C3) + len(C2, C3) + 2× len(root, C3)
(3)

In Equation (3), SimWP is Wu and Palmer’s [56] hierarchy-based similarity measure, C1 and C2 are
the concepts whose semantic similarities are measured, C3 is the common subsumer of C1 and C2,
root is the top concept in the hierarchy, and len(root, C3) is the number of nodes on the path from
concept C3 to the root concept.

• Information-content-based

Information content (IC) based similarity measures use a measure of how specific a concept is in a
given ontology. If a concept is more specific, there will be high information content and inversely
less information content with the more general concept. The ontology-based IC uses the ontology
structure itself [57] which is defined in Equation (4) as below.

SimIC(C) = 1− log(numdesc(C)) + 1
log(maxont)

(4)

where SimIC(C) is the Similarity based on Information Content (IC), numdesc(C) is the number of
descendants for concept C and maxont is the maximum number of concepts in the ontology.

• Feature-based

In an ontology, a class can be treated equivalent to another class if both classes have the same
number of equivalent attributes. This means that the two classes are more highly similar when
more common attributes exist between the classes. Thus the feature-based similarity measure is a
degree of class similarity to another class. It is measured using the number of attributes that match
between two classes. This approach consists of combining feature-based similarities within an
ontology. The Tversky index is used to measure similarity based on the distinct features of class A
to B, distinct features of class B to A, and common features of class A and B [58].

SimTversky(C1, C2) =
|A1∩ A2|

|A1∩ A2|+ α|A1\A2|+ β|A2\A1| (5)
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where, A1 and A2 are the sets of attributes of classes C1 and C2; |A1 ∩ A2| is the total number of
formal attributes shared by C1 and C2, |A1| and |A2| represent the number of formal attributes
of C1 and C2; α = β = 1 which is equivalent to Jaccard index.

4. Experiment: Case Study on Tasmanian Forests

4.1. Tasmanian Forest-Type Mapping

Accurate mapping of forest-type is a necessary step for forest inventory estimation, which in
turn supports strategic forest management, carbon storage estimation, biological conservation and
ecological restoration. Historically, Tasmania’s forest-type mapping was carried out using stereoscopic
interpretation of aerial photographs and referred to as photo-interpretation (PI) typing. PI-typing
has served as a fundamental source of information for Tasmania’s forest management [59]. Forest
vegetation was segmented into patches that appeared visually homogeneous to highly skilled and
experienced photo interpreters [59]. Each patch was assigned with a photo interpreted PI-type code
that comprised a series of forest stand elements. These stand elements describe the forest associated
with a patch using a standard set of characteristics such as species type, growth stage, structural group
or forest group. The PI-type coding used in Tasmania is amenable to explicit formalisation and so
provides an opportunity to investigate the modelling of domain knowledge into an ontology and
the application of that ontology to multiple remote sensing data types to automate forest mapping.
Table 4 shows the PI-typing associated with growth stage. Table 5 shows the PI-typing associated
with structural grouping. The structural classification characterises forest stands into one of 12 broad
categories according to their predominance of mature, regrowth, regenerated (regen) and non-eucalypt
components (similar to STANDTYPE).

Table 4. Growth stage of Tasmanian forest.

Code Name Description

Y Young Regeneration Young native regeneration less than 20 years old.
R Regrowth Regrowth or regeneration older than 20 years.
M Mature or Senescing Mature or senescent (over-mature) forest.
U Unknown Unknown growth stage.
N Not Applicable Not applicable.

Table 5. Structural group of Tasmanian forest.

Code Name/Description

MAT Mature Eucalypt Forest, (with neither Regrowth nor aged eucalypt Regeneration)
MUR Mature Eucalypt Forest with Unheighted Regrowth (and without aged eucalypt regeneration)
MAR Mature Eucalypt with Aged Regeneration (from partial logging)
RGM Unaged Regrowth Eucalypt with Mature (and without aged eucalypt regeneration)
REG Pure Unaged Regrowth Eucalypt (and without mature or aged eucalypt regeneration)
RGA Eucalypt Regrowth or older Aged Regeneration, with younger Aged Regeneration (from partial logging)
SIL Even Aged Eucalypt Silvicultural Regeneration (An aged regeneration element, whether heighted or not, with no other

mature or unaged eucalypt regrowth or aged eucalypt regeneration present)
UST Unstocked Eucalypt Forest
RNF Rainforest
ONF Other Native Forest
PLN Plantation
NOF Non Forest

