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Abstract: In this technical paper, the state-of-art of automated procedures to process thermal infrared
(TIR) scenes acquired by a permanent ground-based surveillance system, is discussed. TIR scenes
regard diffuse degassing areas at Campi Flegrei and Vesuvio in the Neapolitan volcanic district (Italy).
The processing system was developed in-house by using the flexible and fast processing Matlab©
environment. The multi-step procedure, starting from raw infrared (IR) frames, generates a final
product consisting mainly of de-seasoned temperatures and heat fluxes time-series as well as maps of
yearly rates of temperature change of the IR frames. Accurate descriptions of all operational phases
and of the procedures of analysis are illustrated; a Matlab© code (Natick, MA, USA) is provided
as supplementary material. This product is ordinarily addressed to study volcanic dynamics and
improve the forecasting of the volcanic activity. Nevertheless, it can be a useful tool to investigate
the surface temperature field of any areas subjected to thermal anomalies, both of natural and
anthropic origin.

Keywords: volcano monitoring; thermal imaging; time series; Seasonal-Trend Decomposition;
heat flux

1. Introduction

Thermal infrared (TIR) ground-based observations are largely used in volcanology, both in
research and in surveillance activities, to investigate volcanic plumes and gases, lava flows, lava lakes
and fumarole fields [1–17]. Generally, the observations were made during a limited time span such as
eruption phases or field campaigns with temporarily installed TIR stations or handheld cameras. In
the last years the number of surveillance and research activities aimed to undertake TIR continuous
observations of volcanic areas have increased [12–20]. Improvements in monitoring tools and analysis
techniques of long TIR time-series of infrared (IR) scenes of volcanic areas are becoming matter of great
interest since they give the opportunity to track changes of surface thermal anomalies that may reveal a
renewal of eruptive activity. Several works identified thermal precursors before eruptions by using TIR
observations [21–24] and these insightful results, also provided by field campaigns, have suggested
planning permanent fixed installations of ground TIR stations at active volcanoes in the world.

At present time, few commercial software packages, based on general-purpose procedures, are
available to process TIR time-series and they are not aimed for a near real-time automated analysis of
large dataset. Generally, they involve manual processing steps and cannot be used in daily continuous
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automated volcano monitoring activity. Recently, [20] introduced automated analysis techniques of
long TIR time-series of images acquired inside the Campi Flegrei volcanic area and previously [19]
discussed about analysis techniques applied to TIR scenes inside the Vesuvius crater. The studied zones
of these works are diffuse degassing areas of quiescent volcanoes characterized by low temperatures
of released gas fluxes.

In this work, recent developments of processing methodologies of several-years long TIR
time-series of volcanic areas from a permanent surveillance network are discussed in detail.
Additionally, the automation of the processes is discussed. Step-by step descriptions of all operational
phases and of the theoretical basis are reported in order to provide a clear explanation of the applied
procedures. The main final results are trends of temperatures, heat fluxes and yearly rate of temperature
change of the studied areas. In particular, a detailed study with a focus on seasonal component removal
and on pixel alignment of IR frames (co-registration) was carried out. The code of fully-automated
Matlab© application (ASIRA, Automated System of InfraRed Analysis) used to process the IR data is
provided as Supplementary Materials.

2. The Study Areas

The TIR frames time-series, used to develop and test the methodologies described in this work,
were acquired by stations of TIRNet (Thermel InfraRed Network), a surveillance network operated
by the Osservatorio Vesuviano, section of National Institute of Geophysics and Volcanology (INGV),
consisting of six permanent ground stations installed at Campi Flegrei caldera and Vesuvius crater
(Figure 1). Campi Flegrei (CF) is an active volcanic field including part of the city of Napoli (Italy).
Nowadays, although quiescent and the last eruption occurred in 1538 (Monte Nuovo; [25]), the CF
area is affected by significant ground deformation (Bradyseism), low to moderate seismic activity,
hot fumaroles fields and diffuse degassing zones. The target areas acquired by TIR cameras in the
Solfatara crater and its surroundings are shown in (Figure 1a). The monitored area represents the
main surface expression of the CF caldera hydrothermal system with gases emissions originated by
interaction between fluids of magmatic and meteoric origin [26–28]. The Somma–Vesuvius volcanic
complex, located east of the city of Naples, is one of most dangerous volcanoes in the world and
the latest eruption occurred on 1944 [29]. The recent dynamic of the Vesuvius is characterized by
low-level shallow seismicity and by low temperature fumarolic activity mainly concentrated in the
crater area [30–32]. TIR scenes are from low-temperatures surface thermal anomaly on the western
inner slope of the Vesuvius crater (Figure 1b).
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Figure 1. The Solfatara area (a) and Vesuvius crater (b) acquired by Thermel InfraRed Network (TIRnet)
cameras. Red points are infrared (IR) stations locations and yellow regions represent the framed areas.

