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Abstract: Timely and continuous information about flood spatiotemporal evolution are fundamental
to ensure an effective implementation of the relief and rescue operations in case of inundation
events. In this framework, satellite remote sensing may provide a valuable contribution provided
that robust data analysis methods are implemented and suitable data, in terms of spatial, spectral and
temporal resolutions, are employed. In this paper, the Robust Satellite Techniques (RST) approach,
a satellite-based differential approach, already applied at detecting flooded areas (and therefore
christened RST-FLOOD) with good results on different polar orbiting optical sensors (i.e., Advanced
Very High Resolution Radiometer – AVHRR – and Moderate Resolution Imaging Spectroradiometer –
MODIS), has been fully implemented on time series of Suomi National Polar-orbiting Partnership
(Suomi-NPP-SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) data. The flooding event
affecting the Metaponto Plain in Basilicata and Puglia regions (southern Italy) in December 2013
was selected as a case study and investigated by analysing five years (only December month) of
VIIRS Imagery bands at 375 m spatial resolution. The achieved results clearly indicate the potential
of the proposed approach, especially when compared with a satellite-based high resolution map of
flooded area, as well as with the official flood hazard map of the area and the outputs of a recent
published VIIRS-based method. Both flood extent and dynamics have been recognized with good
reliability during the investigated period, with only a residual 11.5% of possible false positives over
an inundated area extent of about 73 km2. In addition, a flooded area of about 18 km2 was found
outside the hazard map, suggesting it requires updating to better manage flood risk and prevent
future damages. Finally, the achieved results indicate that medium-resolution optical data, if analysed
with robust methodologies like RST-FLOOD, can be suitable for detecting and monitoring floods also
in case of small hydrological basins.
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1. Introduction

Among natural hazards, floods are currently the most frequent and costliest [1], causing
worldwide fatalities as well as huge economic damage, affecting both rural and urban environments [2].
For instance, in 2017, 47% of the economic losses due to natural catastrophes were specifically related to
floods (including both river flooding and flash floods) and another 35% to meteorological (i.e., storms)
events [3]. Moreover, flood risk and the associated losses are projected to significantly increase in the
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future due to both human activities (i.e., land use/cover changes, new infrastructures construction,
etc.) and natural causes (i.e., the effects of climate change, subsidence, etc.) [2,4,5]. To reduce the
effects of these potential threats, effective flood risk management is required [2] as well as, in case of
disaster, a prompt detection of flooded areas in order to support decision makers with relief and rescue
operations [6]. In this framework, satellite remote sensing data have become a powerful tool, thanks
to the growing availability of several satellite/sensors systems able to provide different information
about inland surface water presence useful to manage flooding events [7,8].

Microwave sensors can provide useful evidence (i.e., 24 hours and under cloudy conditions) about
flooded areas, with different characteristics depending on the specific technology used [9]. Active
systems, such as Synthetic Aperture Radar (SAR), can furnish data at a high spatial resolution (up to
few meters) but, generally, with a long revisit period (up to five to six days), hence often resulting
not suitable for assuring a quick identification and a continuous monitoring of flood-inundated
area [10,11]. Their capabilities greatly improve when national space agencies focus the acquisitions
of their satellites on the affected area or when specific services, such as the International Charter
Space and Major Disasters [12] or the Copernicus Emergency Management [13] are activated. On the
other hand, passive microwave sensors allow acquiring data with a poor spatial resolution (up to
tens of kilometres) but with a high temporal frequency (up to few hours), especially if considering
those instruments on board of polar weather satellites constellation [14]. Their spatial and temporal
resolution makes these sensors particularly suitable for studying large-scale floods [6] but less adequate
in case of moderate/small size events.

Optical sensors, acquiring data in the visible (VIS), near infrared (NIR) and shortwave infrared
(SWIR) bands, allow for the detection of flooded areas during daytime and in absence of clouds [7,10].
The spatial resolution of these data ranges from few to hundreds of meters while the temporal
resolution from some hours to a few days [10,15–17]. Therefore, in order to ensure continuous and
near real time information in daytime conditions about flood dynamics, optical sensors onboard
weather polar satellites represent one of the most suitable solution in furnishing useful data, in terms
of both spatial, spectral and temporal resolutions [18]. Furthermore, considering that both optical
and microwave sensors are often present on these satellites, their integration is an added value in
providing a more comprehensive overview of the ongoing phenomena [6,18–20].

In the last years, optical data acquired by the Advanced Very High Resolution Radiometer
(AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) have been analysed by
implementing the Robust Satellite Technique (RST) [21] for detecting flooded areas and therefore
christened RST-FLOOD, with satisfactory results [22,23]. In this paper, RST-FLOOD has been applied to
Suomi National Polar-orbiting Partnership (Suomi-NPP) (SNPP) Visible Infrared Imaging Radiometer
Suite (VIIRS) imagery to analyse the flooding event which hit the Basilicata and Puglia regions
(southern Italy) in the first week of December 2013. The main objective of this work is to assess the
potential of the developed RST-FLOOD scheme, when implemented on VIIRS Imagery (at 375 m of
spatial resolution) bands, to get useful and reliable information for small-scale flood events.

2. The Test Case

The selected Region of Interest (ROI) is the Metaponto plain area, located between the
south-eastern corner of the Basilicata Region (southern Italy) and a subset of the Puglia Region
(Figure 1). This plain is of particular socio-economic and environmental importance for the region and
interested by degradation processes mainly linked to land management and soil characteristics [24,25].
The area encloses the terminal sector of all the main Basilicata river basins, namely Sinni, Agri, Cavone,
Basento and Bradano and of the Lato River, the major one of the Puglia Region (Figure 1).



Remote Sens. 2019, 11, 598 3 of 26
Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 27 

 

 89 

Figure 1. Localization of the Region of Interest (red box, in WGS-84 lat-long projection). In 90 
background the RGB False Colour (Red=Shortwave Infrared, namely I3 VIIRS band; Green = Near 91 
Infrared, namely I2 VIIRS band; Blue = RED, namely I1 VIIRS band) of VIIRS Imagery data acquired 92 
on 4 December 2013 at 12.10 GMT. Yellow dots indicate the localization of gauging stations along the 93 
five main rivers reaching the Ionian coast. The red segment and the white box will be used in the text. 94 