4.2. Assumptions

In this study, we have selected a structural group as our basis for classification. Among the
structural group, we have selected Mature Eucalypt Forest (MAT), Pure Unaged Regrowth Eucalypt
Forest (REG) and Even Aged Eucalypt Silvicultural Regeneration forest (SIL). The key reasons for this
selection is that these forest types cover the majority of the study area and because of their high timber
production value.
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4.3. Ontology for Forest-Type Mapping

The forest-type mapping in this work is accomplished extending an Ontology-driven GEOBIA
(O-GEOBIA) framework [5,6]. For this ontological framework, the ontology is developed using the
structural group classification (Figure 2).

Figure 2. Structural group of a Tasmanian forest used to develop the ontology.

4.4. Study Area

The study area is located in northeast Tasmania, Australia, and is bounded between 517000E and
543000E and 5428000N and 5441500N and covers an area of approximately 356 km2. A RapidEye
satellite image of the study area is shown in Figure 3. The study area contains an almost complete
representation of Tasmania’s diverse forest types. The area has a complete coverage of Photo
Interpretation (PI) and LiDAR data.
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Figure 3. The location of the study area situated in the northeast of Tasmania, Australia.
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4.5. Data

4.5.1. Satellite Image Data

A multispectral RapidEye dataset comprising 25 km × 25 km tiles (24 km + 500 m tile overlap)
with UTM projection and WGS84 Datum was used. The ready to analyse imagery with radiometric,
sensor and geometric corrections was acquired from RapidEye. The imagery has a spatial resolution of
5.0 m and includes five spectral bands (Table 6).

Table 6. RapidEye spectral band description.

Bands Range

blue (0.44–0.51 µm)
green (0.52–0.59 µm)
red (0.63–0.685 µm)
red-edge (0.69–0.73 µm)
near-infra-red (0.76–0.85 µm)

4.5.2. LiDAR Data

Airborne small footprint LiDAR data was acquired during January of 2010 and 2012 using an
Optech Gemini discrete-return scanner operating at a 100 kHz laser repetition rate with a maximum
scan angle off nadir of 15 degrees. The minimum pulse density was 200 per 10 square meters, and
up to four returns were recorded per pulse. The laser scanner detects laser pulses reflected from the
forest and terrain, providing information about the height and vertical stratification of the canopy
elements. The intensity of each returned pulse also indicates the absorptive characteristics of the
canopy elements, which may differ between different species. Both the height and intensity of pulse
returns were used to create a number of variables. Vegetation height was derived by subtracting
the highest returns from a digital surface model derived from the ground returns. A canopy surface
height model and a surface intensity model were derived by fitting a b-spline curve to the highest
and brightest vegetation return at 1 × 1 m spatial resolution. Percentiles 5–100% in 5% increments
(e.g., ZPC90: 90 percentile of height value) and different moments such as Mean (e.g., CI_Mean: Mean
value of Canopy Intensity), Standard Deviation (e.g., Z_SD: Standard Deviation value of height), Skew
(e.g., Z_Skew: Skewness value of height), Kurtosis (Z_Kurt: Kurtosis value of height) and Range (e.g.,
Z_Range: Range value of height) were calculated for pulse height, pulse intensity, canopy surface
height and canopy surface intensity. Additionally, the proportions of all signal returns and vegetation
signal returns above certain heights were calculated for 1 m height increments from 1–5 m and 5 m
height increments from 5-80 m. This produced 168 variables. Due to high levels of redundancy in
this dataset, highly correlated LiDAR variables were removed with domain expert’s recommendation,
leaving 16 variables for inclusion in the models.

