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Abstract: Structural analysis of lunar regolith not only provides important information about lunar
geology but also provides a reference for future lunar sample return missions. The Lunar Penetrating
Radar (LPR) onboard China’s Chang’E-3 (CE-3) provides a unique opportunity for mapping the
subsurface structure and the near-surface stratigraphic structure of the regolith. The problem of rock
positioning and regolith-basement interface highlighting is meaningful. In this paper, we propose an
adaptive rock extraction method based on local similarity constraints to achieve the rock location and
quantitative analysis for regolith. Firstly, a processing pipeline is designed to image the LPR CH-2 A
and B data. Secondly, we adopt an f-x EMD (empirical mode decomposition)-based dip filter to extract
low-wavenumber components in the two data. Then, we calculate the local similarity spectrum
between the filtered CH-2 A and B. After a soft threshold function, we pick the local maximums in
the spectrum as the location of each rock. Finally, according to the extracted result, on the one hand,
the depth of regolith is obtained, and on the other hand, the distribution information of the rocks in
regolith, which changes with the path and the depth, is also revealed.
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1. Introduction

Chang’E-3 landed at 340.4875 ◦E, 44.1189 ◦N on the Moon on 14 December 2013 in a new region
that has not been explored before in the largest basin—the Mare Imbrium [1]. The dual-frequency
Lunar Penetrating Radar aboard the Yutu Rover provides a unique opportunity to map the subsurface
structure to a depth of several hundreds of metres from the low-frequency channel (CH-1, 60 MHz)
and the near-surface stratigraphic structure of the regolith from the high-frequency channel (CH-2A
&CH-2B, 500 MHz). The LPR also provides an accurate detection result with high resolution from
high-frequency observations [2].

LPR data processing and initial results were first presented by NAOC [3]. Initial analysis of the
LPR observations, especially that from the CH-1, indicates that there are more than nine subsurface
layers from the surface to a depth of ~360 m [1]. The onboard Lunar Penetrating Radar conducted
a 114-m-long profile, which measured a thickness of ~5 m of the lunar regolith layer and detected
three underlying basalt units at depths of 195, 215, and 345 m. The radar measurements suggest an
underestimation of the global lunar regolith thickness by other methods and reveal a vast volume from
the last volcanic eruption [4]. Fa et al., Lai et al. and Zhang et al. speculated the near surface structure
by processing the raw CH-2B data [5–7]. Dong et al. and Zhang et al. calculated the parameters of the
regolith [8,9].
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The previous papers mainly studied the geological stratification and parameter inversion of
regolith by using CH-2B data. The quantity and location of rocks in regolith have not been researched
and CH-2A data have not been fully used. The quantity and location of rocks in regolith not only
help to understand the evolution of regolith on the landing site but also provide a priori information
for the further CE-5 plan of regolith collection. The rocks in lunar regolith are the break point,
causing diffractions in LPR data. The kinematics characteristics of these diffractions are quite different
from those of main reflections, which is expressed as a hyperbola in common offset sections [10,11].
The vertex position of the diffractions indicates the location of rocks. Therefore, to reach this goal, a
method for extracting low-wavenumber components of diffractions and taking full advantages of both
LPR CH-2A and CH-2B data is needed.

Huang et al. [12] uses empirical mode decomposition (EMD) to prepare stable input for the Hilbert
transform. The aim of EMD is stabilizing a nonstationary signal and decomposing the nonstationary
signal into fast and slow oscillation components, called intrinsic mode functions (IMFs). 1D EMD
can be an adaptive band-pass filter, dividing the dataset into the IMFs with different frequency range.
As the property of EMD, Bekara and van der Baan [13] propose f-x EMD to attenuate the random and
coherent noise. Cai et al. [14] propose the guideline of t-f-x EMD denoising. Chen et al. [15] add an
autoregressive (AR) model to f-x EMD to improve the applicable conditions and adopt f-x EMD as an
effective tool for dip filter.

Local similarity is a typical local attribute and promising for quantifying the similarity of two
datasets in a non-instantaneous and non-global manner [16]. Different from traditional attributes, it
is calculated using every element of the LPR data and its adjoining elements within a definite scope,
which has been utilized in many signal processing fields such as image contrast [17,18], time-frequency
analysis [19], noise attenuation [20,21], deblending [22]. The basic criterion of image contrast in
this method is the different similarity between signal and noise, i.e., the signal denotes a large
value in the local similarity spectrum. In this way, noise and artifacts can be attenuated by using a
threshold function.

