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Abstract: Landslides are typically triggered by earthquakes or rainfall occasionally a rainfall event
followed by an earthquake or vice versa. Yet, most of the works presented in the past decade
have been largely focused at the single event-susceptibility model. Such type of modeling is found
insufficient in places where the triggering mechanism involves both factors such as one found in
the Chuetsu region, Japan. Generally, a single event model provides only limited enlightenment
of landslide spatial distribution and thus understate the potential combination-effect interrelation
of earthquakes- and rainfall-triggered landslides. This study explores the both-effect of landslides
triggered by Chuetsu-Niigata earthquake followed by a heavy rainfall event through examining
multiple traditional statistical models and data mining for understanding the coupling effects. This
paper aims to compare the abilities of the statistical probabilistic likelihood-frequency ratio (PLFR)
model, information value (InV) method, certainty factors (CF), artificial neural network (ANN) and
ensemble support vector machine (SVM) for the landslide susceptibility mapping (LSM) using
high-resolution-light detection and ranging digital elevation model (LiDAR DEM). Firstly, the
landslide inventory map including 8459 landslide polygons was compiled from multiple aerial
photographs and satellite imageries. These datasets were then randomly split into two parts: 70%
landslide polygons (5921) for training model and the remaining polygons for validation (2538). Next,
seven causative factors were classified into three categories namely topographic factors, hydrological
factors and geological factors. We then identified the associations between landslide occurrence
and causative factors to produce LSM. Finally, the accuracies of five models were validated by
the area under curves (AUC) method. The AUC values of five models vary from 0.77 to 0.87.
Regarding the capability of performance, the proposed SVM is promising for constructing the regional
landslide-prone potential areas using both types of landslides. Additionally, the result of our LSM
can be applied for similar areas which have been experiencing both rainfall-earthquake landslides.
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1. Introduction

Among the various natural hazards, landslides are recognized as one of the most destructive and
hazardous threats in several parts of the mountainous world. It has been noticed that about 5% of all
fatalities in earthquake events are caused by coseismic landslides, in some cases even more [1]. For
example, the recent Hokkaido Eastern Iburi earthquake on 6 September 2018, about 80% of the fatalities
are caused by the landslides alone [2]. Apart from the fatalities, they also cause huge economic losses
by damaging properties such as buildings, bridges and roads; this trend is observed more than any
other natural disasters, such as earthquakes, typhoons, heat waves, sinkhole collapses, floods and
forest fires [3-6]. The increased amount of urbanization and economic development together with
the unusual frequency of severe regional precipitations owing to global climate change, the landslide
hazard losses are expected to rise in the future [7-9]. To mitigate and reduce the economic losses and
risks associated with the landslide hazards, there is an urgent requirement to identify and map the
landslide-prone areas.

Landslide susceptibility mapping (LSM) is regarded as a prime step for in the implementation of
immediate disaster management planning and risk mitigation measures [4,6,10-12]. Most LSM models
issued hitherto have been targeted at single-type-induced landslides [13,14]. Nevertheless, in areas such
as the Chuetsu area, Japan, where landslides can be mainly activated by both earthquakes and heavy
rainfall, some snow-melt, it is essential to couple frequently both types into the susceptibility modeling
primarily because of the following reasons: (i) earthquake-induced, as well as rainfall-triggered
landslides, are solely governed by interrelated environmental factors and partial understanding of
landslide occurrence without considering their differences will produce misleading results [15]; (ii) it
can be seen that after a strong seismic activity, rainfall-triggered landslides are prone to increase in
both scale and amount, an area with steeper slopes become more susceptible [16]. Thus, an earthquake-
triggered model is probably to have the ability to enhance a rainfall-induced landslide.

