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Abstract: We developed a land cover and land use mapping framework specifically designed for
agricultural systems of the Sudan-Sahel region. The mapping approach extracts information from
inter- and intra-annual vegetation dynamics from dense stacks of Landsat 8 images. We applied this
framework to create a 30 m spatial resolution land use map with a focus on agricultural landscapes
of northern Nigeria for 2015. This map provides up-to-date information with a higher level of spatial
and thematic detail resulting in a more precise characterization of agriculture in the region. The map
reveals that agriculture is the main land use in the region. Arable land represents on average 52.5% of
the area, higher than the reported national average for Nigeria (38.4%). Irrigated agriculture covers
nearly 2.2% of the total area, reaching nearly 20% of the cultivated land when traditional floodplain
agriculture systems are included, above the reported national average (0.63%). There is significant
variability in land use within the region. Cultivated land in the northern section can reach values
higher than 75%, most land suitable for agriculture is already under cultivation and there is limited
land for future agricultural expansion. Marginal lands, not suitable for permanent agriculture, can
reach 30% of the land at lower altitudes in the northeast and northwest. In contrast, the southern
section presents lower land use intensity that results in a complex landscape that intertwines areas
farms and larger patches of natural vegetation. This map improves the spatial detail of existing
sources of LCLU information for the region and provides updated information of the current status
of its agricultural landscapes. This study demonstrates the feasibility of multi temporal medium
resolution remote sensing data to provide detailed and up-to-date information about agricultural
systems in arid and sub arid landscapes of the Sahel region.

Keywords: land degradation; Landsat; medium resolution; land use/cover change; agriculture; multi
temporal; Sudan-Sahel region

1. Introduction

In the last 30 years, the importance of earth observation remote sensing for monitoring land use
and agricultural development over large areas has steadily grown. Remote sensing-based cropland
monitoring is rapidly becoming operational [1–4], and a number of agricultural monitoring systems
already forecasts yields and production for the main global regions [5–7]. Yet these advances have been
geographically uneven and, while there has been remarkable progress in some regions, others have
received considerably less attention. The Sudan-Sahel region in sub-Saharan Africa is a paradigmatic
example. Beginning with [8], there have been a number of initiatives have studied land cover and land
use trends in the region using Earth observation data [9–14]. Yet, the relatively limited weight at global
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scale of its agricultural production and the technical challenges posed by its dynamic agricultural
systems dominated by small-scale agriculture have slowed down the adoption of remote sensing
monitoring systems and limited the amount and quality of available land use information

Despite its relevance for human development and poverty alleviation, there is a lack of basic
information on the distribution of cultivated land and the main land processes in the Sudan-Sahel
region. The region is expected to experience major changes in the near future and land use information
remains crucial in a region where agriculture represents the main livelihood strategy. Fertility rates
among the highest in the developing world [15], and the increase in the rural population will
accelerate the expansion of cultivated land for subsistence farming. The steady growth of urban
population will fuel the demand for agricultural products, a major driver of land use change [16]. The
consequences of climate change will likely disrupt agricultural practices and agricultural production
in the region. Expected temperature increases by 2050 will shorten crop-growing cycles, leading
to severe yield reduction and threatening food production systems [17–19]. Coping strategies to
the changing conditions imposed by these two processes may lead to progressive land degradation,
further compromising rural livelihoods and increasing their vulnerability to future internal and
external shocks [20]. For instance, forced by climate change-related productivity decreases, farmers
may overexploit soils or expand cultivated lands into more marginal lands.

Several global RS-based LCLUC products include coarse resolution land use information for the
Sudan-Sahel region (e.g., MODIS MCS12Q1 and Globcover 2005 and 2009). These products have been
integrated with national statistics to generate a more robust outcome [21]. However, while coarse
spatial resolution data meet the observational requirements for the large agricultural regions of the
world, they are not well suited for monitoring crops in regions with highly heterogeneous agricultural
landscapes dominated by smaller farms such as those in the Sudan-Sahel region. Furthermore, the
static nature of these products fails to capture the changes over time of agricultural systems in the
region [22,23]. The opening of the Landsat archive in 2008–2009 [24] and more recently the launch of
new medium resolution sensors (Landsat-8, Sentinel-2 DMC, etc.) offers unprecedented opportunities
to study land-cover/land-use change (LCLUC) at higher spatial resolution. Several initiatives are
already exploiting this new data with increasing processing capabilities to map agricultural landscapes
with higher spatial detail, at scales more relevant to African agricultural processes. [25] global LCLU
map at 30 m spatial resolutions included a cropland class [26] produced a nominal 30 m cropland extent
map of continental Africa by using Sentinel-2 and Landsat-8 data (GFSAD30AFCE). This product
represents a major improvement for food and water security assessments in an African context and a
first step towards exploring, not only cropland extent but also crop type, intensity, and change. The
European Space Agency released a prototype land cover 20 m map of Africa for 2016 with cropland as
one of its classes (http://2016africalandcover20m.esrin.esa.int).