3. Materials and Methods

3.1. The IR Sensors and Data Acquisition

TIRNet stations were equipped with FLIR System, Inc. IR cameras, which acquire IR frames in
the 7.5–13 µm waveband. The IR sensor installed at Campi Flegrei caldera is the FLIR SC655 and at
Vesuvius is the FLIR A40 M, both with a focal plane array (FPA) uncooled microbolometer detector, of
which the resolution was, respectively, 640 × 480 and 320 × 240 pixels. Accuracy was ±2 ◦C (SC655
and A40 M) and thermal sensitivity at 50/60 Hz was <30 mK (SC655) and 80 mK @ +25◦C (A40 M).
All IR cameras were set to a −40◦ to 120 ◦C temperature range. The optics used depended both on
the distance sensor-target and type of IR camera and varied from 24.6 mm (FoV 25◦ × 19◦) of SC655
camera to 36 mm (FoV 24◦ × 23.4◦) of A40 M camera. The technical specifications of FLIR cameras
and the features of target areas are reported in Table 1.

The IR stations acquired three IR frames of the target area every day at night-time. As solar heating
can drastically decrease the thermal contrast between fumarole anomaly and the heated surrounding
rocks [33] and references therein], the acquisitions of TIR frames were carried out at night (00:00, 02:00,
04:00 AM) in order to minimize diurnal heating effects.

After IR frames acquisition, WiFi radio or UMTS (Universal Mobile Telecommunications Service)
modem transmits TIR data to the INGV-Osservatorio Vesuviano server of TIRNet in order to process
them and to display the results in the surveillance room.
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Table 1. Technical specifications of remote stations, FLIR infrared cameras and target areas details.

Remote
Station

Camera
Model

Resolution
(pixel) FoV Data

Transmission
Station UTM

Coordinates (m)

Sensor-Target
Average

Distance (m)

Average Pixel
Size (cm)

SF1 FLIR
A655SC 640 × 480 25◦ ×

19◦ WiFi X: 427.460
Y: 4.520.154 340 23.1

SF2 FLIR
A645SC 640 × 480 15◦ ×

11.9◦ WiFi X: 427.460
Y: 4.520.154 114 4.6

PS1 FLIR
A645SC 640 × 480 15◦ ×

11.9◦ UMTS X: 428.081
Y: 4.520.117 140 5.6

OBN FLIR
A645SC 640 × 480 25◦ ×

19◦ WiFi X: 427.695
Y: 4.519.530 65 2.9 ÷ 5.4

SOB FLIR
A655SC 640 × 480 25◦ ×

19◦ WiFi X: 427.810
Y: 4.519.878 90 5.5 ÷ 6.7

VES FLIR A40 320 × 240 24◦ ×
18◦ WiFi X: 451.325

Y: 4.519.281 225 30

As temperature values of TIR scenes are influenced by the atmospheric conditions (e.g., air
temperature and humidity; [10]) and by the emissivity of target area, atmospheric correction was
necessary. A probe of the IR station detected the values of air temperature and humidity and
these values were transferred to the FLIR camera, which then applied the internal algorithm
(LOWTRAN; [33]). This algorithm performed the atmospheric correction to the acquired IR frame in
function of detector-target distance, emissivity of the target, air temperature and air relative humidity.
The emissivity of the volcanic terrains (thermally altered pyroclasts), which characterize the target
areas, was assumed to be 0.9 [34]).

The accuracy of the temperature measurements also depended on the orientation of the field
of view, which should be as parallel as possible to the target. Generally, despite the calibration and
correction of camera parameters, the detected IR temperatures were underestimated due to extrinsic
field conditions mainly influenced by the presence of condensed water in fumarole gases which can
partially hide the hot areas [14,35,36]. Therefore, the measured IR temperatures are to be considered
apparent temperatures values that can differ from the real surface temperatures of the target area [1,37].

The resolution of FLIR cameras and the small distances between sensors and target areas allowed
to detect correctly small thermal anomalies, and moreover, to minimize the attenuation of radiated
energy of those non-homogeneous pixels which integrate both hot and cold areas [33]. In addition, the
limitations in the calculation of real temperature were deemed not critical when the purpose was to
investigate relative spatio-temporal variations of surface temperature field in volcanic areas [38].

3.2. Data Processing Procedures

The IR frames acquired by TIRNet stations were processed according to a multi-step procedure
consisting of five main steps (Figure 2). The entire process is accomplished by the fully automated
Matlab© software ASIRA (Natick, MA, USA), which was developed starting from the initial structure
described by [19] and then by [20]. A detailed explanation of operative procedures is described in the
following paragraphs. In the Appendix A, synthetic technical sheets of Matlab© code are reported.
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Figure 2. Block diagram of IR images processing steps. 3D: three-dimensional.