In this paper, we propose an adaptive rock extraction method based on local similarity constrains
to achieve the rock location and quantitative analysis for regolith. Firstly, a processing pipeline is
designed to image the LPR CH-2 A and B data. Secondly, we adopt f-x EMD-based dip filter to
extract low-wavenumber components in the two data. Then, we calculate the local similarity spectrum
between the filtered CH-2 A and B. After a soft threshold function, we pick the local maximums in
the spectrum as the location of each rock. Finally, according to the extracted result, on the one hand,
the depth of regolith is obtained, and on the other hand, the distribution information of the rocks in
regolith, which changes with the path and the depth, is also revealed.

2. Materials and Methods

2.1. LPR Data Processing

Yutu Rover released by CE-3 was the first soft landing on the Moon since the Soviet Union’s
Luna 24 mission in 1976. To be specific, the Yutu rover explored the surface and subsurface of the
landing site in the northern part of the Mare Imbrium using its four main instruments: the Panoramic
Camera, Lunar Penetrating Radar (LPR), Visible–Near Infrared Spectrometer (VNIS), and Active
Particle-Induced X-ray Spectrometer (APXS). Its track extends to 114.8 m (Figure 1) near a young crater.
In this part, the data processing results of the LPR are reported.
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Figure 1. Yutu’s path on the Moon. The context image was taken by the descent camera on the CE-3 
lander. The red star shows the landing site. The blue line shows the path. 

Aiming at the near-surface stratigraphic structure of the regolith, CH-2 antenna is selected. The 
CH-2 antenna is mounted at the bottom of lunar rover (Figure 2a), which is about 30 cm away from 
the ground. Figure 2b shows the structure of the CH2 antenna. As can be seen from the figure, the 
CH2 antenna has three antenna elements. The antenna elements are arranged side by side in a 
metal back cavity which is divided into three individual cavities. One antenna element is used to 
transmit EM waves and the other two are used to receive the EM waves. Each antenna element is 
336 mm in length and 120 mm in width, and the space between the antenna elements is about 160 
mm. The height of the back cavity of the antenna is reduced to 22 mm from a quarter of the center 
wavelength in order to ensure the lunar rover can maneuver over obstacles [2]. 

 

Figure 2. (a) The position of CH-2 antenna on the rover (b) The structure of the CH2 antenna. 

Figure 1. Yutu’s path on the Moon. The context image was taken by the descent camera on the CE-3
lander. The red star shows the landing site. The blue line shows the path.

Aiming at the near-surface stratigraphic structure of the regolith, CH-2 antenna is selected.
The CH-2 antenna is mounted at the bottom of lunar rover (Figure 2a), which is about 30 cm away
from the ground. Figure 2b shows the structure of the CH2 antenna. As can be seen from the figure, the
CH2 antenna has three antenna elements. The antenna elements are arranged side by side in a metal
back cavity which is divided into three individual cavities. One antenna element is used to transmit
EM waves and the other two are used to receive the EM waves. Each antenna element is 336 mm in
length and 120 mm in width, and the space between the antenna elements is about 160 mm. The height
of the back cavity of the antenna is reduced to 22 mm from a quarter of the center wavelength in order
to ensure the lunar rover can maneuver over obstacles [2].
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As the tight arrangement of the antennas, two sets of 500 MHz data (CH-2A & CH-2B) are achieved
and their data quality should be similar. However, due to the complex acquisition environment and
inappropriate instrument parameter settings, the CH-2A data has a lower SNR (signal-to-noise ratio)
than the CH-2B data. Therefore, the former papers only focused on the CH-2B data. In order to make
full use of CH-2A and CH-2B data, according to the acquisition parameters, the actual situation, and the
data quality, the LPR data processing pipeline is designed (Figure 3). Note that the non-uniform patrol
mode and uninterrupted collection of the rover cause the problem of uneven sampling. After data
editing and processing, the high-resolution radar images with 497 samples, 4595 traces and 0.02 m
spatial interval are accessible. The IDs for the data from Lunar Penetrating Radar are listed in
Appendix A in the Supporting Materials.
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The previous papers mainly studied on the geological stratification and parameter inversion.
The quantity and location of rocks in regolith have not been researched. The quantity and location
of rocks in regolith not only help to understand the evolution of regolith on the landing site but also
provide a priori information for the further CE-5 plan of regolith collection. In the following method,
we propose a rock extraction method based on local similarity constrains to achieve the rock location
and quantitative analysis for regolith.