However, these products still present some limitations that hamper the extraction of information
on land use dynamics for specific regions of Africa. Cropland systems across the continent are highly
diverse and often adapted to very specific environmental conditions. The phenological signatures
of the different land use types in a region can be very similar [26]. As a consequence, mapping
croplands at continental level requires large and up to date training and validating datasets [26].
While high-resolution imagery and crowdsourcing [27] are gaining ground as a source of training and
validating data, training and validating field data in remote regions remain scarce, constraining the
precision of supervised learning algorithms. Consequently, continental and global medium resolution
products that implement a single mapping approach cannot always offer the flexibility to provide an
accurate characterization of land use processes in specific regions of the continent.

Northern Nigeria presents a paradigmatic and concrete example of a data-poor region where
land use information is crucial for human development. Poverty indicators of Nigeria over the last
decade show a growing north–south divide [15]. While poverty rates are only 16% in the south of the
country, an estimated 50.2% of the population lives below the poverty line in the north, where up to
seventy percent of households rely primarily on agriculture [15]. Ongoing land cover change and land
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use processes compromise the main livelihood strategies of these households, reduce their adaptation
alternatives and thus, increase their vulnerability. Yet, the lack of consistent and reliable land use
information hinders the accurate characterization of the agricultural sector in northern Nigeria. As the
linkages between climate change, crop failures, poverty, migration, and conflict become more explicit
in the research literature, it becomes urgent to monitor land use processes in the region as a first step
to inform decision makers and design and implement efficient policy interventions in agricultural
development and poverty alleviation.

This work proposes a mapping approach specifically designed for agricultural systems of the
Sudan-Sahel region aiming to overcome some of these limitations of global and continental scale remote
sensing products in the region. This mapping approach makes extensive use of expert knowledge of
vegetation dynamics and exploits dense stacks of Landsat 8 imagery to capture inter and intra annual
vegetation dynamics and improve the characterization of the main land use types in the study region.
The proposed mapping framework is flexible and robust to operate with limited imagery, and can
be easily and rapidly updated in successive years. We have applied this approach to produce a 30 m
spatial resolution land cover land use map with emphasis on agricultural classes. This work aims to
fill a gap of information and provide a precise and up-to-date assessment of agricultural systems in
northern Nigeria.

2. Materials and Methods

The area of study is northern Nigeria, defined as the region lies on the 9.3 degrees latitude line
and borders Niger to the north, Cameroon and Chad to the east and Benin and Niger to the west.
This region covers an area of 494,000 km2 and includes the states of Bauchi, Borno, Gombe, Jigawa,
Kano, Katsina, Kebbi, Sokoto, Yobe, and Zamfara, and parts of Adamawa, Kaduna, Kwara, Niger, and
Plateau. Northern Nigeria is part of the Sudan and Sahel savannas agro-ecological zones (Figure 1).
These warm tropical arid and semiarid zones are characterized by clearly defined dry and rainy
seasons following a strong rainfall latitudinal gradient. Annual precipitations in the region range from
below 400 mm in the northeast to 1500 mm per year in the higher elevations of the south. The elevation
in the study area ranges between 100 and 1300 m above sea level. Lower elevations are found in the
Benue River valley to the west and the Gongola river valley and the Chad Lake depression to the east.
From these regions, there is a gradual transition to higher elevation areas in the central part of the
study area in the Kaduna, Bauchi, Gombe, Kano, and Katsina states. The highest elevations are found
in the south, in the Jos plateau.
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The study area was covered by 21 Landsat scenes (Paths: 185 to 191; Rows: 51 to 52). The analysis
included close to 1450 Landsat 8 Collection 1 Tier 1 calibrated top-of-atmosphere reflectance (TOA)
acquired between 2014 and 2016 [28]. The inclusion of images for a three-year period served to capture
interannual dynamics required to characterize some land surfaces in the study area. For each Landsat
scene approximately 69 images were stacked during this period. TOA images were chosen over top
of canopy images given the difficulties of accurately estimating aerosol properties and its spatial
distribution [29]. Dust loaded airmass from the Sahara Desert (harmattan winds) can occur up to
100 days per year during the dry season in the Sudan-Sahel region. This dust modifies the spectral
signatures of land surfaces and results in lower vegetation index values.