All these rivers are strongly seasonal dependent, with maximum hydrometric levels recorded in 95 
winter and minimum in the summer [26]. The annual minimum flow rate of the Sinni and Agri rivers, 96 
whose basins are those mostly affected by precipitations at regional level, is 1.38 and 0.5 m3/s, 97 
respectively [27]. Lower values are instead recorded for the Bradano and Basento rivers (i.e., 0.04 and 98 
0.08 m3/s), while Cavone River flow rate is practically nil [27]. The river levels are registered by the 99 
Civil Protection Department of Basilicata Region [28], by means of the five gauging stations (depicted 100 
by yellow dots in Figure 1) positioned close to the river mouths (i.e., within the Metaponto Plain), at 101 
the intersection with the freeway of the Basilicata region called "StradaStatale 106.” Based on the 102 
temporal range when water levels were available (January 2011–September 2016), the three maxima 103 
measured at the five gauging stations and the corresponding dates are reported in Table 1, where 104 
they are listed from the highest to the lowest.  105 
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Looking at the data in Table 1 it is worth noting an evident increase in the water level of all the 109 
rivers during the first week of December 2013 (Figure 2), which suggests the occurrence of an extreme 110 
hydrological event. The “Ciclone Nettuno” storm hit the Basilicata Region between 30 November and 111 
3 December 2013, producing heavy convective precipitation [29–30]. A daily precipitation value of 112 
130 mm was recorded on 1 December at the Bradano River gauging station, with a cumulative one of 113 
200 mm for the entire event [31], indicating the strong intensity of this meteorological event. The 114 
consequent flooding event affected not only the Metaponto Plain in the Basilicata Region but also 115 

Figure 1. Localization of the Region of Interest (red box, in WGS-84 lat-long projection). In background
the RGB False Colour (Red = Shortwave Infrared, namely I3 VIIRS band; Green = Near Infrared, namely
I2 VIIRS band; Blue = RED, namely I1 VIIRS band) of VIIRS Imagery data acquired on 4 December
2013 at 12.10 GMT. Yellow dots indicate the localization of gauging stations along the five main rivers
reaching the Ionian coast. The red segment and the white box will be used in the text.

All these rivers are strongly seasonal dependent, with maximum hydrometric levels recorded
in winter and minimum in the summer [26]. The annual minimum flow rate of the Sinni and Agri
rivers, whose basins are those mostly affected by precipitations at regional level, is 1.38 and 0.5 m3/s,
respectively [27]. Lower values are instead recorded for the Bradano and Basento rivers (i.e., 0.04 and
0.08 m3/s), while Cavone River flow rate is practically nil [27]. The river levels are registered by the
Civil Protection Department of Basilicata Region [28], by means of the five gauging stations (depicted
by yellow dots in Figure 1) positioned close to the river mouths (i.e., within the Metaponto Plain),
at the intersection with the freeway of the Basilicata region called "StradaStatale 106.” Based on the
temporal range when water levels were available (January 2011–September 2016), the three maxima
measured at the five gauging stations and the corresponding dates are reported in Table 1, where they
are listed from the highest to the lowest.

Table 1. The three maximum water levels (listed in decreasing order) measured in the period
01/01/2011–30/09/2016 and the corresponding dates for the Sinni, Agri, Cavone, Basento and Bradano
rivers [28]. Note that for Agri River, data are available only for the period 01/01/2013–30/09/2016.

Sinni Agri Cavone Basento Bradano

Max River
Level Date

3.59 m
01/12/2013

4.19 m
01/12/2013

5.22 m
04/02/2014

7.92 m
02/12/2013

6.04 m
02/03/2011

3.47 m
28/03/2015

3.93 m
13/03/2016

5.00 m
02/12/2013

7.81 m
03/12/2013

5.39 m
02/12/2013

3.46 m
23/02/2012

3.55 m
02/12/2013

4.81 m
19/02/2011

7.60 m
02/03/2011

4.83 m
03/12/2013

Looking at the data in Table 1 it is worth noting an evident increase in the water level of all the
rivers during the first week of December 2013 (Figure 2), which suggests the occurrence of an extreme
hydrological event. The “Ciclone Nettuno” storm hit the Basilicata Region between 30 November
and 3 December 2013, producing heavy convective precipitation [29,30]. A daily precipitation value
of 130 mm was recorded on 1 December at the Bradano River gauging station, with a cumulative



Remote Sens. 2019, 11, 598 4 of 26

one of 200 mm for the entire event [31], indicating the strong intensity of this meteorological event.
The consequent flooding event affected not only the Metaponto Plain in the Basilicata Region but also
some areas in Puglia, where the Lato River overflowed near Castellaneta Marina, causing the closure of
the freeway “Strada Statale 106” and severe damage to the surrounding lands and villages [28,32–36].
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Figure 2. Basilicata river levels measured in the period 20/11/2013–20/12/2013 at the correspondent
gauging stations indicated in Figure 1 [28].

This event has been already investigated by Reference [31], which, by integrating multi-temporal
COSMO Sky MED SAR intensity images and interferometric-SAR coherence data with geomorphic and
other ground information within a Bayesian network, detected flooded area, reaching accuracies of up
to 89%, in the 2–3 December 2013 period focusing on a small subset of Figure 1 centred on the Bradano
River mouth. [37] extended the work of Reference [31] adding to the two above-mentioned COSMO
Sky Med SAR imagery a Plèiades-1B High-Resolution data of 5 December 2013 to investigate a limited
portion of Figure 1 centred on the Basento River mouth. SAR data were processed and used as in
Reference [31] to identify flooded area on the above-mentioned days, while the Normalized Difference
Vegetation Index (NDVI) was implemented on the Plèiades image to highlight water presence at the
end of the event. A visual interpretation of the optical data combined with a field campaign allowed
inferring information about results uncertainties [37]. Concerning the selected test case, the integration
of outcomes of these two previous works gives an overview of the flood effects in a very small area
(e.g., about 20 km2) and for a short temporal range (up to four days).

The approach proposed in this work should allow for both the extension of the spatiotemporal
domain of the investigation of the event and the deep analysis of the phenomenon, thanks to the large
swath as well as the continuity of observation ensured by sensors on-board polar satellites, like VIIRS.

3. Data and Methods

3.1. VIIRS Data

The VIIRS sensor is currently operational onboard SNPP (since October 2011) and the US Joint
Polar Satellite System 1 (JPSS-1 or NOAA-20, since November 2017). In addition, three more VIIRS
sensors will fly on the follow-on JPSS2-JPSS4 satellites, planned for launch from 2021 to 2031 [38,39]
assuring an operational continuity like the one already offered by AVHHR and MODIS, namely its
predecessors. Thanks to its large swath (i.e., 3060 km), VIIRS has been providing a daily full Earth
coverage [40], collecting data in 22 different spectral bands of the electromagnetic spectrum, ranging
from 0.412 µm and 12.01 µm, with a spatial resolution of 750 m at the nadir for both the Day/Night
panchromatic Band (DNB) and the 16 Moderate resolution bands (M-bands) and of 375 m for the 5
high-resolution Imagery bands (I-bands) [40] .
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In this work, the following I-bands, namely I1 (0.60–0.68 µm, RED), I2 (0.85–0.88 µm, Near Infrared
-NIR), I3 (1.58–1.64 µm, Shortwave Infrared-SWIR) and I5 (10.5–12.4 µm, Thermal Infrared-TIR)
acquired in the month of December from 2013 to 2017 (for a total of 171 SNPP orbits) were analysed.
In addition, the I-band terrain-corrected geolocation data (GITCO), including longitude, latitude,
solar zenith angles, solar azimuth, sensor zenith and sensor azimuth angles, were also exploited.
The I1–I3 data were converted in reflectance (R) values, while those related to I5 band in brightness
temperature (BT).