2.2. An f-x Domain EMD-Based Dip Filter

EMD can provide an empirical decomposition of a non-stationary signal. These decomposed
sub-signals are separated based on oscillation frequency and called IMFs. A stable IMF has a constant
instantaneous frequency and narrow-band waveform, satisfying two conditions [12]: (1) the number
of extremes and zero crossings in the data series are either equal or differ by one, and (2) at any points,
the mean value of the envelope defined by the local maxima and the local minima is zero.
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In the 1D case, the signal is decomposed into several sub-signals cn(t) with different frequency
ranges, which can be written as

s(t) =
N

∑
n=1

un(t) + r(t), (1)

where s(t) is the input signal and un(t) is the decomposed IMFs. r(t) denotes the residual and N is the
IMF number.

As the advantages of signal decomposition, Bekara and van der Baan [13] adopt EMD in f-x
domain to suppress random noise and steep dip coherent noise. They consider the noise energy is
dominant in the high wavenumber portion in the f-x domain. The high wavenumber portion presents
the fast oscillation of each frequency slice. Based on the separation between the noise and signal, noise
can be attenuated by simply removing IMF1 from noisy data. The detailed process is shown as follows:

(1) Set the size of the time window.
(2) Pick a time window and adopt 1D forward Fourier transform along the time direction.
(3) Pick a frequency slice and separate it into real and imaginary parts.
(4) Compute IMF1s for real and imaginary parts to obtain the filtered parts.
(5) Compose the filtered frequency slice.
(6) Repeat (4)–(5) for each frequency slice.
(7) Adopt 1D reverse Fourier transform along the time direction.
(8) Repeat (2)–(7) for each time window.

The two advantages of f-x EMD are convenience and stability. The f-x EMD is a data-driven f-k
filter and does not require the predefined muting zone in the f-k domain, which is easily embedded
into field data processing. Moreover, unlike convolutional operator-based denoising methods (such as
f-x predictive filter), f-x EMD can deal with an irregular spatial sampling dataset [13,23]. For data
acquisition of LPR, irregular spatial sampling is inevitable because of the complex terrain, finite time
and expensive cost. Therefore, f-x EMD is a promising tool in LPR data processing.

It should also be noted that the choice of the removed IMFs can be more than one. The choice is
determined by dispersion of high wavenumber components and noise level. When the target noise is
located in high wavenumber components or the noise level is low, the number of removed IMFs can
be small. Conversely, more IMFs should be removed.

Since the dip angle of the signal is related to wavenumber, f-x EMD can be used as a dip filter [15].
The different IMFs present different dip angle ranges, i.e., high dip components locate in the low IMFs
and low dip components locate in the high IMFs. If we divide the IMF set into several subsets, the
dataset is separated by the dip angle. Therefore, we define the dip filter using f-x EMD as follows:

ũi( f , x) =



ε1ui( f , x) i ∈ D1

ε2ui( f , x) i ∈ D2
...

...

εmui( f , x) i ∈ Dm

, (2)

Λ( f , x) =
N

∑
i=1

ũi( f , x), (3)

where Λ( f , x) is the filtered frequency slice and ui( f , x) is the ith separated IMF. Di is the ith dip
subsets and m is the number of divided subsets. εi denotes the weighting factors.

Figure 4 demonstrates the results of three types of dip filters (high-pass, mid-pass and low-pass)
working on a plane wave model. In the synthetic data (Figure 4a), the dataset contains three dip sets.
After the three dip filters, different dip events (Figure 4b–d) are well extracted. Table 1 shows the
detailed parameters of the three filters. The LPR data are acquired in a constant-offset way, whose
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source can be considered as wave plane. The kinematics characteristics of the main reflection events
are similar to that of the terrain. The rock in lunar regolith is the break point, causing diffractions in
LPR data. The kinematics characteristics of these diffractions are hyperbola. In a word, the reflection
events are low dip and smooth, whereas the diffraction events show a high dip. The diffraction point
extraction can be transformed into a problem of steep dip decreasing. Therefore, we should select a
simple low-pass dip filter, with m = 0, ε1 = 0, ε2 = 1, D1 = {1, p}, D2 = {p + 1, . . . , N}. The key
parameter is the number of removed IMFs p.