4.5.3. Photo Interpretation (PI) Data

For the past 50 years, PI-typing has served as a fundamental source of information for Tasmania’s
forest management [59]. PI-type codes provide a definition of height-class, crown density-class,
stem-count class or condition-class that can be used to characterise each forest class. These forest
classes have been grouped into the structural group presented in Table 5. The structural group MAT has
11 different forest classes categorised on the basis of their height, density and crown cover. For instance,
“E1a&b” is one of the forest class where E = Mature Eucalypt; 1 = average height 55–76 m; a = 70–100%
crown cover; b = 40–70% crown cover. Similarly, other forest structural groups are derived from the
forest class defined in PI-data.
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5. Implementation

The methodology described in Section 3 has been implemented for Tasmanian forest-type
mapping using three different datasets. The overall steps are described in sub-sections below:

5.1. Data Fusion, Segmentation and Feature Extraction of Multi-Sensor Data

In this work, data fusion is carried out at the feature level. In feature level data fusion, at first
the image is segmented into objects using segmentation techniques. Next, for each segmented image
objects, features are extracted from different data sources. We fused three different types of data,
namely a RapidEye satellite image (Tiff file), LiDAR data (RData file), and Photo Interpretation data
(Shapefile) as shown in Figure 4.

.RData .TIF .SHP

LiDAR Satellite Image PI Data

Data Fusion 
+ 

Segmentation 
+ 

Feature Extraction

Metric to 
TIFF 

Converter

.CSV

1. Data Fusion + Segmentation + Feature Extraction

Figure 4. Data fusion, Segmentation and Feature extraction.

For segmentation and feature extraction, eCognition Developer Version 9.3.0 from Trimble,
Germany was used. A chessboard segmentation technique was used for segmenting different
forest-types in the RapidEye Satellite image. The object size parameter for chessboard segmentation
was set to 6000 pixels (larger than image size) and thematic layer set to be taken from PI data.
This ensures that the segmented image objects boundaries agree with the extent of PI data. From
the RapidEye satellite image, different spectral indices were extracted as feature variables. LiDAR
data was used to extract intensity, elevation, and their statistical metrics such as percentile and
proportional values. For the calculation of semivariogram and related texture features, we used
FETEX 2.0 from Geo-Environmental Cartography and Remote Sensing Research Group (CGAT),
Spain [60]. PI-data was used to extract forest thematic features: class, structural group, growth stage
and vegetation description.

5.2. Feature Selection

The fusion of multi-sensor data sources resulted in a large number of potential independent
variables. With a high number of variables, the model will suffer from redundant features, overfitting
and slow computation. However, there are two problems associated with reducing the dataset
dimensionality: finding a minimal set of variables that are optimal for classification known as
the ‘minimal-optimal’ problem and finding all variables relevant to the target variable known as
the ‘all-relevant’ problem [61]. In this work, feature selection was performed using the Boruta
package developed in R [62] (Figure 5). The Boruta algorithm [35] is implemented for finding all
relevant variables.
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Spectral Bands + 
Indices

LiDAR 
Derivatives

PI 
Attributes

Random Forest 
Important Variables

2. Feature Selection

.CSV

Boruta 
Relevant Variables

Selected Features

Semivariogram 
Features

Figure 5. Feature Selection from multi-sensor data using machine learning techniques.

In the Boruta algorithm, duplicate copies of all the independent variables are created and shuffled.
These duplicated variables are termed shadow variables. Next, a random forest classifier is used
to identify the variable importance which results in a Z score. The Z score is the mean of accuracy
loss divided by standard deviation of accuracy loss. The maximum Z score (MZSA) is calculated
among those shadow variables. All the variables having importance lower than MZSA are tagged as
unimportant and those higher than MZSA are tagged as important. The process is repeated until all
the variables are tagged as important or unimportant. Based on the result from the Boruta algorithm,
the important variables are treated as all relevant variables. To check the consistency and robustness of
the model, we used k-fold cross validation approach to run Boruta. The dataset was randomly split
into 10 equal size subsamples with 75% of data was used for training and 25% of data was used for
validation. The selected all relevant variables serve as the input variables for ML techniques to extract
classification rules.

5.3. Rules Generation

ML techniques are used to discover knowledge from data that are not conducive to human
analysis, have high feature dimensions and a high number of predictor variables. Supervised data
helps to identify potential classification rules. In our work, forest class information from PI-Data is
used as supervised data to train the ML model. In a nutshell, we aim to leverage ML to automatically
extract classification rules out of the available remote sensing datasets.