In more detail, SNPP Sensor Data Record (SDR) data, directly acquired at the satellite receiving
station of the Institute of Methodology for Environmental Analysis (IMAA) located in Tito Scalo
(Basilicata region, southern Italy), have been processed by running the Community Satellite Processing
Package (CSPP). Furthermore, SDR data were downloaded from NOAA CLASS archive [41] to fill any
gaps within the considered historical series. The Polar2Grid v2.2 software [42] allowed the SDR spatial
sub-setting over the ROI.

A total of 684 VIIRS SDR data was collected for the study area of 601 × 600 pixels, shown in
Figure 1. The cloud-free VIIRS daytime imagery of the event, acquired on 4,5,6,7 and 8 December 2013,
at 12.10 GMT, 11.52 GMT, 11.35 GMT, 11.12 GMT and 12.36 GMT, respectively, have been processed in
terms of RST-FLOOD to analyse the above mentioned flooding event.

3.2. Ancillary Data

The reliability of the RST-FLOOD results has been assessed by means of a high resolution map,
carried out applying a change detection scheme to a Landsat 7 (Enhanced Thematic Mapper Plus)
ETM+ data (Figure 3) and the flood hazard maps provided, for the studied area, by the Italian Ministry
of the Environment and Land Protection [43] (Figure 4). In addition, the sensitivity of the achieved
outcomes has been evaluated for comparison with the outputs of the VIIRS NOAA&GMU Flood
Version 1.0 (VNG Flood V1.0, hereafter VNG) software, recently distributed in the framework of the
CSPP network [44] (Figure 5).

Two Landsat 7 ETM+ (scene of 2534 × 3400 pixels, at 30 m of spatial resolution) images provided
over the ROI with a higher spatial resolution then VIIRS ones, have been used to evaluate the flood
detection results. In detail, the Landsat 7 ETM+ images acquired on 5 December 2013, at 9.31GMT
and 24 December 2014, at 9.33 GMT were combined in a change detection scheme to highlight the
flooded area. The Landsat Level-1 data, downloaded from USGS Earth Explorer Earth website [45],
are distributed as scaled and calibrated digital numbers (DN). In this work, the DNs were converted
to calibrated TOA (Top Of Atmosphere) reflectances using metadata which are distributed with the
product. In Figure 3a,b the false colour composite images (R = Band 7, SWIR, 2.09–2.35 µm; G = Band
5, SWIR, 1.55–1.75 µm; B = Band 1, RED, 0.63–0.69 µm) of the analysed imagery are shown. The 753
combination provides a “natural-like” rendition, where flooded areas should look very dark blue or
black [46]. Looking at the images, the presence of a large number of blue pixels is evident for the
one acquired concurrently with the 2013 flood event (Figure 3a), while the other should more reflect
the unperturbed condition. Besides, for each image, three maps were produced: RED − SWIR (B3
− B5), RED/SWIR (B3/B5) and their normalized difference (NDSI = RED−SWIR, RED/SWIR, B3 −
B5/B3 + B5), which all should be affected by a variation in surface water presence, as better discussed
later (see Section 3.3). The “water affected areas,” shown in magenta in Figure 3c (re-projected at
375 m, for the comparison with RST-FLOOD results), is the “and” combination of the detections carried
out integrating these three maps. By this approach, an area of about 24 km2 has been estimated as
flooded affected, mostly localized along the Basento, Bradano and Lato rivers. Such a value is likely
underestimated because of a number of issues regarding Landsat data [47], like the presence of data
gaps towards the edges of the images due to the striping caused by the failure of the Landsat-7 ETM+
scan line corrector (SLC) in 2003.
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Figure 3. The Landsat 7 ETM+ false-colour (R = Band 7, Shortwave Infrared, 2.09–2.35 µm; G = Band 5,
Shortwave Infrared, 1.55–1.75 µm; B = Band 1, Blue, 0.45–0.52 µm) composite image of (a) 05/12/2013
at 9.31 and (b) 24/12/2014 at 9.33 GMT; (c) change detection map showing the water affected areas,
depicted in magenta, over the region of interest (ROI).

In Italy, the Ministry of the Environment and Land Protection plans finances and controls the
actions aimed at the hydrogeological risk reduction. In this framework, the Hydro-Geologic Safety
Plan (named hereafter PAI) is drawn up for each river basin. In the Basilicata PAI, produced by the
Basilicata Inter-Regional Basin Authority, through hydrological and hydraulic studies carried out
by the University of Basilicata [48], three areas of fluvial pertinence in relation to flood risk as well
as in relation to the natural water path have been defined as areas of probable flood risk [48]. Such
zones are established according to the three following scenarios: i) frequently occurring flood events
(high probability, likely return period 30–50 years); ii) less frequently occurring flood events (medium
probability, likely return period 100–200 years); iii) extreme flood events (low probability, likely return
period 300–500 years). The last ones, delivered by the Italian national geoportal [43] and updated
at December 2016, are provided in Web Map Service (WMS) format. The PAI referring to the ROI is
shown in Figure 4, where the lighter the colour (from black to yellow) the lower the probability of the
occurrence of extreme floods.
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Figure 4. The flood hazard map (PAI) for the ROI. Areas are depicted according to the palette, ranging
from black to yellow when the return period increases.

The VNG is a satellite-based flood extent product developed using SNPP/VIIRS imagery to
derive near real-time flood maps for the National Weather Service (NWS) River Forecast Centres
(RFC) in the USA [11]. It exploits a multi-step (decision trees) approach based on SNPP/VIIRS
imagery to automatically generate near real-time flood maps in any land region between 80 ◦S and 80
◦N [11]. Geolocation (GITCO) and VIIRS data, such as the SNPP/VIIRS 750-m resolution cloud mask
intermediate product (IICMO) and M-band terrain-corrected geolocation data (GMTCO) are also used
in combination with several static ancillary datasets (e.g., global land cover, global land and water
masks, digital elevation models, etc.). These data are integrated into the VNG software, using fixed
threshold, contextual and change detection approaches to determine the presence of flooded areas,
with a big effort toward the cloud and terrain shadow removal [11]. Since March 2018, the software
has been delivered by CSPP in a version adapted for direct broadcast satellite receiving systems [44].
The software can process either full pass length SDRs by default or user defined latitude/longitude
ROIs. The flood maps generated by VNG for the ROI shown in Figure 1 have been produced (Figure 5),
considering the cloud-free VIIRS daytime imagery of the event. The output is a colour enhanced 8
bit GeoTIFF image with the main identified features differently depicted on the basis of the provided
legend [44].
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at 12:36 GMT.