Table 1. Parameter list for three types of dip filters.

Type N m εi Di

High-pass 6 2 ε1 = 1, ε2 = 0 D1 = {1}, D2 = {2, . . . , 6}
Mid-pass 6 3 ε1 = 0, ε2 = 1,ε3 = 0 D1 = {1}, D2 = {2}, D3 = {3, . . . , 6}
Low-pass 6 2 ε1 = 0, ε2 = 1 D1 = {1, 2}, D2 = {3, . . . , 6}
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2.3. Rock Extraction Based on Local Similarity Constraint

For quantitative analysis, the problem of rock positioning is commonly picking the local
maximums in the filtered data. However, as shown in Figure 2, the preprocessed LPR CH-2 A
and B data are interfered with by noise. The strong coherence of noise leads to many noise-caused
local maximums, which reduces the accuracy of rock extraction. To take full advantages of both LPR
CH-2A and CH-2B data and reduce the effects of noise, we introduce local similarity (see Appendix B)
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in the process of rock positioning. The basic idea is the similarity difference between the signal and
noise in two similar datasets. We consider the two noisy datasets (D) are a totalization of noise (N)
and signal (S):

DA = SA + NA, (4)

DB = SB + NB, (5)

The noise is caused by ambient disturbance, instrument defect, etc., which has little relationship
with underground structure, and the signal is just the opposite. In a word, if the observing system
is the same, the signal will have larger similarity than the noise. We calculate the local similarity
spectrum between the two data points to quantify the difference in similarity. We consider the local
similarity (c) between two noisy datasets as

c(DA, DB) = c(SA, SB) + c(NA, NB), (6)

and Equation (6) can be easily modified as

c(SA, SB) = c(DA, DB)− c(NA, NB). (7)

We utilize a soft threshold function modifies to attenuate the noise interference. We obtain an
approximate signal-dominated local similarity spectrum:

~
ci,j(SA, SB) =

{
ci,j(DA, DB)− ε ci,j(DA, DB) > ε

0 ci,j(DA, DB) ≤ ε
. (8)

where ε is the threshold value and i, j is the sample coordinates in the time-space domain.
In Figure 5, we add noise with different noise levels into the same data (Figure 4a) to obtain two

noisy datasets with similar useful signal (Figure 5a,b). The added noise is Gaussian random noise and
the distribution is N(µ, σ) =N(0, 0.001) and N(µ, σ) =N(0, 0.0003) , respectively. Then, we calculate
the similarity spectrum (Figure 5c) between the two noisy data and apply a soft threshold function to
it. In this spectrum, we observe a large similarity difference between signal and noise. After the soft
thresholding, the spectrum highlights the useful signal.

According to the property of local similarity, we propose a rock-extracting method based on local
similarity constraint. The detailed workflow is shown as follows:

(1) For LPR CH-2A and B data

(a) Apply a preprocessing line.
(b) Attenuate steep-dip components by an f-x EMD-based low-pass dip filter.

(2) Calculate local similarity spectrum between LPR CH-2A and B data.
(3) Utilize a soft threshold function for the local similarity spectrum.
(4) Mute the reflection area.
(5) Pick the local maximum and record the corresponding space coordinates.
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3. Results

3.1. Verification of Simulation Result

In order to validate the effectiveness of the proposed method, a complex model (Figure 6a)
is built. This synthetic model considers many factors referenced from [24–26]: random medium,
undulating interface, and anomalous body. FDTD is applied for the simulation of the simple model [27].
According to the actual acquisition parameters of LPR [2], the simulated parameters are shown in
Table 2. The forward results are obtained in Figure 6b,c.

In the forward results (Figure 5b,c), there are two types of useful signals, i.e., reflections (0–6
and 60–80 ns) and diffractions (10–60 ns). Since our focus is rock positioning, we mute the shallow
reflections before the dip filter.

Figure 7 demonstrates the results of the dip filter. After the f-x EMD-based low-pass dip filter, the
steep-dip components are well attenuated. For diffractions, the positions of filtered components are
consistent with their corresponding vertex positions. We also see some noise residual in the filtered
data, leading to many noise-caused local maximums.
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Table 2. Simulation Parameter.