Random Forests (RF) as an ensemble algorithm can produce a very good predictive result but it
acts as a black box model. With the thousands of decision trees as a forest, the ease of interpretation
of a single model is lost. The inTrees framework uses the following steps to close the gap of model
interpretability by converting the ensemble of models into a single model [63]. In this framework, the
rules are extracted from each decision tree in the tree ensemble. The rules are then ranked, based on
their frequency (measuring the rule’s popularity), error (defining incorrectly classified instances), and
length of the rule conditions (representing complexity). The rules are then pruned to remove irrelevant
variable value pairs from the rule conditions. The selection of relevant and non-redundant conditions
is performed using a feature selection approach. Finally, these processed rules are summarised into a
simple set of if/then rules. In this work, we used the inTrees framework to prune large rulesets with
redundant rules extracted from RF into simplified rules ready for the classification task (Figure 6). Such
rules are transformed into SWRL (Semantic Web Rule Language) [64] to be used by the ontological
reasoner for classification.
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Machine learning
Techniques

(RF + inTrees)

Data specific
Rulesets

Features Extraction

.CSV

3. Rules Generation

Figure 6. Use of Machine learning technique for classification rules generation.

5.4. Ontology-Based Image Classification

In the ontology-based image classification, we defined concepts, relations among them and
instances to represent a domain of interest using the machine readable Web Ontology Language
(OWL) [65]. The knowledge captured in a PI-type coding has not been organised in a formal
machine-readable format to be used by forest planners in past applications [59]. In this work, we used
the PI-type coding to model the Tasmanian forest domain knowledge for forest mapping. Subsequently,
we extract potential instances as the segmented image objects from the data pre-processing module.
The rules are defined in SWRL specification [64] as acquired from the rule generation module. The
ontological framework [6] for the representation and reasoning over ontologies using Pellet reasoner [66]
has been used, which executes the developed SWRL rules using the reasoning tools (Figure 7).

4. Ontology‐based Image Classification

Classification using 
Reasoner

Instances

Concepts

Rules

Domain knowledge (Experts)

Segmentation + Feature Extraction

Machine learning rules generation

Ontology

Classified Image 
Objects

Figure 7. Ontology-based image classification framework.

6. Results

The classification results are based on the use of spectral indices, LiDAR derivatives and variogram
features individually and finally with a combination of all three cases.
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6.1. Feature Selection

The result from the application of the Boruta algorithm [35] to identify the relevant variables is
presented in this section. The relevant feature selection experiment was implemented in five stages: (i)
Using only spectral bands (Figure 8a); (ii) Using spectral band and vegetative indices based on the
spectral bands (Figure 8b); (iii) Using LiDAR derivatives (Figure 8c); (iv) Using variogram features
(Figure 8d); and (v) combining all the features from the previous four cases (Figure 9). In Figure 8a,c,
all the variables have higher importance than shadow variables. Thus, in these cases all the variables
are considered relevant and are represented by a green boxplot. The variables in the yellow boxplot
shown in the Figures 8b,d and 9 are considered tentative variables whereas red boxplot variables are
determined as unimportant attributes.
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Figure 8. Boruta plot using (a) Spectral features (b) Spectral and Vegetative Indices (c) LiDAR
derivatives (d) Variogram features. The x-axis shows the feature variables and y-axis shows importance
in terms of Z-scores. In this figure, green boxplots are relevant variables, red boxplots are unimportant
variables, yellow boxplots are tentative variables and the three blue boxplots represent maximum,
median and minimum importance for shadow variables. Variables with an importance value lower
than shadowMax are tagged as unimportant and higher than shadowMax are tagged as important.
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Spectral
Vegetative Indices

Variogram
LiDAR Derivatives

Shadow

Figure 9. Boruta plot with all feature variables (spectral, vegetative indices, lidar and variogram).
The x-axis shows the feature variables coloured according to data sources and the y-axis shows
importance in terms of Z-scores. In this figure, green boxplots are relevant variables, red boxplots are
unimportant variables, yellow boxplots are tentative variables and the three blue boxplots represent
maximum, median and minimum importance for shadow variables. Variables with an importance
value lower than shadowMax are tagged as unimportant and higher than shadowMax are tagged
as important.