Large physically based landslide susceptibility processes rely on digital elevation model (DEM) to
characterize the terrain parameters which fundamentally describe the local elevation, slope, hydrologic
and various other geomorphic processes. Although the wide range of available DEMs in today’s world
produces a rapid analysis of terrain attributes, several studies have shown the effects of grid size in the
final portrayal of the land surface models [17-19]. Therefore, the selection of an appropriate grid size
is significant in any susceptibility mapping. By comparing varying resolutions of DEM (30 m vs. 6 m;
10 m vs. 2 m DEM), Dietrich and Montgomery [20] concluded that, with a finer elevation model, the
patterns of classifications are much more strongly defined by the ridge and valley characteristics. In
another study, Claessens et al., [21] studied the distribution of slope and other terrain factors for shallow
landslide mapping using four different elevation model (10 m, 25 m, 50 m and 100 m) and concluded
that uncertainty in the results increases with the coarser DEM. The accuracy of freely accessible DEM
also sometimes poses a question [17]. Recently, with the technological advancement in light detection
and ranging (LiDAR) methods, usage of high-resolution digital elevation model (DEM) in landslide
assessment accuracies has become progressively improved over time [22,23]. Jaboyedoff et al., [24] and
others [25] attributed the significance of LIDAR DEM in landslide mapping studies and advocated that
application of LiDAR data for landslide researches would noticeably boost in the coming years, given
extensive data availability. For example, Dou et al., [23] used 2 m LiDAR DEM to discriminate the
different landslide types and indicate that LIDAR DEM data area promising in landslide delineation.
The near-precise information available from LiDAR data, when incorporated with cutting-edge data
mining techniques, is able to produce highly accurate LSM [22,25]. Regarding the prompt state of
development in LiDAR technology, several potential features present in the data is still not explored to
the full potential such as the capability to quantify topographic features at catchment level as well as
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the connection of these with the hydrological factors including wetness index. Moreover, only very
limited researches have scrutinized the identical study area by applying multiple statistical techniques
to assess the reliability of models based on rainfall- and earthquake-triggered landslides.

In recent studies, various approaches of the LSM have been developed and explained in
numerous papers [13,26,27]. These approaches can mainly be categorized into three groups, that
is, heuristic [28,29], deterministic [21,30] and statistical [31,32] techniques. The heuristic techniques
are built on the expert’s knowledge to group landslide-prone areas into several ranks from high
to low classes. This method is often used for susceptibility mapping in large areas [21]. Whereas,
deterministic techniques rely on numerical modeling of the physical mechanism that controls slope
failure [29]. However, they are not appropriate for a large-scale mapping because of their troublesome
and unpractical need of a huge array of data, that is, rock mechanical properties, the wetness and soil
saturation and soil depth. Statistical and probabilistic techniques including bivariate, multivariate
statistical methods, certainty factor, as well as knowledge-based techniques such as artificial neural
networks and fuzzy logic approaches [33,34] are known as promising methods for predicting the
landslides [13].

Our study is built upon this prior experience in different models to investigate the comprehensive
performance of the susceptibility models using LIDAR DEM data. We address two research questions
in this paper: (i) do the sophisticated data mining methods provide a better predictive competency
compared with the traditional statistical methods? And (ii) how different the results while using
multi-type landslides instead of single type landslides? For achieving the first objective, we analyze and
compare the accuracy of LSM maps generated by five different techniques including three traditional
statistical methods, that is, probabilistic likelihood-frequency ratio model (PLFR), information value
(InV), certainty factor approach (CF); and the two machine learning techniques namely, artificial
neural network (ANN) and support vector machine (SVM) in a regional-scale analysis. For achieving
the second objective, we used the inventory of both earthquake-and rainfall-induced landslides in
the analysis.

2. Overview of the Study Area

Landslides are frequently reported after earthquakes and rainfall events in the Chuetsu area,
Niigata Prefecture, Japan [35]. This area has a steep mountainous topography and conducive geology
that makes it inclined to severe landsliding [23]. Extensive landslides in this area are reported after two
major seismic events; Chuetsu earthquake in 2004 and Niigata Chuetsu-Oki earthquake in 2007 [35,36].
The heavy rainfall in summers, typhoons and snow melting brought occasional debris movement
as well [37]. The present work is carried out in an area within the Higashiyama hill region in the
Niigata-Chuetsu region Japan (Figure 1) which covers approximately 290 km? area. The elevation
ranges between 22 m and 734 m with an average elevation of 206 m above the sea level. The area
receives an annual rainfall equaling 2000 mm, chiefly delivered by typhoons, as well as those during
the summer and winter snow period from Japan Meteorological Agency.