Result A Result B

Height 0.3 m
Offset 0.16m 0.32m

Center frequency 500MHz
Wavelet Ricker

Absorbing boundary C-PML
Discrete grid 0.005 m * 0.005 m

Time step 0.040434 ns
Time window 120 ns

Random access memory 8.00 GB
Central Processing Unit Intel(R) Core (TM) i5-4590 CPU @3.30GHz

Time 24.7699 h 24.8101 h

Figure 8 demonstrates the local similarity spectrum between the two filtered datasets after soft
thresholding and the result of rock positioning. The spectrum is clean and signal-dominated, proving
the effectiveness of our method; the energy group denotes the useful signal. Note that reflection energy
in the spectrum also leads to unexpected rock extraction. Before local maximum picking, we mute the
deep reflection energy (arrows in Figure 8a) and the muted results are shown in Figure 8b. Figure 8c
demonstrates the result of rock positioning.
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In order to evaluate the effect of rock positioning, we compare the result with the integrated
regolith model (Figure 6a). From Figure 9, we see that most of the rocks are effectively extracted and
their position is consistent with the model and a few rocks are unextracted and over extracted.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 21 
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Figure 9. The comparison of rock positioning.

We use three concepts (detection rate, missed detection rate and false alarm rate) to evaluate the
result of rock positioning quantitatively.

(1) The detection rate Rdet is the probability that a rock block can be detected and is expressed by:

Rdet =
Ndet
Nall

(9)

where Ndet is the number of the rocks which can be detected, Nall is the total number of rocks.
(2) The rate of missed detection Rmis is the probability that a rock block cannot be detected. It is

expressed by:

Rmis =
Nmis
Nall

= 1− Rdet (10)

where Nmis is the number of the rocks which cannot be detected, Nall is the total number of rocks.
(3) The false alarm rate R f al is the probability that a non-existent rock is detected. It is expressed by:

R f al =
N f al

Nall
(11)

where N f al is the number of the detected rocks which are non-existent,Nall is the total number of rocks.
The detection rate of the above-mentioned forward result is Rdet = 92.105%, the missed detection

rate is Rmis = 7.895%, and the false alarm rate is R f al = 68.421%. It can be seen that our method has
a high detection rate and a low missed detection rate. The reason for missed detection is that the
rock is close to the reflector so that the diffractions are interfered with by reflections. The false alarm
rate is relatively high; there are two main reasons for the excessive extraction of rocks: (1) In the rock
enrichment area (9–13 m), diffraction interferences decrease the accuracy of local maximum picking;
(2) bigger rocks allow the diffractions generated by their upper and lower interfaces to be recognized,
which generates serval “rock pairs” (red circle) in extracted results. After removing these “rock pairs”,
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the actual false alarm rate drops to 23.684%. Although there are a few errors in the extraction results,
the rock distribution is close to the model, which is acceptable for the rock analysis.

3.2. LPR Data Result

After proving the effectiveness of our proposed method, we process the LPR CH-2 data.
The results of the dip filter are shown in Figure 10 and the corresponding local similarity spectra are
shown in Figure 11a. From Figure 10, we see that most diffractions locate in 15–118 ns. The muted
spectrum is shown in Figure 11b. Then, we utilize the result of rock positioning (Figure 12) to research
the evolution of regolith on the landing site.
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4. Discussion

After we obtained the result of rock positioning for LPR data, we divided the layers according to
the distribution of the rocks, as shown in Figure 13. The base rock layer is basalt, which is the product
of the last basalt covering. The regolith layer contains a lot of rock fragments. The depth of regolith is
5 m at minimum and 10 m at maximum. The stratified result is consistent with previous results [5–7].
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Figure 13. The interface of regolith and base rock. The relative dielectric constant is set to 3.

The dielectric constant is critical for time-depth conversion. The permittivity of lunar regolith is
influenced by density and ilmenite concentrations [28–30]. Many measurements have been investigated
using lunar regolith samples from the Apollo & Luna era; the relative dielectric constant of Surveyor
regolith samples ranges from 2.00 to 3.28 [31] and the relative dielectric constant of Luna regolith
samples ranges from 1.7 to 4.4 [32,33]. More recently, microwave remote sensing was used to estimate
the dielectric constant of regolith [34,35]. Fa et al., Dong et al. and Feng et al. report the estimated
results of the lunar regolith permittivity in the CE-3 landing area using the LPR are 3.0 ± 0.03, 2.9 ± 0.4
and ~3, respectively [5,8,36]. Therefore, we set the relative dielectric constant to 3.0 as an appropriate
value for time-depth conversion in the processing pipeline (Figure 3).