3.2.1. Step 1—IR Files Conversion, Archiving and Image Quality Selection

The FLIR IR raw files (radiometric JPEG), transmitted by remote TIRNet stations to the acquisition
server, were imported in the Matlab© environment, then saved in appropriate storage folders both
as a single CSV file and in a Matlab© three-dimensional (3D) matrix (Matlab© function: ‘step01.m’).
Occasionally, the presence of wide blurred areas, due to the condensation of water vapor from
the fumaroles plume and the occurrence of heavy rain, caused the homogenization of the IR
temperatures [18–20] and generated low quality IR frames. With the aim of removing low quality data,
only the IR scenes that satisfied the following condition were selected:

σFi > mσ− c ∗ σFσ (1)

where σFi is the Standard Deviation (SD) of the i-th IR frame, mσ is the median of SD values of all IR
frames of the station time-series, σFσ is the Standard Deviation of all Standard Deviations of IR frames
of the station time-series, and c is a user-defined coefficient depending on the statistical distribution of
data (Matlab© function: ‘step01.m’). We found c = 1 a suitable value to obtain a homogeneous data set
by excluding very low-quality images.

This step converted input data (FLIR radiometric JPEG, CSV or TXT IR matrix) into Matlab©
3D arrays [resY, resX, n], where (resY, resX) is the image resolution and n is the number of IR
collected frames.
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3.2.2. Step 2—IR Frames Co-registration

The accurate alignment of all the IR frames related to a station time-series was necessary to
proceed to further analysis. Since the IR framed area can vary in time, due to ground movements
affecting volcanic areas or simply to maintenance services, a correction of IR frames position in respect
of a reference IR frame was carried out (co-registration). This correction performed the alignment of the
same pixels, of all IR frames belonging to the same station, by using the flow-based, image registration
Matlab© algorithm, SIFT flow [39]. The SIFT flow algorithm matches pixel-to-pixel correspondences
between two images and it is able to find dense scene correspondence despite substantial differences
in spatial arrangement of compared images (Matlab© function: ‘step02.m’).

3.2.3. Step 3—Seasonal Component Removal

A simple plot of the time-series of temperature values evidenced a typical recurring pattern due
to the seasonal influence over the surface temperatures (background raw maximum temperature plot
in Figure 3). The temperature time-series of raw IR frames were representative of both exogenous
(e.g., seasonal) and endogenous (thermal anomaly) components. Therefore, in order to highlight the
possible spatio-temporal variation of thermal anomalies, it was necessary to remove the seasonal
component in the raw temperature time-series (de-seasoned time-series).Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 23 
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Different methods to remove seasonal component in time-series were previously tested to TIRNet
data [18–20] and two methods demonstrated to be effective to perform seasonal adjustment: the
background removal (BKGr) and the STL decomposition (STLd, Seasonal-Trend decomposition based
on Loess) [40]. The effectiveness of these two different methodologies depends on the time-length of
the dataset. BKGr is applied on time-series shorter than two years that cannot be processed by STLd as
it requires several-years-long time-series. The BKGr removes the seasonality only to maximum and
average temperatures of IR time-series and does not perform the seasonal adjustment to all the pixels
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of IR frame. Diversely, STLd can remove the seasonal component to all the pixels of IR frame, allowing
to perform deeper analysis to the IR dataset.

The Background Removal Procedure (BKGr)

The BKGr procedure [18–20] consisted of the removal of background temperature time-series
to raw IR frames time-series. Background temperatures were detected in a background area of
the IR scene not influenced by thermal anomaly. The procedure was based on the evidence that a
linear correspondence is between maximum (or mean) temperature of background area (TmaxBKG)
and maximum (or mean) temperature of IR scene (TmaxSc), as previously reported by [19,20] and
illustrated in Figure 3 (TmaxSc vs TmaxBKG plot). This correspondence allows the application of the
following equation:

dTn = TmaxSc(n)− Tf it(n) (2)

were dT(n) is the residual de-seasoned temperature value, TmaxSc(n) is the maximum temperature of
the n IR scene and Tfit(n) is the value of TmaxSc(n) in correspondence of TmaxBKG(n) according to the
linear fitting equation of the two variables (Figure 3; Matlab© function: ‘step03.m’).

The accurate selection of the background area (BKG) was crucial as it strongly influenced the
efficiency of this procedure. BKG had to be outside the region of the IR frame affected by thermal
anomaly and also characterized by similar lithology of the anomaly area, without vegetation and any
kind of anthropic object. An efficient way to test the quality of the chosen BKG was to perform a linear
regression to time-series of average temperature values of BKG. A suitable BKG must have the slope
of the linear regression equation near to zero (Figure 4a).Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 23 
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Figure 4. (a) Time-series of average temperature values of Pisciarelli background area (grey color)
and linear regression fit (blue color); (b) the results of the background removal procedure applied to
Pisciarelli station: RAW maximum temperature of IR scene (grey color) and residual temperature value
dT (blue color).