Metamorphic and sedimentary rocks belong to the Paleocene to the Quaternary period, as well
as folded mountain belts distributed over NNE-SSE axes represent the geologic characteristic of the
studied portion [38]. The epicenter of the 6.8 M Chuetsu earthquake of 2004 with the hypocenter
at the depth of 13 km was located only a few kilometers away from the study region. This event
also resulted in serious aftershocks in southern Higashiyama Mountain. Consequently, thousands of
mass movement events occurred in the region (Figure 2). Numerous roads, houses, bridges and other
infrastructures were severely damaged. The damages due to the event were largely concentrated on
the Imo river basin the extent to which makes it necessary to assess similar hazards to mitigate the
damages in the future.
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Figure 1. (a) Location of Japan; (b) landslide distribution, randomly divided into two sets: training
and testing.

Figure 2. Illustrating the characteristics and different types of landslides in the study area: (a) shallow
spread in the north of the Hitotsuminesawa with water, Nagaoka city; (b) rotational soil slide in north
of Mushigame; (c) bedrock collapse severely destroyed the road in Nagaoka; (d) translational slide, an
arrow display secondary scarp in the Uonuma city (Images provided by NIED).
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3. Materials and Methods

The framework for the LSM in this research is depicted in Figure 3. Initially, the earthquake-
and rainfall-induced landslides were delineated by interpreting multiple aerial photographs, satellite
imageries and ground truths to construct a comprehensive landslide inventory for the study area.
This database includes the landslide inventories provided by the National Research Institute for
Earth Science and Disaster Prevention (NIED), Japan, as well as those prepared by the first author.
Next, the relationship between landslide distribution and the causative mechanism were analyzed.
Thereafter, the LSM maps were produced by traditional statistical models and data mining techniques,
respectively. At last, the five models were examined and verified for accuracy using the receiver
operating characteristic curve (ROC) function.
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Figure 3. Framework for landslide susceptibility mapping (LSM) maps in the study.

3.1. Landslide Inventory and Data Collection

The events in the past are significant in predicting the events in the future [39]. Thus, an inventory
of past events is the most important information in mitigating any hazards [29,40]. A landslide
multi-inventory database provides the geospatial coordinates of the past events, time of their
occurrences and characteristics; this information is valuable for any methods of landslide risk or
hazards assessment [29,34]. Furthermore, the quality and reliability of landslide data are also equally
important as it will affect the subsequent results. This study uses the landslides inventory provided by
the NIED, Japan as well as those prepared by the first author; both representing landslides as polygons
feature class. A total of 8459 landslides triggered by the earthquake- and rainfall-induced landslides
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were used in susceptibility analysis. The landslides data were then randomly divided into a proportion
of 70 and 30 for creating the LSM models and for validating the models, respectively. The total area of
landslides covers an area of approximately 6.67 km?, which is about 2.29% of the entire study area.
We obtained the frequency-area distribution curve by plotting the landslide area (AL) data versus the
probability density (P (AL)) values. The resultant frequency-area distribution exhibits a power-law
with a good fit (R? = 0.99) as shown in Figure 4. This distribution displayed the segment for medium
to large landslides with a visible rollover (at about 102 m?).
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Figure 4. Probability of density distribution for landslide area.

The resolution of DEM used in this analysis is a 2 m airborne LiDAR-derived product, which
provides minute information such as scarp surface of landslides in detail. The post-earthquake LiDAR
DEM of 2 m resolution with root-mean-square error (RMSE) within 0.12 m was produced from airborne
LiDAR data surveyed in 2005, released by the GSI of Japan, 2007. The point density was greater than
1 pt/m? with a 70,000 Hz pulse rate frequency. The LiDAR technique has been proved as a valuable
tool in the applications of geological engineering and monitoring ground movements, including the
investigation of landslides [25]. The LIDAR DEM was obtained through the Geographical Survey
Institute (GSI) data repository. The data pertaining to lithology and distance to the density of the
geologic boundaries were prepared from the geological maps (scale 1:50,000) provided by Geological
Survey of Japan-GS]J [38]. The details of data collection were given in Table 1.