3.3. The Robust Satellite Techniques (RST) Approach

RST is an automatic change-detection scheme, already applied with good accuracy in monitoring
different natural and environmental hazards (see [21] and references herein). RST identifies statistically
significant variations, at pixel level, for the signal under investigation by: (i) analysing multi-year
time series of cloud-free homogeneous (same calendar month, same acquisition time, same spectral
channel/s) satellite records; (ii) searching for anomalies by means of a specific change detection step.
The latter exploits the “Absolute Variation of Local Change of Environment (ALICE) Index” defined
as follows:

⊗V (x, y, t) =
V(x, y, t)− µv(x, y)

σv(x, y)
, (1)

where, V(x,y,t) is the signal measured at time t for each pixel (x,y) of the analysed satellite scene,
while µV(x,y) and σV(x,y) represent respectively the temporal mean and standard deviation (i.e., the
reference fields), both computed by processing the above mentioned homogeneous multi-temporal
dataset of satellite imagery” [22]. Such an index is, for its inherent design, a standardized variable that
should show a Gaussian behaviour (i.e., mean ~ 0 and standard deviation ~ 1), therefore, the higher
the absolute value measured, the lower the probability of occurrence [49]. Namely, the probability
of occurrence of an anomalous signal decreases from about 4.5% for |⊗ V| > 2 (level of statistical
significance) to 0.3% for |⊗V| > 3 and even lower values for increased |⊗V| [30]. The analysis at pixel
level of long-term signal series acquired under the same observation conditions (i.e., same sun height,
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same land use/cover according to “seasonal” dynamics, almost similar weather/climatic conditions)
automatically allows the overcoming of possible site effects [22]. For instance, any signal variation
related to terrain shadows, which should be almost constant considering imagery acquired always
in the same month of the year at the same time, is inherently taken into account by the proposed
method. Furthermore, signal fluctuations due to spurious/random effects (sun glint contamination,
suspended sediment variability, etc.) can only determine a higher standard deviation, thus resulting
in a reduction of the ALICE index values and a much more selective identification of anomalous
events [49,50]. As assessed by an independent work focused on RST [51], the investigated satellite
historical series should consist of about 80 images to guarantee representative background signal. Such
a number, considering a monthly temporal window and a sensor offering a daily temporal resolution,
roughly corresponds to a 3-year long time series, representing indeed the minimum time span for a
reliable RST implementation.

During the generation of the reference fields, as well as during the change detection step, cloudy
pixels were identified and discarded from the detection step implementing the One Channel Algorithm
(OCA) method [52,53]. Such an approach, still based on the RST prescriptions, analyses historical
series of VIIRS I3 and I5 data to identify clouds as statistically high reflectivity or low temperature
objects. Concerning cloud shadows, a specific algorithm based on ALICE indices (described in the
next section) has been developed and tested here for the first time, to ensure a reliable identification of
flooded area by optical data.

In its previous application to flooded area detection (e.g., [22,23]) RST-FLOOD used the ratio
and/or the difference between the signals measured in the RED and NIR channels (i.e., RED/NIR
and/or RED-NIR) of AVHRR (channel 1: 0.58–0.68 µm and channel 2: 0.725–1.00 µm, both at 1 km of
spatial resolution) and MODIS (channel 1: 0.62–0.67 µm and channel 2: 0.841–0.876 µm, both a t 250 m
of spatial resolution) as the reference signal (i.e., V(x,y,t) in Equation (1)). In particular, the ratio index
demonstrated to be more robust respect to false positives, while the difference RED-NIR resulted more
sensitive to the presence of flooded area [23].

Concerning VIIRS Imagery data, in addition to the indexes above defined [14], flooded area
can be detected in different single bands and/or exploiting their combination, due to the specific
spectral response of water in the VNIR region [6,11,54]. To better highlight such a behaviour within the
local-scale conditions, the spectral profile for different signals along the red transect shown in Figure 1,
has been investigated (Figure 6). Reflectance in both single (i.e., RED, NIR and SWIR, Figure 6a) and
combined (i.e., RED − SWIR, RED/SWIR, NDSI-Normalized Difference Snow Index, Figure 6b) VIIRS
I-bands were analysed.

Considering the reflectance trends along the selected transect at wavelengths between 0.6 µm
and 1.64 µm (Figure 6a), a clear signal change is observable in correspondence of the areas perturbed
by the water presence. In detail, the presence of turbid waters (i.e., rich in sediment) causes an
I1 signal increase that is no more detectable in the two channels at higher wavelength, where the
water absorption properties produce a signal decrease. The relative variation between probably
flooded/no-flooded area is relatively higher for I3 channel (77%) than I2 one (57%), suggesting better
sensitivity of I3 towards these features. According to these outcomes, within the band combination
analysis (Figure 6b), we did not consider the NIR (I2) channel anymore. Plots shown in Figure 5b
highlight the good sensitivity of the signal band combinations (i.e., I1–I3 or I1/I3) for flooded area
detection, with the ratio providing the best score in terms of signal variation. In addition, also their
combination in terms of normalized difference, namely the NDSI (NDSI = RED – SWIR/RED +
SWIR [55]), proves to be an index suitable for water detection purposes [56] thanks to the high water
reflectance contrast at these two wavelengths [11,15].

On the basis of the above discussed analysis, the ALICE index (Equation (1)) was preliminarily
computed on the following five signals: I1, I3, I1 − I3, I1/I3 and NDSI = (I1 − I3/I1 + I3), in order to
select the best suitable metric (single band or combination) for flooded area detection, in terms of both
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reliability and sensitivity. It is worth noting that only the ALICESWIR index should show low negative
values in presence of flooded area, while, for all the others, high positive values have to be expected.
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3.4. Cloud Shadows Removal

In this study, we investigated, for the first time, the potential of the RST approach to identifying
cloud shadows, using the VIIRS I-bands. It is worth pointing out that, to our knowledge, this is the
first attempt to exploit these data to detect cloud shadows. The current cloud mask algorithm for VIIRS
I-Band indeed does not contain any confidence flag for shadows [57]. It is also important to specify
that the approach we are proposing is based on a preliminary version, implemented for identifying
(and removing before further analyses) clouds shadows (just for clouds on land). The performances
it offers using the developed criterion, shown in this paper, refers exclusively to the flood analysed
in this work. Other tests on wider regions are needed to confirm its feasibility and make it working
well for all situations. In this first approach, the algorithm does not use geometry-based information
(e.g., view angle of the satellite sensor, the solar zenith angle, the solar azimuth angle and the relative
height of the cloud) to assess the cloud shadow location. In any case, it is worth mentioning that an
assessment of the reliability of the RST-based cloud shadow product is beyond the scope of this paper
and will be object of future works.

Cloud shadows can be considered, from a statistical point of view, as anomalous signals randomly
perturbing the investigated signal at pixel level for the considered scene. Therefore, they can be
analysed by implementing the RST approach selecting spectral radiances most sensitive to their
presence [58], namely the reflectance values measured in the I1, I2 and I3 VIIRS bands. [58] showed
the difference of reflectance values between clear pixels and cloud shadow contaminated pixels on
vegetation, settlement and water bodies are shown, for the Landsat 8 bands (from Blue to SWIR). They
found that NIR and SWIR bands have the biggest difference in average between clear pixels and cloud
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shadow contaminated pixels. Despite this, the choice of the most suitable metric (e.g. between the
single or a bands combination) is not trivial, as shadows show a spectral response in the VIS-SWIR
spectral range almost similar to those of flooded area [59]. Investigating the differences in values of the
ALICE indices (i.e., ALICERED, ALICENIR and ALICESWIR) for shadows and flooded area, it is worth
considering that:

• in the RED (I1), flooded pixels should show higher values of ALICERED than the shadow-affected
ones, due to their relative increase in reflectance at this wavelength;

• in the NIR (I2) and SWIR (I3), both flooded and shadow pixels show low (negative) values of
ALICENIR and ALICESWIR.