Figure 9 shows that 7 variables (Blue, CI_Mean, FDO, MFM, NDVI, Z_Skew, VFM) are confirmed
important, 9 variables are confirmed unimportant and remaining 32 as tentative variables. The number
of classifier (Random Forest) runs during the Boruta algorithm execution is limited by the maxRuns
argument (maxRuns = 18). This leaves attributes that need to be judged important or unimportant
are marked as tentative variables. A diagnostic plot depicting the fluctuation of variable importance
after several iterative runs of the Boruta algorithm is shown in Figure 10a. In Figure 10b, a scatter
plot shows the importance of each variables at each classifier run. In the plot, the green lines with
higher importance than shadowMax variables represent relevant variables. In the first few runs some
important variables (CI_Mean, NDVI) are below shadowMax variable as shown in Figure 10c and
an unimportant variable (SMIN) is above shadowMax variable as shown in Figure 10d. Thus, the
Boruta algorithm runs multiple Random Forest before arriving at a statistically significant decision.
The selection criteria for the maxRun parameter is the Random Forest classifier run that results in the
minimum number of variables and maximum classification accuracy. For instance, maxRun limits of
18 and 500 resulted in 7 and 26 confirmed important variables but with the same classification accuracy
of 82.57%.
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Figure 10. Diagnostic plot of the Boruta algorithm showing (a) line plot of Z-scores (importance) at
different Random Forest run for each variable (b) scatter plot of Z-scores (importance) at different
Random Forest run for each variable (c) important variables appearing below shadowMax at certain
instance of Random Forest run (d) unimportant variables appearing above shadowMax at certain
instance of Random Forest run. In the figures, green lines and points represent important variables, red
lines and points represent unimportant variables, yellow lines and points represent tentative variables
and the three blue plots represent maximum, median and minimum importance for shadow variables.

6.2. Classification Accuracy Assessment

A confusion matrix is used to assess image classification accuracy. The matrix is created for three
different forest-type classes MAT, REG and SIL where the ground truth data is taken from PI data.
The accuracy assessment is carried out as 5 experiments based on individual features and combination
of all, as shown in Table 7.
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Table 7. Confusion matrix between Spectral, Vegetative indices, LiDAR, and Variogram. In the table,
classes M, R and S represents MAT, REG and SIL respectively. The OA represents Overall Accuracy.

Class
Spectral Spectral + Indices LiDAR Variogram All

M R S M R S M R S M R S M R S

M (MAT) 3 4 0 4 3 0 6 9 0 2 3 0 6 2 0

R (REG) 20 81 1 19 82 1 17 74 1 21 82 1 17 83 1

S (SIL) 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

OA 77.06% 78.90% 73.39% 77.06% 81.65%

We experimented to compare the overall classification accuracy based on the features from
different sensors. The overall accuracy of spectral variables extracted from satellite imagery is 77.06%.
Next, we calculated standard vegetative indices using different spectral bands, which improved the
classification accuracy to 78.90%. Using LiDAR data without spectral features achieved an overall
accuracy to 73.39%. In the variogram based experiment, the accuracy is increased to 77.06%, similar
to that with spectral feature based first experiment. In the final experiment, spectral, LiDAR and
variogram features are used which showed the highest accuracy of 81.65%. The results suggest that
our aim to use data fusion to increase the number of feature variables for higher classification accuracy
is achieved. To tackle the feature dimension issue, the Boruta algorithm was then applied to extract
relevant variables. The subsequent classification, carried out using relevant variables, resulted in a
slightly higher accuracy of 82.57% (Table 8). Only one SIL plot is available in the given test dataset
which was not correctly classified in any of the experiments. However, we included this in our
experimental design as SIL is one of the representative forest types in Tasmania.

Table 8. Confusion matrix for classification result based on all the variables available and relevant ones
extracted from the Boruta algorithm.

Class
All Available Variables Relevant Variables

M R S M R S

M (MAT) 6 2 0 8 3 0

R (REG) 17 83 1 15 82 1

S (SIL) 0 0 0 0 0 0

OA 81.65% 82.57%

6.3. Semantic Similarity Assessment

The first step to determine the semantic similarity between classes is to find out the common
attributes. Figure 11 shows the sharing of attributes for each class.

The hierarchy-based similarities investigated in this work are based on Wu and Palmer [56] using
Equation (3). For the feature-based similarities calculation, the Tversky index [58] using Equation (5)
is used.