Images were not discarded based on cloud coverage, since cloud free pixels in densely cloudy
images could still provide valuable information within the proposed mapping framework. Digital
elevation data from the Shuttle Radar Topography Mission (SRTM), [30] at 30 m spatial resolution was
used to define floodplains. Given its focus on agricultural landscapes, urban areas were not directly
mapped. Instead, urban pixels were extracted from the Global Human Built-up and Settlement Extent
(HBASE) Dataset from Landsat product [31]. This product provides global 30 m spatial resolution
information on settlement extent for year 2010.

We developed a land cover land use (LCLU) mapping framework adapted to agricultural
landscapes of the Sudan-Sahel ecological region. This approach was applied to produce a 30 m
resolution map of northern Nigeria for baseline year 2015. The mapping framework implemented a
knowledge-based expert system (KBES) that relied on dense stacks of Landsat 8 images and exploits
inter and intra annual vegetation dynamics and contextual information to map the main components
of land surfaces in the study region [32]. Recent research highlights the role of expert knowledge to
advance remote sensing-based agricultural monitoring [33]. KBES enable the inclusion of knowledge
from experts in the field of the analysis even if they do not have remote sensing experience (e.g., field
extension agents). These systems constitute a useful alternative when the lack of consistent training
and validation data limits the use of supervised learning systems. Expert knowledge is commonly
stored as a set of rules in a knowledge base. Subsequently, the information in the knowledge base is
passed to an inference mechanism interprets that assigns class memberships to pixels. KBES have been
successfully implemented in a number of applications such as protected areas conservation [34], crop
classification [35–38], or urban mapping [39].

We built a knowledge base that established production rules using spectral, temporal, and spatial
constraints to identify the main agricultural systems and natural vegetation types in the study area [35].
The production rules were not necessarily conclusive but provided a degree of evidence in favor of
some class label [40]. These rules were defined from the analysis of the spectral profiles during the
vegetative cycles of the different land use types. Specific temporal windows were selected to maximize
the separability between classes using expert knowledge in the seasonal dynamics of land surfaces in
the study area (Figure 2). Similar strategies have been previously used for land cover and land use in
tropical environments [41,42]. The numerical values in the spectral rules were provided as thresholds
empirically generated from observed data [43]. These spectral thresholds were defined based on a
training dataset of 1750 points of known land use types randomly searched using visual interpretation
of a combination of Landsat and very high-resolution imagery (Google Earth) for the period of study.
The thresholds for each land use class were calculated from the statistical distribution of pixel values
in the training dataset. The spectral rules were built based on normalized difference vegetation index
(NDVI) images [8] calculated from each image in the original dataset. This vegetation index was chosen
because, besides data compression, it facilitates the interpretation of land surface dynamics over time
and the definition of spectral thresholds. The presence of burned areas in natural vegetation surfaces
within the three-year imagery epoch was interpreted as a sing of land cover transition, supporting the
labeling as non-stable natural vegetation pixels.
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Figure 2. (a) Illustration of seasonal dynamics of vegetative activity for main land cover and land use
classes. Adapted from temporal profiles at known locations for visualization purposes. (b) Temporal
windows for each mapping components.