Therefore, a combination of those signals can allow a quite reliable identification of cloud shadows,
which were mapped using the following rule:

if [ALICERED < -2 and ALICENIR < -2 and ALICESWIR < -2] then “shadow”

where the value “-2” used for all ALICE indices is the minimum level assuring the statistical significance
of detected pixels. Besides, a 1.5 km - buffer zone around each potential cloud shadow affected pixel
has been applied, to compensate for missed detections.

For its inherent construction, such a criterion, applied only on cloud-free pixels, looks for those
areas concurrently showing a statistically significant decrease in the signal acquired in the first three
VIIRS Imagery bands. Therefore, apart from a few spurious and random signals, it should allow at
discriminating flooded area from cloud shadows.

4. Results

4.1. Cloud Shadow

The cloud and shadow masks produced by the approach above mentioned are shown in Figure 7
and refer to the most two cloudy (on land) images (i.e., 05/12/2013 at 11:52 GMT and 07/12/2013 at
11:12 GMT, see Figure 5b,d) among the ones analysed in this paper. Furthermore, for each of them,
also the corresponding VIIRS RGB false colour image is plotted.
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 Figure 7. (a) RGB False Colour (R = SWIR, G = NIR, B = RED) of VIIRS Imagery data acquired on 5
December 2013 at 11:52 GMT; (b) cloud and shadow masks for the image shown in (a); (c) RGB False
Colour (R = SWIR, G = NIR, B = RED of VIIRS Imagery data acquired on 7 December 2013 at 11:12
GMT; (d) cloud and shadow masks for the image shown in (c).

The maps in Figure 7b,d seem to indicate the good potential of this preliminary RST-based
indicator in detecting anomalous pixels likely affected by cloud shadows. The visual comparison
to the VNG outputs (see Figure 5b,d) also indicates a general agreement between the two products,
even if a straight inter-comparison is not possible, because of the different cloud detection strategy
adopted. Obviously, at the current state, residual cloud shadows not properly identified will expose
RST-FLOOD to possible false positive detection.

4.2. Selection of the Most Suitable VIIRS RST-FLOOD Indicator

As already mentioned, the first almost cloudy-free VIIRS daytime image acquired over the area
under investigation soon after the event was on 4 December 2013 at 12:10 GMT, shown in RGB False
Colour (R = I3, G = I2, B = I1) in Figure 1. This image has been selected as benchmark for assessing
ALICE indices performances (Figure 8), being the one temporally closest to the flood peak. In each of
the five maps reported in Figure 8, pixels showing statistically significant (i.e., higher/lower than |3|)
ALICE values have been depicted in red.

The results based on the ALICERED index (Figure 8a) highlighted its poor reliability in
discriminating flooded pixels. Although several pixels are located along the main rivers in the
area, there are indeed more others randomly spread out all over the ROI. These effects disappear in all
the other maps, whose analysis seems to suggest a quite similar behaviour for the other four indices.

Hence, excluding the ALICERED index (Figure 8a), the number of flooded pixels identified all
over the scene by each of the other indices has been summarized in Table 2, in which also the mean
and maximum ALICE values are reported. The same information has been listed for anomalous pixels
detected along the Basento River.

The ALICESWIR appears as the most conservative index in identifying anomalous pixels, compared
with the others (see Table 2). An in-depth investigation of anomalies discriminated by all the other
indices suggests the following considerations. The ALICE index, when using the RED and SWIR
reflectances, combined as difference, ratio and normalized difference, overall provide the same
information on flooded area extent, flagging as anomalous a very similar number of pixels (see Table 2).
In particular, among them, the ALICERED-SWIR and ALICERED/SWIR, unlike the ALICENDSI, seem
more exposed to the detection of anomalous/spurious pixels along the coastline. Accordingly, the
ALICENDSI appears as the most performing index, offering the best trade-off between sensitivity
and reliability.
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ALICERED-SWIR, (e) ALICENDSI on 04/12/2013 at 12:10 GMT.
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Table 2. Statistics of the ALICE indices all over the scene and for anomalous pixels along Basento River.

ALICE
Index

All Scene Basento River

# Anomalous Pixels Mean Max/Min # Anomalous Pixels Mean Max/Min

ALICESWIR 220 −2.42 −28.16 71 −3.98 −7.48
ALICERED-SWIR 604 4.70 17.15 230 6.28 17.15
ALICERED/SWIR 679 8.92 61.83 247 3.06 61.83
ALICENDSI 638 5.78 23.74 256 3.01 23.74

The analysis for the Basento River shows almost similar outcomes respect to the whole scene in
terms of detected ALICE values but with the ALICENDSI identifying the largest number of anomalous
pixels (i.e., 256). Therefore, on the basis of the above discussed results, the ALICENDSI has been selected
as the benchmark index in the next analyses, resulting less affected by suspended sediments and
showing a good sensitivity in detecting flooded area.

A map of the detected anomalous areas for the VIIRS image of 4 December 2013 is plotted in
Figure 9 where different colours (from red to yellow) indicate increasing significance levels of the
ALICENDSI index. The pixels detected as anomalous at the highest ALICENDSI (i.e., the yellow ones)
are representative of local conditions extremely different from those expected in the ROI.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 27 
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increasing levels of the confidence from red to yellow; (b) magnification of the area within the white
box shown in Figure 1.
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Once the most suitable ALICE index has been defined, it has been applied also on the next four
days (i.e., up to 8 December 2013), when the event should have been already ended, according to
previous works (e.g., [31,37]).

The map including all the anomalous pixels detected by the ALICENDSI ≥ 3 during the five days
is reported in Figure 10, clearly showing as the probably effects of the event were still evident up
to 8 December at least. In the following days, the ROI was again cloudy up to 10 December 2013,
when the flood effects were almost disappeared. The spatial extent of the detected anomalies during
the five-day period was about 72 km2 on December 4th, 41 km2 on 5th, 32 km2 on 6th, 38 km2 on
7th and 30 km2 on 8th December 2013, respectively. A clear decreasing trend in the anomalous area
identification is notable (as expected in the case of floods), except for 7th December, when the large
presence of clouds and relatively shadows may have produced a few false positives (see green pixels
in Figure 10). Moreover, the clusters of anomalous pixels in correspondence of the main affected rivers
as well as their persistence in the spatiotemporal domain, suggest their possible direct correlation with
the flooded area that will be assessed in the next session.Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 27 
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Figure 10. Flooded areas detected within the ROI by ALICENDSI≥3 on days between 4–8
December 2013.