The main advantage of BKGr method was the possibility to apply seasonal correction to short
temperature time-series; nevertheless, the results are expressed in terms of temperature residuals and
not as absolute temperatures (Figure 4b).
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The STL Decomposition Method (STLd)

STL is a flexible, iterative non-parametric and robust method developed by [40] to decompose
time-series into three components, according to an additive model:

TSi = Ti + Si + Ri (3)

where TSi is the time-series of i-th pixel of IR frame, Ti is the Trend, which represents a general tendency
of data to move in a certain direction, Si is the Seasonality, which is a repetitive pattern over time due
to exogenous causes, and Ri is the remainder, e.g., TSi removed of Trend and Seasonality components
(Matlab© function: ‘step04.m’).

The stl() function is available in the R statistical programming language [41]. STL is an acronym
for “Seasonal and Trend decomposition using Loess”, where Loess is a method for estimating nonlinear
relationships. The Loess (LOcal regrESSion) algorithm performs smooth estimate g(t) for temperature
T at all times t, not just at time ti for which T has been observed. There are several parameters to set in
the STL algorithm [40]. The main parameters are the number of observations n.p per seasonal cycle, the
trend window (t.window) and the seasonal window (s.window). These last two parameters specify how
quickly the trend and seasonal components can change. In different words, t.window is the number of
consecutive observations to be used when estimating the trend; s.window is the number of consecutive
years to be used in estimating each value in the seasonal component.

The ‘standard’ use of STL function in R is: stl(time-series, s.window = ”periodic”). By using the
setting s.window = “periodic”, Loess smoothing is effectively replaced by the mean of the seasonal
sub-series. This way, STL assumes the same seasonal cycle for each year of the time-series; therefore,
the seasonal component for January is simply the mean of all January values and similarly for the
other months.

STL can be set to be robust to outliers, so that occasional uncommon observations will not affect
the trend and seasonal components, but only the remainder component.

As the STL algorithm was developed in R language only, a specific script was created to integrate
the STL function into the Matlab© processing procedure. The script (‘step04.m’) consisted of two parts:
a) Matlab© code which calls b) R code by using a Matlab toolbox (RunRcode, Matlab File Exchange).

When calling the STL function (‘STLIR.R’), the s.window parameter was set to ‘periodic’ and
the t.degree was set to 0. This last one parameter is the degree of locally-fitted polynomial in trend
extraction. Moreover, it was important to set the periodicity when creating the temperature time-series
in R script. For TIRNet temperature data, the periodicity was set to 365.

STL needs at least a two-year long, continuous time-series; otherwise, it does not process the
dataset. If the dataset is not continuous, due to data lack in some periods, it has to be resampled daily.
In case of shorter dataset, only BKGr method can be applied.

The STLd procedure can be simply applied to statistical time-series (e.g., raw maximum
temperatures time-series; Figure 5) or applied to time-series of all pixel temperatures of the IR frames
by using the processing scheme reported in Figure 6.
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The STLd procedure used to remove seasonal component of all pixels from IR time-series (Figure 6)
required, as a first step, the evaluation of the average temperatures time-series of BKG (TavBkgTS). The
STL function was then applied to the TavBkgTS time-series to decompose it into three components:

TavBkgTS = TrendBkgTS + SeasonBkgTS + RemBkgTS (4)

where TrendBkgTS, SeasonBkgTS and RemBkgTS are, respectively, Trend, Seasonality and Remainder
time-series of TavBkgTS.

As the background area is not influenced by thermal anomaly, the SeasonBkgTS can be assumed
to be representative of the seasonal component affecting all pixels of the frames acquired by an IR
station. This assumption makes it possible to apply the following relation:

TdesTSi = TiTS - SeasonBkgTS (5)

where TdesTSi is the de-seasoned time-series of ith pixel of IR frame and TiTS is the time-series of raw
temperatures of the same pixel.

In brief, STLd procedure removed the seasonal component to temperature time-series from all
the pixels of IR frames, acquired by a IR station, by subtracting the seasonal component of BKG
(SeasonBkgTS). Additionally, in the STLd method, the correct choice of the BKG is fundamental. A
direct control of BKG quality is to plot the values of TrendBkgTS: they must be without significant
variations (Trend plot in Figure 6).

The final result is a Matlab© 3D array representative of IR frames with de-seasoned temperature
values. These arrays are relevant to perform advanced pixel-to-pixel processing methods, needing
de-seasoned IR data, which are reported in the next steps.

Additional output of processing step 5 is a map showing locations of maximum temperatures
values detected in all IR frames.

3.2.4. Step 4—Radiative Heat Flux (Qrad)

The estimation of radiative heat flux (Qrad) from an area of IR frame mainly characterized by
thermal anomaly (Region of Anomaly, RoA) is a newly proposed processing technique that can offer
an interesting contribution to the investigation of possible variations of radiative thermal emissions.