The rules in the knowledge base were designed to identify the following agricultural systems and
natural vegetation types: (1) stable natural vegetation; (2) non-stable natural vegetation; (3) rain-fed
agriculture; (4) irrigation agriculture; (5) bare soil; and (6) rivers and water bodies (Table 1). Each of
these components presents distinct seasonal dynamics (Figure 2). For instance, the vegetative cycle of
natural vegetation and rain-fed agriculture follows closely rain patterns, with higher NDVI [41] values
during the rainy season (July–October) and low values during the dry season. However, there are
distinct differences between them. Rainy season NDVI values of rain-fed agriculture are comparatively
lower than those of natural vegetation because planting densities do not commonly cover the ground
completely. Equally, during the dry season, the exposed soils of cultivated lands result in lower NDVI
values than natural vegetation, where dormant and dry vegetation covers the ground resulting in
higher NDVI values. Irrigation agriculture relies on groundwater aquifers and irrigation systems that
can result in extended growing seasons and several vegetative cycles within a year. Because of its
higher planting densities, NDVI are commonly higher than those of rain-fed agriculture. Bare soils
present very low NDVI values all year around and water bodies and rivers have negative NDVI values
during the rainy season. Irrigation agriculture was mapped through a combination of spectral and
contextual constraints as cultivated areas within floodplains whose vegetative cycle did not follow
annual precipitation. Floodplains were identified areas of low slope extracted from a digital elevation
model (SRTM) within the neighborhood of rivers and water bodies. A detailed description of the rules
in the knowledge base can be found in the Supplementary Materials.
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Table 1. Description of mapped classes.

Class Type Description

Stable natural vegetation Surfaces with natural vegetation and never cultivated during the
2014–2016 period.

Non-stable natural vegetation
Surfaces not cultivated in 2015, but likely to have been under cultivation
in previous or subsequent years (fallow lands). Also land undergoing
cover conversion. This class includes areas of sparse tree cover.

Rain-fed agriculture Cultivated land relying solely on rainfall for water supply.

Irrigation agriculture Cultivated land using mainly irrigation for water supply (groundwater,
irrigation channels, etc.).

Bare soil Surfaces without vegetation cover.

Rivers and water bodies Surfaces covered by water during more than 6 months per year in the
2014–2016 period.

The rules were applied to all available images during the defined temporal windows and imposed
initial preconditions for class membership. The KBES inference mechanism analyzed the set of rules,
resolved potential redundancies, and inconsistencies and made decisions about class membership
using a majority rule criterion [32] (Figure 3). This approach reduced the potential impact of individual
aerosol contaminated images in the mapping process.

Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 16 

 

Table 1. Description of mapped classes 

Class Type Description 
Stable natural 
vegetation 

Surfaces with natural vegetation and never cultivated during the 2014–2016 period. 

Non-stable 
natural 
vegetation 

Surfaces not cultivated in 2015, but likely to have been under cultivation in previous or 
subsequent years (fallow lands). Also land undergoing cover conversion. This class 
includes areas of sparse tree cover. 

Rain-fed 
agriculture 

Cultivated land relying solely on rainfall for water supply. 

Irrigation 
agriculture 

Cultivated land using mainly irrigation for water supply (groundwater, irrigation 
channels, etc.). 

Bare soil Surfaces without vegetation cover. 
Rivers and water 
bodies 

Surfaces covered by water during more than 6 months per year in the 2014–2016 
period. 

The rules were applied to all available images during the defined temporal windows and 
imposed initial preconditions for class membership. The KBES inference mechanism analyzed the 
set of rules, resolved potential redundancies, and inconsistencies and made decisions about class 
membership using a majority rule criterion [32] (Figure 3). This approach reduced the potential 
impact of individual aerosol contaminated images in the mapping process. 

 

Figure 3. Flow chart of mapping framework for land cover land use map based on dense stacks of 
Landsat 8 imagery. 

An uncertainty flag was risen when the number of available observations during the temporal 
window was below a pre-established number due to cloud coverage (n = 5). This was often the case 
for rain-fed agriculture based on observations during the rainy season temporal window. In these 
cases, alternative approach and applied the rules of the knowledge base to a NDVI maximum value 
composite from all images available during the temporal window. 

The map was validated against an independent dataset of 754 ground points spread over the 
study region. Validation points were identified through a combination of visual interpretation of 

Figure 3. Flow chart of mapping framework for land cover land use map based on dense stacks of
Landsat 8 imagery.

An uncertainty flag was risen when the number of available observations during the temporal
window was below a pre-established number due to cloud coverage (n = 5). This was often the case
for rain-fed agriculture based on observations during the rainy season temporal window. In these
cases, alternative approach and applied the rules of the knowledge base to a NDVI maximum value
composite from all images available during the temporal window.