4.3. Assessment Results

4.3.1. Comparison with Landsat 7 ETM+ Data

The RST-FLOOD results referring to 5 December 2013 were superimposed on the water affected
areas shown in Figure 3c in order to assess their reliability. By comparing the areas detected as flooded
by RST-FLOOD (orange pixels in Figure 10) and the change detection scheme, described in Section 3.2,
on Landsat 7 ETM+ data (Figure 3c), a very good level of agreement can be observed (Figure 11).

Across the scene, 191 and 357 pixels were flagged as flooded in the Landsat and RST-FLOOD
map, respectively, with 120 common detections (Figure 11a). The remaining Landsat water affected
pixels, not detected by RST-FLOOD, are around the lakes/dams (35%) and along Basento and Bradano
rivers (65%). Within the box (Figure 11b), ~90% of total pixels detected by Landsat (i.e., 104) are also
identified by RST-FLOOD that found a total of 293 pixels. Those remaining are all along the Basento
and Agri rivers and were not detected by Landsat due the already-mentioned data gap acquisition.
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Figure 11. (a) Comparison between the flooded affected areas detected by RST-FLOOD for the 5
December 2013 (orange pixels) and the water affected areas computed by a change detection scheme
on Landsat data (magenta pixels); the common pixels are highlighted in green; (b) a magnified map of
(a) within the white box shown in Figure 1.

4.3.2. Comparison with the Flood Risk Map

The flood hazard map (Figure 4) provided by the Italian Ministry of the Environment and Land
Protection was used to assess the reliability of the proposed approach. All the ALICENDSI anomalous
pixels detected by RST-FLOOD in the 4–8 December 2013 temporal range have been superimposed on
the PAI area (Figure 12).

Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 27 

 

are also identified by RST-FLOOD that found a total of 293 pixels. Those remaining are all along the 439 
Basento and Agri rivers and were not detected by Landsat due the already-mentioned data gap 440 
acquisition.  441 

4.3.2 Comparison with the Flood Risk Map 442 

The flood hazard map (Figure 4) provided by the Italian Ministry of the Environment and Land 443 
Protection was used to assess the reliability of the proposed approach. All the ALICENDSI anomalous 444 
pixels detected by RST-FLOOD in the 4–8 December 2013 temporal range have been superimposed 445 
on the PAI area (Figure 12).  446 

 
(a) 

 
(b) 

Figure 12. (a) PAI and anomalous pixels detected by RST-FLOOD (ALICENDSI ≥ 3) in 4-8 December 447 
2013 over the ROI; (b) a magnified map of (a) within the white box shown in Figure 1. 448 

Table 3 summarizes the amount of anomalous pixels falling or not within the PAI area, counted 449 
considering both the whole scene and the above-mentioned black box (shown in Figure 12b). 450 

Table 3. Number of anomalous ALICENDSI pixels detected in the 4-8 December 2013 period, included 451 
or not within the PAI area all over the scene and only for the white box (Figure 12b). 452 

 
All scene Black Box 

Pixels Number % Pixels Number % 

included in PAI area 617 68% 537 76% 

not included in PAI area 295 32% 172 24% 

The analysis of the results reveals that 68% of detected pixels within the whole ROI were in 453 
agreement with the PAI area. In addition, looking at Figure 12a, only a very low number of pixels 454 
seem to not be directly correlated with the hydrographic network of the ROI, indicating a general 455 
good reliability of the achieved results. In more detail, among the 32% of detections outside PAI area 456 
(equal to 295 pixels), i) 20% (i.e., 60 pixels) is related with the area/border of the two already cited 457 
dams, ii) 36% (i.e., 105 pixels) takes into account of pixels close to the coastline as well as to the rivers 458 
but outside the above mentioned zone and hence likely to be considered false positives, iii) the most 459 
of the remaining 44% (i.e., 130 pixels) of pixels is clustered in two sub-areas, clearly visible in Figure 460 
12b, one is located between the mouth of the Bradano and Basento rivers and the other is on the left 461 
side of the Lato River. The first one was already identified as inundated by Reference [31] and [37], 462 
the latter, here identified for the first time, refers to the Castellaneta Marina village, where the freeway 463 
“StradaStatale 106” was closed due to the large presence of water [32–36]. Furthermore, it is worth 464 
mentioning that these two areas with an estimated extension of about 18.3 km2, are not contemplated 465 

Figure 12. (a) PAI and anomalous pixels detected by RST-FLOOD (ALICENDSI ≥ 3) in 4-8 December
2013 over the ROI; (b) a magnified map of (a) within the white box shown in Figure 1.

Table 3 summarizes the amount of anomalous pixels falling or not within the PAI area, counted
considering both the whole scene and the above-mentioned black box (shown in Figure 12b).
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Table 3. Number of anomalous ALICENDSI pixels detected in the 4-8 December 2013 period, included
or not within the PAI area all over the scene and only for the white box (Figure 12b).

All scene Black Box

Pixels Number % Pixels Number %

included in PAI area 617 68% 537 76%
not included in PAI area 295 32% 172 24%

The analysis of the results reveals that 68% of detected pixels within the whole ROI were in
agreement with the PAI area. In addition, looking at Figure 12a, only a very low number of pixels
seem to not be directly correlated with the hydrographic network of the ROI, indicating a general good
reliability of the achieved results. In more detail, among the 32% of detections outside PAI area (equal
to 295 pixels), i) 20% (i.e., 60 pixels) is related with the area/border of the two already cited dams,
ii) 36% (i.e., 105 pixels) takes into account of pixels close to the coastline as well as to the rivers but
outside the above mentioned zone and hence likely to be considered false positives, iii) the most of the
remaining 44% (i.e., 130 pixels) of pixels is clustered in two sub-areas, clearly visible in Figure 12b, one
is located between the mouth of the Bradano and Basento rivers and the other is on the left side of the
Lato River. The first one was already identified as inundated by Reference [31] and [37], the latter, here
identified for the first time, refers to the Castellaneta Marina village, where the freeway “StradaStatale
106” was closed due to the large presence of water [32–36]. Furthermore, it is worth mentioning that
these two areas with an estimated extension of about 18.3 km2, are not contemplated in the current
flood risk map, suggesting a potential of satellite-based products even in terms of assessing (and
possibly refining) such administrative instruments.

The performance of the results improves when considering only the area within the black box,
namely that mainly affected by the event. In particular, among the 172 pixels not included in the
PAI area, 31 (i.e., 18%) are probably due to spurious effects, while the remaining 141 pixels (i.e., 82%)
correspond to above-mentioned “flooded for sure” areas. Finally, 96% of the detected anomalies within
the black box can be considered as real flooded area. This number decreases (i.e., 82%) accounting
for the whole ROI, even if 36%, of the remaining 18%, is related with the borders of the San Giuliano
and Monte Cotugno dams. Therefore, in absence of other information/documentation about other
inundated zones within the ROI, only a residual possible 18% of false positives has been estimated,
mostly related to the 7 December image. This achievement confirms the ALICENDSI capability in
flooded area detection with a high level of reliability.