In order to estimate Qrad, which is the thermal energy emitted per unity of area in a unity of time,
the RoA has to include pixels whose temperatures are representative of the main thermal anomaly.
Nevertheless, the RoA is usually not homogeneous and it is characterized by the presence of both
high temperature sources (fumaroles) and low temperature sources (surrounding emission-free rocks).
In addition, when sensor-target distance is more than approximately 10 m, the pixels of RoA can be
several centimeters large, and therefore, some temperatures are underestimated if their pixels integrate
both high and low temperatures [42,43]. Consequently, the variations trend of Qrad can be sensibly
flattened. A solution to this problem is to calculate the Standard Deviation (SD) of pixels’ temperatures
of a specific RoA and then to use only temperature values (TROAH) greater than 2SD to estimate Qrad.

Finally, the Qrad of a specific RoA (W/m2) is calculated by using the Stefan-Boltzmann equation:

QradRoA = A
n

∑
i=1

σε(TRoA Hi)
4 (6)

where σ is the Stefan-Boltzmann constant, ε is the emissivity (for pyroclastic rocks is assumed to
be 0.9) and A is the investigated area size (m2) obtained by multiplying pixel area and length n of
TROAH time-series.

The detection of any possible change of Qrad trends, even though related to a specific RoA,
allows to better characterize thermal behavior of the studied area if RoA is representative of the main
thermal anomaly.
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The use of de-seasoned time-series of temperature values (TdesTS) is essential in order to evaluate
Qrad changes due to endogenous sources only. This means that only the dataset processed with STLd
can be used.

The Matlab© code performing Qrad (‘step04.m’) is available as Supplementary Materials and its
functionalities are illustrated in the Appendix A.

3.2.5. Step 5—Yearly Rate of Temperatures Change (YRTC)

The thermal variations, in a defined time interval, of every single pixels of IR frame, can be
evidenced by evaluating the yearly rate of temperatures change (YRTC). This kind of elaboration
produces a map of the IR frame, according to a color scale, of yearly rate of change of pixels’
temperature. The yearly rate of temperatures change is represented by the values of slope coefficients
of the linear fit of time-series temperatures of every pixel. On the other hand, the selected time interval
has to be characterized by a progressive increase or decrease of maximum temperatures of IR frame,
according to a correspondence as linear as possible. This needs a preliminary investigation of the
temperatures trend over time.

The YRTC map is created by overlapping the values of slope coefficients on a picture (in the
visible range) of the framed area. In order to show the yearly rate of change values of pixels whose
temperature time-series best fit a linear model, a mask was applied. This mask allowed the display
of values related to pixels whose linear regressions of temperature time-series had coefficients of
determination (R2) higher than a user-defined threshold value.

The YRTC map gives the opportunity to evidence possible connections between temperature
increase/decrease and geological features of the monitored site (Figure 7).Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 23 
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Figure 7. Yearly rate of temperature change maps of SF1 in the period 2016.02.01–2016.11.30. Map
(a) has R2 threshold value = 0.2. Map (b) has and R2 threshold value = 0.45. In this time-interval SF1
maximum temperatures decreased of about 10 ◦C as evidenced by the color map.

The Matlab© code performing YRTC data (‘step06.m’) is available as Supplementary Materials
and its functionalities are illustrated in the Appendix A.

3.3. System Automation and Graphic Interface

The above-described methodologies were performed as steps by Matlab© functions, which can be
executed with a command line or managed by a user-friendly graphic interface (GUI). Settings can be
saved in user-defined configuration files. Due to the modular structure of the processing steps, they can
be performed singularly or grouped in an automated sequence in order to execute the whole procedure
at defined time by using the GUI that integrates the automation code. Automation is necessary if IR
data processing is aimed to surveillance purposes.
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The GUI Matlab code (asira_gui.m) is available as Supplementary Materials and its functionalities
are illustrated in the Appendix A.

4. Results and Discussion

In order to discuss the advantages and the limits of the above presented processing methodology,
the results obtained by applying the five processing steps are reported. Two datasets were processed:
(1) the first consisted of 2.901 IR JPEG frames acquired in the period 2016.01.27–2019.01.13 at
Solfatara 1 (SF1) station; (2) the second consisted of 5.850 IR JPEG frames acquired in the period
2013.03.26–2019.01.13 at Pisciarelli (PS1) station.