3.2. Common Factors Controlling Earthquake- and Rainfall-Induced Landslides

The landslide causative factors are crucial significance for the LSM. Coseismic landslides are
largely controlled by topographic, seismic and geologic factors [41-43]. Whereas the rainfall-induced
landslides are dependent on climatic, topographic, as well as geologic factors [42,44]. In the present
study, we analyzed the control of seven common landslide-causative parameters used in both
earthquake-triggered as well as rainfall-induced landslides. This selection is based on the literature
that discussed spatial relationships between landslide occurrence and causative parameters [34,41,43].
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They are: (1) elevation, (2) slope angle, (3) slope aspect, (4) plan curvature, (5) drainage density, (6)
lithology and (7) density of geologic boundaries. Each factor was classified into several sub-classes.
The details of each class can be referred to Figure 5. The topographic related factors such as elevation,
slope aspect, slope angle, drainage density and plan curvature were derived from the LIDAR DEM
provided by the GSI. The geological factors like lithology and the density of geologic boundaries were
prepared from the 1:50,000 geological maps of GSJ. All the factors were processed in a GIS platform
ArcGIS 10.3. The brief delineation of each landslide causative factor map in the present study is
given below.

Table 1. Data collection in the study area.

Thematic Layer Causative Factors ~ Data Type Scale or Classes Producer Description
Resolution
Landshde Landslide Polygon 1:50,000 Continuous NIED and . Landslide
inventory map interpretations occurrence
. o . Type of
Geological map Lithology Polygon 1:50,000 Non-continuous OGfeF;oag;cal Survey lithology
Density of P .
g . . Density of
geological Line Continuous g .
boundary geologic unit
Elevation Continuous Elevation-m
. Slope angle Continuous Geographical Slope degree
Topographic map Slope aspect ARC/INFO 2x2m Continuous Survey Institute Direction
Plan curvature Grid Continuous Concave or
convex
Hydrological Map  Drainage density Continuous Density

3.2.1. Elevation

Central to most of the landslide susceptibility models is the elevation of the terrain and number
of landslides [7,45]. It is the measure of height above the m. s. 1., controlled and influenced the
distribution of vegetation. A worldwide database of coseismic landslides by Tanyas et al., (2018) [46]
shows that approximately 80 percent of landslides are located between 100 m to 800 m elevation with
a mean of 524 m. In the study area, the elevation ranges between 0 m and 735 m and the landslide
largely occurred between 130 m and 413 m elevation ranges in Figure 5a.

3.2.2. Slope Angle

Slope angle refers to the inclination or rate of change in surface elevation for each pixel. Slope
is an important variable that is found to affect the shear resistance, runoff rate and soil moisture and
thus it is also one of the most significant factors affecting the stability of slope [30,47]. Typically, with
an increased steepness, the number of landslides increases. However, it varies with the type of slides
such as rock falls, shallow landslides and deep-seated landslides. The slope angle varied between
0°-70°. Most of the landslides were observed on the slope between 17° to 55°. This is consistent with
the global landslide database of Tanyas et al., (2018) [46] where 80% of landslides are found occurred
between 10°—45° slope angle in Figure 5b.

3.2.3. Slope Aspect

Aspect indicates the downslope direction, it is also related to is related to the orientation of
precipitation, exposure to sunshine and wind impact [40]. The relationship between aspect and
landslide occurrences are identified in a number of studies [4,32]. Their studies indicate that aspect
influences the distribution of landslide by the propagation direction of seismic waves. Further, aspect
also relates to the slipping orientation of the seismogenic fault [41]. Also, when the hillsides suffer
from the dense precipitation to reach saturation, it influences the infiltration properties of the ground,
permeability, as well as pore water pressure. The peak landslide areal density is observed for South,
South-East and South-West a sloping direction in Figure 5c.
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3.2.4. Plan Curvature

Planform curvature or simply plan curvature delineates the morphology of the topography
and is measured perpendicular to the orientation of the maximum slope [45,48]. This parameter is
the divergence or convergence of water during downhill flow affecting the landslide occurrences.
Ohlmacher (2007) [49] demonstrates that landslide hazard should properly address the complex
association exists between plan curvature, landslide types and the landslide susceptibility. We grouped
the plan curvature into two categories, that is, concave (negative value) and convex (positive value).
There is no clear effect of curvature on landslide susceptibility, as both curvatures (convex and concave)
have almost similar number of failures in Figure 5d.