To estimate the depth error, we need to set the range of the dielectric constant. Based on previous
research results [5,8,36] and including all dielectric constant estimates, we believe that εr = 3.0± 0.5 is
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a suitable range of dielectric constant variation. After counting and analysing the extracted rocks, we
obtain their space location, time, and depth position (Appendix C) for different dielectric constants
(εr = 2.5, 3.0, 3.5). When εr = 3.0± 0.5, the error of the position estimation is less than 10% (−9.62% to
7.36%), and the maximum error values are−0.87 and 0.67 m. In the same way, we estimate the position
of the interface. When εr = 3.0± 0.5, the average estimated depth of lunar regolith is estimated to be
7.5+0.71
−0.60 m.

Moreover, we can also obtain the distribution information of the rocks in regolith which changes
with the path and the depth. Figure 14 is a scatterplot of the rock number and location at each 5 m.
The figure shows us a relationship between the number of rocks and distance. There is a minimum
value at 5–10 m, 30–35 m, 75–80 m and 85–90 m where the number is less than 1. The Chang’E-5
mission will drill and collect the regolith from the moon [37], which requires that there is no rock
below the drilling point, otherwise the drilling machine will be damaged. The scatterplot can help us
select the drilling point.
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In the same way, the analysis between the number of rocks and depth has been performed in
Figure 15. There is a maximum value at ~5 m. The above stratified analysis tells us that the depth of
regolith is 5 m at minimum and 10 m at maximum. From 5 m, the interface appears, and the number
of rocks is decreasing. The tendency in Figure 15 is consistent with the stratigraphic structure at the
CE-3 landing site.
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5. Conclusions

The LPR equipped on the Yutu Rover detected the lunar geological structure in the Northern
Imbrium. A data preprocessing pipeline is designed to solve some types of issues, such as repeated
and waste traces and noise. Then, we propose an adaptive rock positioning method based on local
similarity constraint, which utilizes the similarity between LPR CH-2A and B data. This method is
implemented in two steps, namely, low-wavenumber component extraction and noise-caused local
maximum attenuation. Finally, according to the extracted result, on the one hand, the depth of regolith
is obtained, and on the other hand, the distribution information of the rocks in regolith, which changes
with the path and the depth, is also revealed.

The position of each rock and the contact interface of regolith are still difficult to recognize.
We adopt an f-x EMD-based dip filter to extract low-wavenumber components from the two data
sets. Then, we calculate the local similarity spectrum between the filtered CH-2 A and B. After a soft
threshold function, we pick the local maximums in the spectrum as the location of each rock.

The result of rock positioning for LPR data helps us to divide the layers according to the
distribution of the rocks. The base rock layer is basalt, which is the product of the last basalt covering.
The regolith layer contains a lot of rock fragments. The depth of regolith is 5 m at minimum and
10 m at maximum. The analysis of the rock number and location provides a priori information for
the further CE-5 plan of regolith collection. The analysis between the number of rocks and depth is
consistent with the stratigraphic structure at the CE-3 landing site.

These results provide valuable information regarding our understanding of the modification of
the lunar surface and the evolution of the regolith, and the results are also important as a reference for
future lunar sample return missions.
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Appendix A

Table A1. IDs of the LPR data.