4.1. Data Quality Selection

The relation (1), discussed in §3.2.1, was used to remove low-quality IR frames before starting the
analysis of data. The efficiency of this procedure depended on the choice of the coefficient c which
was influenced by the statistical distribution of data. Low values of Standard Deviation of IR frames
temperatures were an indicator of low quality data and the lower the coefficient c, the higher the
number of IR frames discarded as low quality ones. The analysis of data acquired by SF1 suggested
c = 1 as an appropriate value (Figure 8), as the visual inspection of discarded frames (about 11% of
total frames) confirmed that they were mainly low-quality ones. This kind of preliminary analysis had
to be made to every dataset from different stations as the coefficient c can be different depending on
the physical and geometrical characteristics of framed area and IR sensor.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 23 
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Figure 8. Frequency distribution of Standard Deviation values of IR frames temperatures (σF) acquired
at SF1 station. The line ‘Lower Threshold’, which is defined by the relation (1) with c parameter equal
to 1, splits good-quality frames (on the right of the line) and low-quality frames (on the left of the line).

4.2. Seasonal Component Removal

Two different methodologies of seasonal component removal are used in order to process
IR datasets having different time-length. The background removal procedure (BKGr), previously
proposed to seasonal correction [19,20], is suitable to very short datasets even though it has some
limitations in the final output. The main limit was that the removal of seasonal component produces
only residuals of maximum or median values of temperatures instead of absolute temperature values.
Although this kind of analysis does not take full advantage of all the intrinsic information contained
inside the IR frames, the BKGr method generated trends of temperature residuals which provide
adequate information to characterize the thermal behavior of studied area.

The STL decomposition method (STLd), proposed for the first time in this work to remove
seasonality to IR temperature time-series, needed a nearly two-year long datasets due to the statistical
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approach of the robust and widely applied algorithm. By using STLd method, it was possible to
estimate the Seasonality as a separate component of temperature time-series. This feature allows the
removal of seasonality to all pixels of IR frames, giving the opportunity to apply further analysis
methods (e.g., radiative Heat Flux estimate), which needed the whole frame to be de-seasoned. In
Figure 9, the background area boundaries (Figure 9a) inside the SF1 IR frame and the plot of Trend
component of background area, obtained by applying STLd method are reported (Figure 9b). The
constant and flat temperature values of background Trend confirmed the appropriate choice of this area.Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 23 
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Figure 9. Background area boundaries inside the SF1 IR frame (a) and plot of Trend component of
background area which is obtained by applying STLd method (b). Trend values varie between 14.35
and 14.7 ◦C.

The Trend component evaluated by the STLd method was useful to estimate the long-term thermal
behavior of the studied area even though it was not suitable for short-term observations. In order to
describe short-term thermal behavior, aimed to surveillance purpose, it was necessary to merge both
Trend and Reminder components to obtain T + R plots (Figure 10, blue line plot).
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Figure 10. Plots of temperatures acquired at SF1 station removed of seasonal component. Red line
= temperature residuals obtained by applying BKGr method; blue line = Trend+Reminder values
obtained by applying STLd method.

Despite the reported limits of BKGr method, the comparison between temperature residuals plots
with the BKGr method and T+R plots by STLd method of SF1 IR frames (Figure 10) showed a close
similarity of data trends. This similarity confirms the effectiveness of the BKGr method to process
datasets shorter than two years.

4.3. Radiative Heat Flux Estimate

The computation of radiative heat flux was available on IR frames where seasonality was removed
by applying the STLd method. In order to obtain the correct trend of radiative heat flux of a definite
area, a correct selection of area boundaries was necessary. The heat flux computation strongly depended
on the Hpix BKGpix ratio of the selected area, where Hpix is the number of pixels related to thermal
anomaly and BKGpix is the number of pixels related to emission-free rocks. The higher this ratio is,
the more accurate the radiative heat flux estimation. This way, the choice of boundaries of processed
areas had to be made in order to include as many Hpix as possible. The solution to attenuate the
underestimate the heat flux due to the presence of BKGpix, proposed in the §3.2.4, was to select pixels
whose temperatures were greater than 2σ of the frequency distribution of temperatures from selected
area. The plots reported in Figure 11 show how efficient this kind of solution was. In this figure, plot a)
reports heat flux time-series of Areas 1, 2 and 3 evaluated by selecting all the pixels inside each area;
plot b) reports heat flux time series of the same areas, evaluated by applying the selection of pixels
greater than 2σ of temperatures frequency distribution. The blue line plot is from Area 1, which only
includes the major thermal anomaly of the SF1 frame, characterized by the higher Hpix BKGpix ratio.
Red line plots of Area 2 and black line plots of Area 3 are representative of lower Hpix BKGpix ratios
due to higher number of BKGpix included in the selected areas.
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Figure 11. Heat flux plots of selected areas inside SF1 frames. Area 1 (c) includes the mayor thermal
anomaly, Area 2 and 3 (c) include emission-free rocks. Plot a) = heat flux trends (smoothed with
window = 29) of Areas 1, 2 and 3 evaluated by selecting all the pixels inside each area. Plot b) = heat
flux trends (smoothed with window = 29) of Areas 1, 2 and 3 evaluated by applying the selection of
pixels greater than 2 s of temperatures frequency distribution.