3.2.5. Drainage Density

Drainage density (DD) network interplays the movement of landslide associated with infiltration
of water. DD (m™!) is the total length of the stream network in a drainage watershed divided by
the watershed area. The stream channel networks are extracted from high-resolution LIDAR DEM
data. A practical D8 algorithm has been widely used to compute the DD in the available ArcGIS
environment [50]. Stream heads were assumed to be located where the drainage area is 0.1 km?
following Hayakawa and Oguchi [51]. The extracted the stream network overlaid the Google Earth
image for validating the quality and uncertainties of extraction from DEM data. Drainage network
and drainage density are also an indirect measure of groundwater conditions. During any seismic
event, the pore pressure built-up occurring in the vicinity could trigger coseismic landslides. Similar
behavior can also be noticed during the excessive rainfall conditions when infiltration capacity exceeds
a certain threshold. Several scholars proved the impact of the landslide process on geomorphological
characteristics of the drainage network [34,45]. For instance, Oguchi (1997) [52] proved that there is a
correlation between drainage density and landslide distribution (DL) in steep Japanese mountains.
For this study, the peak landslide aerial density is observed for density class 6-9 in Figure 5e.

3.2.6. Density of Geologic Boundaries

Lithological boundaries are marked as the plane of discontinuity and generally are zones of
weakness. They influence the rock strength. The higher value of the density of geologic boundaries
indicates more susceptible to landslide occurrences. In the present study, the density of geological
boundaries was computed from the geologic boundary data with the help of GIS software using a
circle of 200 m radius as they are found appropriate in a study by Kawabata and Bandibas (2009) [53]
for this location. The landslide density increases with the increased density of lithological boundary
and the peak values are observed for class 1527 in Figure 5f.

3.2.7. Lithology

Bedrock geology plays a significant role in the landslide failure and their distribution because
different rock types and lithological units behave differently to alterations in the geomorphic process,
permeability and strength of rocks and soils [7,37]. Influence of lithological control on landslide
distributions in the Japanese archipelago has been noticed in several studies [37,41]. In the Higashiyama
Mountain and its surroundings, lithology was classified into 35 categories (Table 2). In this case, the
landslides mostly occurred at the age of Late Pliocene, Late Pliocene—Early, Marine Pleistocene, Late
Miocene-Early Pliocene and the type of lithology, such as sand and silt, sandstone, massive mudstone,
sandstone and alternation of sandstone in Figure 5g. Previous studies also reported a high number of
landslide density in sedimentary rocks [34,37,41].
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Table 2. Classification of geologic substrata in the study area (revised from Takeuchi and
Yanagisawa, 2004).
Geologic Age Lithology Geologic Unit
Gravel, sand and silt a
Gravel and sand al
Holocene Debris, gravel and sand d
Gravel and sand f
Gravel, sand and silt tk
Debris and colluvial soil C
Late Pleistocene Gravel, sand and silt t12
Gravel, sand and silt tl1
Gravel, sand and silt tm?2
Gravel, sand and silt tm1
Middle Pleistocene Gravel, sand and silt th2
Gravel, sand and silt thl
Gravel, sand and mud Oy
Late Pliocene-Early Marine silt and sand Ue
Gravel, sand and silt Ud
Pleistocene Gravel, sand and silt Uc
Gravel and sand tk2
. Sandstone Y
Late Pliocene Sandy siltstone and alternation of sandstone and siltstone S
Early Pliocene— Andesite, dacite lava and pyroclastic rock Ka
Tuffaceous sandstone and Andesitic pyroclastic rock Sy
Massive mudstone Um
Late Pliocene Andesitic pyroclastic rock Uv
Sandstone Ks
Mudstone interbedded with sandstone Ku
. Sandstone interbedded with mudstone Kl
Late Miocene- Andesitic pyroclastic rock Av
. Sandstone and alternation of sandstone and mudstone As
Early Pliocene Massi d
assive mudstone Am
. Dacite, andesite lava and volcanic breccia Tv
Late Miocene :
Massive mudstone Ts
Dacite lava and pyroclastic rock Nd
Middle Miocene- Andesitic per())};lastic rock Sv
Late Miocene Hard shale and alternation of sandstone and shale Sm
(Water) (w)
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Figure 5. Landslide causative factors maps in this study: (a) elevation, (b) slope angle, (c) slope aspect,
(d) plan curvature, (e) drainage density, (f) density of geologic boundaries, (g) lithology.