4.3.3. Comparison with VNG

The VNG maps generated for the analysed VIIRS data are plotted in Figure 5, where pixels with
an increasing percentage of floodwater fractions are depicted from cyan to red. In these maps it
is possible to identify different and quite persistent flooded area, mostly located along the Basento
and Lato rivers as well as at the border of the Monte Cotugno and San Giuliano dams. Finally, the
north-eastern sector of Figure 5a,b,d is characterized by some possible false positives, probably related
to cloud shadows.

All these features are also evident in Figure 13, where flooded pixels, detected by means the
ALICENDSI implementation (red pixels), have been superimposed on those identified by VNG (yellow
pixels), regardless their confidence level. Pixels commonly identified as flooded by both the algorithms
have been depicted in green.

The two products generally show a good agreement, considering that both the algorithms are
able to detect the main spatial features along the Basento and Lato rivers as well as the areas bordering
the Monte Cotugno and San Giuliano dams. Even taking into account a different sensitivity in the
identification of probably flooded pixels, residual biases are due to effects related to the different
land-sea mask used as well as to the already mentioned cloud shadows issues. Table 4 summarizes the
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number of probably flooded pixels detected by RST-FLOOD and VNG considering both the whole
scene as well as the black box for the five analysed days, exploring also common detections.
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Figure 13. Comparison between flooded areas detected by RST-FLOOD using ALICENDSI ≥ 3
(red pixels) and VNG (yellow pixels) on VIIRS data acquired on: (a) 04/12/2013; (b) 05/12/2013;
(c) 06/12/2013; (d) 07/12/2013; (e) 08/12/2013. Common detections are depicted in green.
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Table 4. Number of pixels detected by RST-FLOOD, VNG and by both the algorithms (as shown in
Figure 13) for the analysed days.

All Scene Pixels Number Black Box Pixels Number

VIIRS Data RST-FLOOD VNG MATCHING RST-FLOOD VNG MATCHING

04/12/2013 638 454 109 510 184 96
05/12/2013 357 481 36 293 111 31
06/12/2013 267 234 26 226 84 18
07/12/2013 345 196 4 317 71 4
08/12/2013 260 137 3 211 10 0

VNG seems to detect fewer anomalous pixels than RST-FLOOD, especially along the Basento River,
as is clearly observable in Figure 13. This effect is more evident considering the detection statistics
related to the black box, where the area most affected by the event is included. The comparison between
VNG results and those achieved by the change detection scheme on Landsat data, as already done for
RST in Section 4.3.1, returns a 26% of common detections (i.e., 49 pixels) on the whole scene and a 47%
in the black box. Starting from the 6 December 2013 (Figure 13c) map, any flooded area around the
Basento River has been detected by VNG, whose identifications are mainly focused on Lato River. It is
worth noting that, to reduce the false detection [11], the minor flood detection within VNG is only done
around the determined floodwater pixels or existing normal water pixels (rivers, lakes or reservoirs)
and therefore a water mask not perfectly updated could be at the basis of these discrepancies.

5. Discussion

Floods are natural disasters that, due to their clear spatial and spectral markers in different regions
of the electromagnetic spectrum, are more easily investigable by means of satellite data [14]. Among the
different satellite-based contributions useful for the flood risk management cycle, is the generation of
reliable multi-temporal flood maps is fundamental in all the different phases [8,60,61]. Optical sensors
onboard polar satellites can assure the better trade-off among spectral/spatial/temporal resolutions
suitable for a near real time and continuous monitoring of flooded area [62] although cloud coverage
can fully or partially hamper the acquisition of useful data in this spectral region, possibly limiting
their applicability [7]. Among the currently operational optical sensors, VIIRS onboard SNPP is one of
the most recent and advanced, assuring a long-term continuity of observation (up to the 2031, [38,39]),
that is crucial to assess its potential in investigating floods as well as other natural disasters [40,54].

In this work, the RST-FLOOD approach, previously applied to AVHRR and MODIS VNIR data, has
been fully implemented for the first time on historical series of VIIRS Imagery records for evaluating
its capability in detecting inundated area. The adoption of dynamic and local-scale self-adaptive
thresholds and the fully independence on any kind of auxiliary/ancillary information are the main
RST-FLOOD advantages with respect to traditional techniques [14,23]. Fixed thresholding schemes
or ancillary dataset are indeed often used for flooded area detection applications [11,54] as well as
for facing issues related to cloud and terrain shadows, representing the main challenges for a fully
reliable flood detection [11,54]. The results performance of inundated area identification can indeed
largely change depending both on the availability and the accuracy of the used auxiliary/ancillary
information [22]. In addition, specific site/local-setting of the investigated scene, as well as seasonal/
meteorological variations of the studied signals, may negatively affect the sensitivity of fixed thresholds
schemes [14,22].

Focusing on the RST-FLOOD-based application shown in this paper, the flood event that affected
the Basilicata and Puglia regions in the first week of December 2013 has been investigated, producing
satisfactory results, which further confirm the great potential of the proposed approach in detecting
flooded areas.

Flood evolution in the spatiotemporal domain has been accurately identified, well over the spatial
extent and temporal interval suggested by other works [31,37]. A total area of about 73 km2 was
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identified as inundated during the investigated period, with a good level of reliability, as highlighted
by the validation analysis performed through the comparison with the PAI map. About 68% of the
detected anomalies falls within the PAI, 6.5% refers to the borders of the San Giuliano and Monte
Cotugno dams, 11.5% takes into account pixels close to the coastlines and rivers but outside the above
mentioned zone, representing possible false positives. The remaining 14% represents a “for sure”
flooded area located in correspondence of the Castellaneta Marina town and between the Bradano and
Basento mouths. This last finding is particularly significant because it highlights an area that, although
clearly flooded in 2013, has not yet included in the current flood hazard map, revealing the added
value that robust satellite algorithms may provide in improving flood risk management.

Comparison with the results provided by implementing another VIIRS-based method [11] seems
to confirm the good capability of RST-FLOOD to detect inundated area. Although some differences are
inherently due to the different approach at the basis of the two algorithms, some others are attributable
to the assumption that VNG has been developed to work at global scale (between 80 ◦S and 80 ◦N)
and set more towards reliability than sensitivity. Moreover, a few of the static ancillary databases used
within this software might not be updated respect to the local conditions faced in this work.

Despite these satisfactory achievements, a few possible sources of inaccuracies (i.e., the above
cited 11.5% of possible false positives) have been identified and are briefly discussed as follows.

Cloud shadows, representing the main issue limiting flood detection reliability, can be considered
as random and spurious signals perturbing the reflectance field measured in the VIS-SWIR spectral
region. Therefore, in this paper, their identification has been addressed developing an original
RST-based approach exploiting VIIRS I1, I2 and I3 bands reflectance (see Section 3.4). In detail,
the combination of the signal acquired in these three bands has been used to discriminate cloud
shadows from flooded area and other features. Preliminarily results here presented seem to confirm
the feasibility of this approach, even if, a few omission errors have been identified, producing false
positive detections. Further analyses aimed at assessing the accuracy of these achievements will be
performed in the future, in order to better investigate if other possible signal combinations may provide
any improvement.