Our results indicated that feature-based similarity measures were more capable of differentiating
among classes than hierarchy-based methods (Table 9). The Wu and Palmer’s hierarchy-based
similarity has the same index value of 0.25 for all the pairs of classes without being able to detect any
dissimilarity. This is explained by the equal hop distance between classes in the hierarchy. The Tversky
feature-based similarity measure showed significant differences between classes. Classes pairs that
match a higher number of attributes result in a higher similarity index value. The results show that
classes MAT and REG have a higher index with more attributes matched.
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hasBrightness

MAT

REG SIL

hasCanopyIndex hasElevationhasBluehasIntensityhasNDVI hasRed

Figure 11. Ontological graph showing the concepts and associated attributes. This graph shows the
sharing of the attributes of different concepts. The concept “MAT” and “REG” has the following
common attributes: {hasCanopyIntensity; hasIntensity; hasBrightness; hasBlue}. The attributes
“hasNDVI” and “hasRed” only belong to concepts “MAT” and “REG” respectively. The attributes
“hasElevation” belongs to all 3 concepts.

Table 9. Comparison between similarity measures.

Wu & Palmer Tversky

MAT REG 0.25 0.72
SIL 0.25 0.17

REG MAT 0.25 0.72
SIL 0.25 0.17

SIL MAT 0.25 0.17
REG 0.25 0.17

7. Discussion

7.1. Importance of Feature Selection in the Fused Multi-Sensor Data

With the fusion of multi-sensor data, the feature dimension increases and provides more variables
available to use in classification. The fusion process introduces non-relevant and redundant variables
that increases complexity and computational load. In tackling such circumstances, a feature selection
algorithm is used to reduce the number of variables without compromising overall classification
accuracies. In Table 8, we show how the classification accuracy is increased by 0.92% even when the
feature variables are reduced from 48 to 7.

Boruta offers an improvement over the Random Forests variable importance measure. In Random
Forests, the calculated Z score is not directly related to the statistical significance of the variable
importance. Boruta runs Random Forest on both original and random attributes and computes the
importance of all variables. Since the whole process is dependent on permuted copies, we repeat the
random permutation procedure to get statistically robust results for our fused datasets. The result
presented in Table 8 shows how the classification accuracy is increased from 81.65% to 82.57% when
using simple RF with all features over relevant features extracted using Boruta. Considering the scope
of this work, no comparative evaluation of Boruta [35] with other feature selection mechanism such
as Altmann [67], r2VIM (Recurrent relative variable importance) [68] or Vita [69] was carried out.
The current research shows that Boruta efficiently identifies relevant variables in high-dimensional
datasets [70,71].
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7.2. Evaluation of Semivariogram Features

The semivariogram has been applied in remote sensing to extract texture features and the spatial
structure for image classification. The usage of semivariograms varies from different types of sensor
data to different applications such as forest structure mapping [72] or classification of land use [49],
land cover [73] or vegetation communities [74]. With the advent of GEOBIA, semivariograms have
also been implemented in object-based image analysis [32,49,50]. To achieve harmony with GEOBIA,
the extraction of the semivariogram is performed for image segments instead for a certain size
window or kernel. Thus, we can claim that this is an object-based semivariogram as the calculation of
semivariogram is done within the boundary of each image segment. Within the extent of a segmented
object, a sequence of semivariance values is calculated, from which variogram variables will be
extracted. However, we have not experimented the variation of segments area and robustness in
resulting scenarios while selecting variogram variables. This is not tested statistically in this study
considering it is beyond the scope of the study.

In this study, we tested the efficiency of semivariogram derived features as proposed
by [49]. The classification accuracy of object-based image classification is compared between using
’semivariogram features’ vs. ’other sets of features extracted from spectral and lidar data’. The result
shows that the overall accuracy when using only the semivariogram derived features is 77.06%, which
is equivalent to that of spectral features (77.06%). The feature selection algorithm Boruta showed
the slope of the first two lags (FDO), mean and variance of the semivariogram values up to the first
maximum (MFM and VFM) to be relevant variables.

7.3. Selection of Semantic Similarities for Multi-Sensor Remote Sensing Data

GEOBIA is intended to align with the methods by which humans identify and classify
objects [2,75,76]. For the success of an ontological GEOBIA framework, the ontology needs to be
developed with a focus on human activities in geographical space [23]. In image interpretation, there
is the lack of assessment of semantic likeness that occurs between image object classes. Ontology can
measure similarity that is based on semantics [77]. Ontology-based semantic similarity quantifies how
taxonomically two classes based on their features are similar. In this regard, applications developed
based on ontological domain knowledge require quantification of relationships between ontological
concepts [54].