3.3. Methods

Different statistical methods have been used for individually producing a series of modeling of
landslide susceptibility maps.

3.3.1. Probabilistic Likelihood-Frequency Ratio

Probabilistic likelihood-frequency ratio model (PLFR) is established on the assertive relationship
flanked by the spatial distribution of landslides and each relative-causative factor, displaying the
interrelation between the location of landslides and causal parameters affecting the landslides
occurrence in a certain area [54,55]. In order to foresee the future landslides, the basic assumption is
that the occurrence of landslides are largely controlled by certain landslide factors and the imminent
landslides will also happen under the similar circumstances as the historical events [55].

According to the aforementioned assumption, the PLFR is the “ratio of the probability of landslide
occurrence to the probability of non-landslide occurrence” for related factors” attributes [54]. The
PLEFR is calculated for each factor from their relationship to landslide distributions. The higher the
ratio value, the better the correlation between landslide incidence and the given causative factor [55].
A value of 1 and greater indicates that the particular class of landslide has a stronger relationship with
the landslide occurrence. Otherwise, it has a lower correlation. PLER is expressed as:

No.of landslides
PLFR = Total of landslides (1)

No.of landslides in domains
Total of pixels
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No. of landslides and No.of landslides in domains represent the number of landslides in each
class and number of landslides in each domain, respectively; Total of landslides and Total of pixels
denote the total landslides and a total number of pixels in the entire the study area. And the landslide
susceptibility index, LSI is the sum of the all ratios estimated for each causal factor. LSI thus
provides a degree of certainty in forecasting landslides. Summation of each factor’s probabilistic
likelihood-frequency ratios are calculated by the following equation:

LSI = Y PLFR = PLER1 + PPFR2+ ... +PLFRn )

where PLFR is the rating value of each factor. The greater the LSI value, the higher the risk of landslide
occurrence and vice versa.

3.3.2. Information Value Method

The information value (InV) method has been successfully used in various field of geosciences,
medicine, economy and biology [31]. With this bivariate statistical analysis method, each of the
individual parameters is integrated with the landslide inventory database and weight of landslide
density to each landslide causative factor class is then calculated.

For this approach, the landslide occurrence is regarded as a dependent variable and each causative
factor influencing this condition is regarded as an independent variable. Aleotti and Chowdhury
(1999) [15] showed that InV requires five steps: (1) selection of significant factors, their mapping and
classification into a number of correlative groups; (2) their overlay analysis with landslide inventory
database; (3) determine the landslide density for each causal factor; (4) assign weight to each causal
factors; (5) finally calculate the eventual hazard based on the weighted values.

Bivariate statistical models are regarded to be a quantitative method in landslide hazard zonation,
however, there exists a certain degree of subjectivity in the analysis. Additionally, it should be
appreciated that in many cases, the employed factors may have a problem of high correlations, which
causes the noise of resulting models [32,54].

The LSM is performed by applying InV method-statistical index (W;) approach. The W; (InV)
approach is based on the statistical correlation between inventoried landslides and the attributes of
various causative factors. The W; value of each parameter is defined as the difference between the
density of each parameter class and the average density of landslide [56]. W; is calculates using the
following equation:

DensCl Npix(Si)

o ensClass Npix(Ni)

Wi =In ( DensMap ) n L. Npix(Si) ) @)
Y Npix(Ni)

W;: the weight assigned to a causative parameter class (e.g., elevation, aspect, slope);
DensClass: the landslide density (LD) within this parameter class;

DensMap: the LD for the whole study area

Npix(5i): the total number of pixels that contains landslide in a certain parameter;
Npix(Ni): the total number of pixels contained in a