The comparison between Figure 11a,b evidences an underestimate of heat flux values when the
computation includes all the pixels inside the selected areas (Figure 11a). Figure 11b was obtained
selecting only the pixels whose temperatures values were greater than 2σ and showed a remarkable
decrease of heat flux underestimate, better evidencing trend variations.

4.4. Yearly Rate of Temperature Change Estimate

As reported in §3.2.5, the final product of this processing step was a color scale map of the yearly
rate of temperature change (YRTC) values overlapped to a picture (in the visible range) of the framed
area. YRTC data were filtered according to a threshold value of the coefficient of determination (R2) of
the linear regressions of pixels’ temperature time-series. Two different examples of yearly temperature
rate of change maps of PS1 area in the same time-interval (2016.03.10–2016.07.10) are reported in
Figure 12. In this time-interval the PS1 temperatures were subjected to an increase of about 10 ◦C.
The maps of Figure 12 only differ in the choice of R2 threshold value; hence, a correct choice of these
parameter is critical to produce a map that is easy to comprehend. Map b (R2 = 0.7) shows better
evidence of pixels whose temperatures rate of change time-series values best fit a linear model than
map a (R2 = 0.5). The ASIRA code allows the user to select both color scale limits and different values
of R2 threshold by using a user-friendly GUI in order to achieve the right balance between optimal
visual result and reliability of data visualized.
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5. Conclusions

Relevant contribution to the surveillance of volcanic areas affected by thermal anomalies can be
provided by monitoring the spatio-temporal evolution of surface temperatures field. The acquisition of
IR image data by ground-based monitoring network is an effective tool to perform this task. However,
the analysis of IR data time-series is not easy to accomplish due to the influence over IR temperatures
of both exogenous and endogenous processes.

In this paper, we have presented a unique operational processing chain developed in Matlab©
environment which allows the detection and quantification of possible changes in time and space of the
ground-surface thermal features. This application (ASIRA, Automated System of InfraRed Analysis)
performed a multi-step procedure that generated both trends of temperatures and heat fluxes as well
as maps of yearly rate of temperatures change. The procedure implemented new algorithms based
on improvements of previously proposed methods and also original techniques aimed to effectively
remove seasonal component of IR temperature time-series and to evaluate radiative heat fluxes of
thermal anomaly areas.

ASIRA can be performed as separate steps or executed in a fully-automated way by using a
user-friendly graphic interface. The Matlab© code of ASIRA and the Operative Manual are included
as Supplementary Materials.

The ASIRA code was applied to process IR data acquired by stations of TIRNet surveillance
network operated by the Osservatorio Vesuviano, section of National Institute of Geophysics and
Volcanology (INGV) at Campi Flegrei volcanic area (Italy). The results show the effectiveness of this
method to provide a valuable contribution to the continuous monitoring of thermal anomalies related
to studied areas.

This operative tool has been conceived for volcanic surveillance of diffuse degassing areas and
low-temperature fumarole fields which variations may precede significant phases of volcanic unrest.
Notwithstanding, the procedure can be applied to monitor different volcanic scenarios (i.e., lava-flows,
active volcanic vents and eruptive fractures) but also different natural and environmental hazards
(fires, waste-disposal sites, pollution discharges, landslides, etc.).

Supplementary Materials: the Matlab© code of A.S.I.R.A. (Automated System of InfraRed Analysis) which
is described in Appendix A), and the Operative Manual (pdf file) are provided at the following link: http:
//www.mdpi.com/2072-4292/11/5/553/s1.
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Appendix A

The Matlab application ASIRA: operational structure and technical notes.
ASIRA is an acronym of Automated System of InfraRed Analysis and consists of Matlab© code

subdivided into five independent processing steps (step01.m, step02.m, step03.m, step04.m, step05.m)
that can be easily managed by a graphic user interface (asira_gui.m). Moreover, additional Matlab©
scripts and libraries are needed to ASIRA functionalities. Figure A1 shows screen-captures of different
tabs of the graphics interface representative of five processing steps and automation settings.Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 23 
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Below are reported synthetic technical sheets of functionalities and type of input and output data
of the different processing steps and of the graphic user interface.

Table A1. Technical specifications of functionality and input/output data type of graphic interface.

Script Name

asira_gui.m

Functionality
Graphic user interface (GUI) with management of configuration file

Inputs description Inputs type ID

New configuration file File name in common dialog window by pressing
toolbar button 1

Open configuration file File name in common dialog window by pressing
toolbar button 2

Save current configuration file Toolbar button 3
Open Operative Guide Toolbar button 4
Site name (study area) String inserted by edit window 5
Output folder of processed data (common to all
steps) Folder path inserted by common dialog window 6

Automation button (activate/deactivate automation) Button 7
Enable/disable automation of processing step Check box selection 36
Time to start automation process Text boxes to input Hour and Minutes 37
Save automation settings Button 38

Outputs description Output type ID
Log window showing processing messages Text displayed in box area 8

Table A2. Technical specifications of functionality and input/output data type of STEP 1.