IDs

CE3_BMYK_LPR-2A_SCI_N_20091231160000_20131215171000_0001_A.2B
CE3_BMYK_LPR-2A_SCI_N_20131215171001_20131220141300_0002_A.2B
CE3_BMYK_LPR-2A_SCI_N_20131220141301_20131220181800_0003_A.2B
CE3_BMYK_LPR-2A_SCI_N_20131220181801_20131221124500_0004_A.2B
CE3_BMYK_LPR-2A_SCI_N_20131221124501_20131223174500_0005_A.2B
CE3_BMYK_LPR-2A_SCI_N_20131223174501_20131226000000_0006_A.2B
CE3_BMYK_LPR-2A_SCI_N_20131226000001_20140112193800_0007_A.2B
CE3_BMYK_LPR-2A_SCI_N_20140112193801_20140114213300_0008_A.2B
CE3_BMYK_LPR-2A_SCI_N_20140114213301_20140124000000_0009_A.2B
CE3_BMYK_LPR-2B_SCI_N_20091231160000_20131215171000_0001_A.2B
CE3_BMYK_LPR-2B_SCI_N_20131215171001_20131220141300_0002_A.2B
CE3_BMYK_LPR-2B_SCI_N_20131220141301_20131220181800_0003_A.2B
CE3_BMYK_LPR-2B_SCI_N_20131220181801_20131221124500_0004_A.2B
CE3_BMYK_LPR-2B_SCI_N_20131221124501_20131223174500_0005_A.2B
CE3_BMYK_LPR-2B_SCI_N_20131223174501_20131226000000_0006_A.2B
CE3_BMYK_LPR-2B_SCI_N_20131226000001_20140112193800_0007_A.2B
CE3_BMYK_LPR-2B_SCI_N_20140112193801_20140114213300_0008_A.2B
CE3_BMYK_LPR-2B_SCI_N_20140114213301_20140124000000_0009_A.2B

http://moon.bao.ac.cn
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Appendix B

Review of Local Similarity

The local similarity between two vectors can be defined as:

c =
√

cH
1 c2, (A1)

where c1 and c2 are obtained by solving the optimization problem in the least squares sense:

c1 = arg min
c1
‖A−C1B‖2

2, (A2)

c2 = arg min
c2
‖A−C2B‖2

2, (A3)

where A and B represent diagonal matrices whose main diagonal elements are a and b, respectively,
and Ci represents a diagonal matrix whose main diagonal element is ci.

Local smoothness estimation is introduced as a constraint for shaping regularization.
The optimization problem in the least squares sense can be modified as follows:

c1 =
[
λ2

1I + Sm(ATA− λ2
1I)

]−1
SmATb, (A4)

c2 =
[
λ2

2I + Sm(BTB− λ2
2I)

]−1
SmBTa, (A5)

where Sm is a function for smoothness promotion, and λ1 and λ2 are the two stable parameters used
in the process of inversion to accelerate the convergence speed. We can select λ1 and λ2 as follows:

λ1 = ‖ATA‖2, (A6)

λ2 = ‖BTB‖2, (A7)

Appendix C
Table A2. Rock depth with different dielectric constants.

Rock Number Distance/m Time/ns Depth (εr=2.5) Depth (εr=3.0) Depth (εr=3.5) Error/m

1 0.68 61.56 5.81 5.30 4.91 −0.51 0.39
6 11.14 59.38 5.60 5.11 4.74 −0.49 0.38

11 14.14 81.25 7.67 7.01 6.49 −0.67 0.52
16 15.24 66.25 6.25 5.71 5.29 −0.55 0.42
21 16.86 61.25 5.78 5.28 4.89 −0.50 0.39
26 19.26 27.50 2.58 2.35 2.18 −0.22 0.17
31 21.38 48.44 4.57 4.17 3.86 −0.40 0.31
36 23.28 59.69 5.63 5.14 4.76 −0.49 0.38
41 25.86 60.94 5.75 5.25 4.86 −0.50 0.39
46 29.22 77.50 7.32 6.68 6.19 −0.64 0.50
51 36.16 87.81 8.30 7.58 7.02 −0.72 0.56
56 38.48 68.75 6.49 5.93 5.49 −0.57 0.44
61 39.64 71.88 6.79 6.20 5.74 −0.59 0.46
66 43.26 104.69 9.90 9.04 8.37 −0.86 0.67
71 44.24 105.00 9.93 9.07 8.39 −0.87 0.67
76 46.04 61.88 5.84 5.33 4.94 −0.51 0.40
81 52.44 63.75 6.02 5.49 5.09 −0.52 0.41
86 54.12 17.81 1.66 1.52 1.40 −0.14 0.11
91 57.50 52.50 4.95 4.52 4.18 −0.43 0.34
96 58.10 88.75 8.39 7.66 7.09 −0.73 0.57
101 63.42 40.00 3.77 3.44 3.18 −0.33 0.25
106 68.74 19.06 1.78 1.62 1.50 −0.15 0.12
111 71.48 52.19 4.92 4.49 4.16 −0.43 0.33
116 76.58 64.38 6.08 5.55 5.14 −0.53 0.41
121 84.74 46.56 4.39 4.01 3.71 −0.38 0.30
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