The map was validated against an independent dataset of 754 ground points spread over the
study region. Validation points were identified through a combination of visual interpretation of
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very high-resolution images for year 2015 (Google Earth) and known locations in true color Landsat
8 images.

The analysis was carried out on per-scene basis. Outputs from individual scenes were
subsequently mosaicked in a final map at 30 m resolution covering the whole study area.
The implementation of the KBES and data processing was carried out in Google Earth Engine
cloud-based platform.

3. Results

We created a 30 m spatial resolution LCLU map with a focus on agricultural landscapes in
northern Nigeria for year 2015 (Figures 4 and 5). The validation of the map against an independent
dataset of ground points resulted in an overall accuracy of 0.91 and kappa coefficient of 0.89. Accuracies
were consistent throughout the classes with individual user and producer accuracies above 0.82 and
0.85, respectively (Table 2).
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Figure 4. Examples of existing medium resolution remote sensing LCLU products providing
information for northern Nigeria: (A) False color composition (754) of Landsat 8 image; (B) ESA
land cover 20 m map of Africa; (C) GFSAD30AFCE; (D) Tsinghua University 30 m resolution LCLU
map. Green: shrub; Light yellow: cropland; (E) Northern Nigeria 30 m resolution Landsat 8-based
LCLU map. Green: natural vegetation; Light yellow: cropland.
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Figure 5. Examples of Google Earth high resolution imagery (left side) and the corresponding 30
m resolution Landsat 8-based LCLU map for northern Nigeria (right side). Dark green: stable
natural vegetation; Light green: non-stable natural vegetation; Light yellow: rain-fed agriculture;
Red: Irrigation agriculture.

Table 2. Accuracy matrix.

Non-Stable
Natural Veg.

Stable
Natural Veg.

Irrigated
Ag.

Rain-fed
Ag. Water Bare Soil User’s

Accuracy

Non-Stable Natural Veg. 117 13 0 12 0 0 0.82
Stable Natural Veg. 13 236 1 0 0 0 0.94

Irrigated Ag. 0 1 85 0 0 0 0.99
Rain-Fed Ag. 8 3 13 180 0 1 0.88

Water 0 0 0 0 38 0 1
Bare soil 0 0 0 1 0 32 0.97

Producer’s Accuracy 0.85 0.93 0.86 0.93 1.00 0.97

The map shows that agriculture is the dominant land use in northern Nigeria with more than 52%
of the land under cultivation. The largest proportion corresponds to rain-fed agriculture (50%) and
irrigation agriculture covers about 2% of the land. Natural vegetation occupies 46% of the land from
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which 14% corresponds to stable natural vegetation cover and 24% to areas of non-stable vegetation
cover. From the latter, 7.2% corresponds to land burnt at least once over the 2014–2016 period and
suggests an ongoing land transformation process. The remaining 16.8% corresponds to land that, while
covered by natural vegetation, was cultivated at some point during the period of study and is likely to
be associated to fallow fields. Other surfaces such as bare soil and water occupy less than 2% of the
land on total (Figure 6).
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Figure 6. Land cover land use distribution in northern Nigeria by state.

The spatial distribution of land use in the map illustrates the geographical variability of land uses
within the region, closely related to precipitation and controlled by latitudinal and elevation gradients.
The northern section of the study region presents larger extents of croplands, where cultivated fields
dominate the landscape in which patches of trees, shrub and fallow land cover no more than 10 and
20% of the land. Natural vegetation is restricted to isolated remnants in marginal agricultural lands.
In contrast, the southern section includes larger proportions of natural vegetation. Cropland is less
dominant and often part of a mosaic of cultivated fields and natural vegetation. While the proportion
of land under cultivation in the southern states is below 50% it can exceed 80% in some of the north
states (Jigawa, Kano, and Katsina).

Floodplains represent the most fertile agricultural land in arid and sub-arid ecosystems. Irrigated
agriculture in the region is confined to river floodplains. Up to 74% of these floodplains are cultivated,
from which 19 percent is associated with major irrigation schemes, and the remaining 55% applies
traditional forms of water management. States with complex hydrographic networks or large
floodplains associated to the main rivers of the region have significantly higher irrigated areas than
the regional average. Thus, while on average irrigation agriculture covers 2.2% of the land, it reaches
up to 5% of the total area in Kaduna state.