Script Name

step01.m

Functionality
IR files conversion, archiving and quality selection (tab ‘Step 1′ in GUI)

Inputs description Inputs type ID
Type of input file ‘.jpg/.csv/.txt’ inserted by drop-down menu 9

Data input folder Folder path in common dialog window by pressing
button 10

Output folder of CSV files 1 Folder path in common dialog window by pressing
button 11

Temperature scale ‘Celsius/Fahrenheit’ inserted by drop-down menu 12
Quality selection parameter ‘05/1/1.5/2′ inserted by drop-down menu 13
Data delimiter of csv/txt input files 1 ‘,/;/TAB/SPACE’ inserted by drop-down menu 14
Row number to begin reading data in csv/txt file Integer inserted by drop-down menu 15

Outputs description Output type ID
Log window showing processing messages Text displayed in box area 8

CSV files of quality selected IR frames Matrix CSV files of temperature values from IR
scenes

Arrays of quality selected IR data, yearly split Matlab (.mat) archives in output folder
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Table A3. Technical specifications of functionality and input/output data type of STEP 2.

Script Name

step02.m

Functionality
IR frames co-registration (tab ‘Step 2′ in GUI)

Inputs description Inputs type ID

Data input folder (containing .mat archives of Step 1) Folder path in common dialog window by pressing
button 16

Reference IR frame File name & path in common dialog window by
pressing button 17

Outputs description Output type ID
Log window showing processing messages Text displayed in box area 8
Arrays of co-registered IR data, yearly split Matlab (.mat) archives in output folder

Table A4. Technical specifications of functionality and input/output data type of STEP 3.

Script Name

step03.m

Functionality
Seasonal correction with BKGr and STLd methods (tab ‘Step 3′ in GUI)

Inputs description Inputs type ID

Load background area File name & path in common dialog window by
pressing button 18

New background area File name & path in common dialog window by
pressing button and selection of area over IR image 19

Daily time range of IR frames Integers (hours) in text boxes 20

Installation folder of R statistical package (STL) Folder path in common dialog window by pressing
button 21

Outputs description Output type ID
Log window showing processing messages Text displayed in box area 8
Show background area image JPEG image of background area 22

Test background area image Plots of Tmax and STL Trend of background area (by
choice) 23

Array of de-seasoned IR data Matlab (.mat) archive in output folder
Data sheets of processed temperatures of IR frames Excel file in output folder

Table A5. Technical specifications of functionality and input/output data type of STEP 4.

Script Name

step04.m

Functionality
Radiative heat flux estimation (tab ‘Step 4′ in GUI)

Inputs description Inputs type ID

New heat flux areas (Area 1, 2, 3) Selection of heat flux area over IR image by pressing
button 24

Enable/disable heat flux areas to process (Area 2, 3) Check box selection 25
Pixel size of heat flux areas (Area 1, 2, 3) Numeric values in text box 26
Emissivity of heat flux areas (Area 1, 2, 3) Numeric values in text box 27

Outputs description Output type ID
Log window showing processing messages Text displayed in box area 8
Show heat flux areas (areas 1, 2, 3) JPEG images by pressing button 28
Arrays of heat flux data Matlab (.mat) archive in output folder
Data sheets of heat fluxes of IR frames Excel file in output folder
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Table A6. Technical specifications of functionality and input/output data type of STEP 5.

Script Name

step05.m

Functionality
Temperature rate of change during selected time-period (tab ‘Step 5′ in GUI)

Inputs description Inputs type ID
Data input folder (containing .mat output files of
previous Steps)

Folder path in common dialog window by pressing
button 29

Time interval of analysis Dates picked over calendar 30

Photo of studied area to use in data overlay File name & path in common dialog window by
pressing button 31

Threshold value of R2 extracted from linear
regressions of pixels time-series

Numeric values in text box 32

Limits of color scale to use in temperature rate of
change map Numeric values in text box 33

Enable/disable data overlay on photo of studied area Check box selection 34

Outputs description Output type ID
Log window showing processing messages Text displayed in box area 8
Show map of temperature rate of change JPEG image by pressing button 35
Arrays of temperature rate of change data Matlab (.mat) archive in output folder
Data sheets of temperature rate of change data Excel file in output folder

Although the processing steps can be managed separately, the processing chain needs data to be
analyzed by the first three steps in sequential way. The Operative Manual of ASIRA is available as
Supplementary Materials together with Matlab© scripts and Open Source Toolboxes and functions.
Matlab© scripts code is widely commented in order to understand the features and the functionality.
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