Nevertheless, there exist different ontology-based semantic similarity approaches. To understand
and select the suitable method for a specific application is a challenge. For determining the method that
suits our forestry mapping application, different semantic similarity measures were studied and tested.
This work develops an innovation purely in ontological space—in calculating a semantic similarity
measure. In ontology-based semantic similarity measures, there are edge-counting, features based and
information content methods. The computation of these methods is simple and efficient as they only
exploit the semantic network provided by the ontology.

Among these, the edge-counting similarity measure is the simplest and is computationally
efficient [39]. However its similarity index is not suitable for the ontological model with the simple
hierarchical structure as it cannot exploit complex semantics hidden within the class. This was clearly
shown in the result presented in the Table 9 where the semantic similarity measures calculated were
the same for all the classes in the same hierarchy.

The Information Content approach is based on capturing implicit semantic information as a
function of concept distribution in corpora [39]. Such an approach is useful in natural language
processing work where the association between the words found in a corpus and concepts are used
to compute accurate concept appearance frequencies. In our work, where the image classification is
carried out on the basis of feature attributes, the information content approach is not applicable.

Feature-based methods try to overcome the limitations of hierarchy-based measures by
considering ontological features of each class. Feature-based approaches thus rely on a taxonomic
hierarchy, relationships and attributes to determine the similarity between classes. Table 9 shows
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how a feature-based approach (Tversky) makes the distinction between different classes compared to
edge-counting (Wu & Palmer). Similar results were presented where feature-based semantic measures
performed better than the edge-counting measures [77].

7.4. Limitations

In this work, we employed semantic similarities based on the ontological data. The applicability
and accuracy of the similarity measures depend on the availability of well-defined domain ontologies.
This means that poor construction of the domain ontology will result in non-robust semantic similarities
between the domain classes. Also, the similarity is calculated based on the taxonomical hierarchy
relations. The non-taxonomic relations (e.g., object x is part of object y) that can help to determine
better similarity measures are missing. The discovery of non-taxonomic relations is a fundamental
point in domain knowledge construction and with its addition, semantic similarity measure will be
improved [78].

Among the different semantic similarity approach, we used a feature based semantic similarity
approach. Each feature used in finding the similarities can have a varied contribution in classifying
different classes. This phenomenon of feature contribution per class has not been considered in this
work. To overcome this limitation, each feature can be given a certain weight based on the contribution;
this is a topic for future research.

8. Conclusions

This research has extended an ontology based GEOBIA framework described in [6] to the case of
a data fusion environment. The innovation in this study is that multi-sensor data has been fused into
an integrated ontological image analysis framework. The developed framework incorporates spectral,
spatial, textural and semantic features. The issue of high feature dimensionality raised with data fusion
is addressed using a machine learning technique, in our case the Boruta algorithm. The algorithm
determines the relevant features used for classification. Semantic similarity techniques are exploited
for the characterisation of different forest-type classes. A semantic variogram is used to show the
spatial and semantic relations of the different forest-type classes. The GEOBIA community and the
science of O-GEOBIA can benefit from these types of extension within a GEOBIA methodology to
tackle the issues of multi-sensor data fusion.
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Abbreviations

The following abbreviations are used in this manuscript:

DEM Digital Elevation Model
DSM Digital Surface Model
FC2011 Forest Class 2011
GEOBIA Geographic Object-Based Image Analysis
IC Information Content
inTrees interpretable Trees
LAS file LASer file
LiDAR Light Detection and Ranging
MAT Mature Eucalypt Forest
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ML Machine Learning
MZSA Maximum Z Score
O-GEOBIA Ontology-driven Geographic Object-Based Image Analysis
OWL Web Ontology Language
PI Photo Interpretation
REG Pure Unaged Regrowth Eucalypt Forest
r2VIM Recurrent relative variable importance
RF Random Forests
SIL Even Aged Eucalypt Silvicultural Regeneration forest
SWRL Semantic Web Rule Language
UTM Universal Transverse Mercator
WGS84 World Geodetic System 1984
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