Residual geo-location errors or the use of a land-sea mask not perfectly co-located with the
analysed data may produce a few false positive along coastlines. In these zones, the concurrent presence
of water and land produces a mixed spectral signature at pixel level that is generally taken into account
by standard deviation in the RST-FLOOD approach. When a seawater-like signal is compared with a
land-like one a few errors may be detected, thus suggesting a check on the geo-location data accuracy.

The inflow of anomalous concentration of suspended sediments from lakes (dams) within the
ROI has affected the signal measured by VIIRS especially at low wavelengths (i.e., I1 band) especially
on the RED and SWIR bands combination (i.e., Ratio and Difference), also in terms of ALICE index
implementation (see Section 4.1). Within the RST framework, this is an expected and obvious result
because it highlights the occurrence of conditions extremely different from the expected one, in terms
of RED reflectance variation. On the other hand, within the RST-FLOOD application, the identification
of anomalous “flooded” pixels on the lake border could represent for sure a limitation. The NDSI
signal is inherently affected by the increase in the RED signal due to suspended sediments but
its implementation within RST did not generate evident signal anomalies, thus indicating that
the adoption of the normalized signal coupled with the differential approach enables to face any
possible issue.

A possible further limitation that could influence the NDSI signal is the presence of snow, which
would produce a spectral signature similar to the flooded areas [7] due to the spectral position of VIIRS
I3 band (i.e., 1.58–1.64 µm). Concerning this issue, at least two possible scenarios can be defined in the
RST context, depending on whether the investigated area is characterized by the presence/absence
of permanent snow. The RST local (at pixel scale) differential approach allows at overcoming this
limitation for the permanent snow-covered areas that, showing all the time very high NDSI value, will
not produce any anomalous ALICE values, also in presence of fresh snow. On the other hand, different
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bands combination, such as using the NIR channel in place of the SWIR one, could help to face this
issue within the zones characterized by sporadic snow events.

In any case, other test cases should be investigated in the next future to better assess the above-
mentioned issues as well as to further confirm the quality of the results achieved in this work,
considering other environmental scenarios as well as flooding events of a different nature and dynamics.
Moreover, it should be stressed that a possible implementation of RST-FLOOD at global scale would
require a consistent preliminary work, aimed first at collecting multiple-year time series homogeneous
satellite records and then to their analyses in order to produce the reference fields.

Finally, it is worth noting that the proposed approach can also be exported on other VIIRS bands
able to detect flooded area due to the differential nature of RST scheme. Thermal Moderate bands
(i.e., M15: 10.263–11.263 µm; M16: 11.538–12.488 µm) can be indeed used to identify inundated area
by exploiting the difference in terms of thermal inertia (TI) that these areas should present respect
with the unperturbed condition of the surrounding areas [63]. Water shows a higher TI than dry
soil and consequently a less capability to change its temperature during the diurnal cycle. Therefore,
those areas where soil water content increases because of the flood typically show a reduced diurnal
temperature fluctuation compared to the dry conditions, with, in particular, a brightness temperature
increase in night-time [64]. This physical property will allow also for a night-time flood detection that
will enforce the potential of this sensor in providing near-real time and continuous information about
flood dynamics.

In this framework, we have implemented the same approach described in Section 3.3 to analyse
the VIIRS M15 image acquired on 4 December 2013 at 00:45, producing the corresponding RST-FLOOD
map (Figure 14), where the anomalous pixels in terms of increasing ALICETIR values are reported.
Although the lower spatial resolution of these data (750 m) than the Imagery ones, the result is quite
impressive, because all the anomalous pixels are located along the rivers in good agreement with
the flood hazard map (Figure 4) and they are almost well co-located to the areas already detected
(see Figure 10). It is worth noting that ALICETIR value higher than 4 were not found and that, in the
night-time images of the following days, flooded pixels were detected at ALICE values less than 2,
hence resulting no statistically significant. The low spatial resolution of the thermal data, as well as a
lower signal intensity in correspondence of flooded areas than the one measured at VNIR wavelengths,
is probably at the basis of such a behaviour.Remote Sens. 2019, 11, x FOR PEER REVIEW 23 of 27 
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Considering that such a VIIRS image has been acquired almost 12 hours before the first diurnal
one considered in the previous analysis, the integration of the maps referred to night-time (Figure 14)
and daytime (Figure 10) conditions, further extends the investigated temporal domain.

6. Conclusions

The RST-FLOOD, a well-established satellite-based approach for flood detection and monitoring,
has been fully implemented here for the first time with SNPP-VIIRS data. The event that affected the
Metaponto Plain (southern Italy) during the first week of December 2013 has been investigated using
such an approach by analysing 171 SNPP orbits, for a total of 684 VIIRS SDR products.

A study aimed at identifying the best signal, among the opportunities assured by the first three
VIIRS Imagery bands, has been preliminarily performed identifying the NDSI (I1 − I3/I1 + I3) as
the metric with the best trade-off between reliability and sensitivity respect to the investigated event
features. Such a signal has been then implemented within the RST-FLOOD approach, through the
computation of the ALICE index aimed to investigate the flood dynamics in the 4–8 December 2013
period. The achieved findings demonstrated the good potential of the proposed approach in providing
daily reliable indication on the flooding event. Only a residual 11.5% of possible false positives
was recorded when the whole investigated scene was considered, reducing to only 4% when the
area mostly affected by the event was investigated. An anomalous area of about 18 km2, flooded
“for sure” accordingly to the outcomes provided by previous works [31,37] as well as of the flood
documentations [32–36], was detected by RST-FLOOD outside the flood hazard map, suggesting the
need of its updating for better managing future risk, especially considering that an increase in intensity
and in frequency of extreme meteo-hydrological events has expect in the next year for the Basilicata
region [65]. The comparison with another VIIRS-based method [11], developed to work a global scale,
confirmed the reliability of the outputs, suggesting a good capability of RST-FLOOD in detecting
flooded area.

Finally, the achieved results demonstrated the potential of medium-resolution optical sensors, like
VIIRS, in detecting floods that affect small watersheds, usually investigable only by using data (optical-
or microwave-based) at higher spatial resolution [17]. Considering the high temporal resolution offered
by VIIRS sensor (that thanks to the recent launch of JPSS-1 has further improved), the relevance of the
achieved results become quite evident. The possibility of having continuous and reliable indication
about the flood localization and extent may represent a valuable resource for both decision makers
and hydrological models. Their assimilation would allow both for an updating of the model set up
conditions as well as for a general quality improvement of the results. Finally, their integration with
high spatial resolution optical data, such as those acquired by the MultiSpectral Instrument (MSI)
aboard European Space Agency (ESA) Sentinel-2 mission, will allow for a more detailed view of the
areas affected by the event.
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