The spatial aggregation of the original 30 m product provides additional information about the
structure of the landscapes in the study region and shows that areas dominated by croplands can
still contain a significant share of natural vegetation (Figures 7 and 8). In the south of the study area
this landscape fragmentation is associated with a mosaic structure while in the north it is related to
agroforestry systems, where cultivated fields and low-density trees share the land.
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4. Discussion

We have developed a land cover—land use mapping framework specifically designed for the
Sudan-Sahel region. The approach relies on dense stacks of Landsat 8 imagery and seasonal metrics to
address the peculiarities of the region and it is flexible and robust to operate with limited number of
observations as a consequence of cloud and dust contamination. To overcome the scarcity of reliable in
situ data in the region, this mapping framework uses extensive knowledge on phenological cycles and
ecosystem processes in the Sudan-Sahel region and extracts information from temporal windows that
maximize the spectral separability of the relevant land surfaces [18]. Finally, it applies an acquisition
window of several years to allow a solid characterization of dynamic land use types that involve a
multiyear cycle. This mapping framework has been applied to produce a 30 m spatial resolution
map for northern Nigeria. Northern Nigeria lacks a comprehensive land survey scheme to collect
agricultural data. As a consequence, LCLU information in the region is scarce and outdated. Without
specific and up to date information on the state of agriculture, preexisting and misguided narratives
based on limited and uncertain data shape the discussion in the development community. The resulting
map provides information about spatial distribution of land use in northern Nigeria with higher spatial
resolution and thematic detail than existing remote sensing-based products. By mapping features more
closely linked with the livelihood of rural population, this map provides valuable information for the
design and implementation of effective rural development and poverty alleviation interventions. The
framework can potentially be expanded to other areas within the Sudan-Sahel ecozone and replicated
in successive years to monitor the evolution of agricultural systems over time, setting the basis for an
agricultural monitoring.

The map describes a region of intense agricultural use in which most land suitable for agriculture
is already under cultivation. Historical evidence [44] reveals that, large areas of the drylands of Nigeria
presented high farming intensities already in the late 1970s. A cautious visual comparison between
historical cropping density map and the 1-km spatial aggregation of the rain-fed agriculture class
(Figure 9) shows that farming area has increased and areas of high farming intensity have expanded
considerably in the last 30 years. The present spatial distribution of farming intensity underscores a
limited potential for further agricultural expansion into new lands and suggests that further increases
in farming intensities are likely to take place in current agricultural landscapes.
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The map shows that production systems adapted to arid conditions in marginal and less
productive areas (e.g., mosaics of cultivated fields and scattered trees) can reach 30% of the land
at lower elevations. It also highlights the distinct characteristics of land use dynamics in the north
when compared with the rest of the country. For instance, cropland represents on average 52.5% of
the land in the north, reaching 80% in some states, while the reported national average for Nigeria
is 38.4%. From these figures we estimate that the cultivated land per person in the North is 0.31
person-hectare while the national average remains at 0.193 ha-person [45]. The map also questions
existing assessments of irrigated agriculture, covering nearly 2.2% of the land and 4.4% of the cultivated
land in northern Nigeria (Figure 10), sensibly higher than the national average (0.63%) [45]. These
intranational differences highlight the need to establish monitoring systems to provide region specific,
reliable, and up-to-date information to guide the design and implementation of interventions.
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The current map improves the spatial detail of LCLU information extracted from coarser
resolution remote sensing products. The higher spatial detail of this map allows a more realistic
characterization of complex landscapes. Coarse resolution pixels are the result of a mixing of spectral
signatures from different features. LCLU products from moderate sensors cannot accurately map
heterogeneous landscapes and complex land use types of arid and semi-arid African regions. The
spatial aggregation from a 30 m resolution map charts landscape features with consistent spectral
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signatures and allows flexible spatial aggregations to answer specific questions and the definition of
classes with additional value.

This map also improves the thematic detail of existing medium resolution remote sensing-based
products with cropland information for northern Nigeria. Continental and global LCLU remote
sensing products commonly apply a uniform mapping framework that aim to retrieve consistent
products and maximize overall accuracies over large regions. The application of empirical models to
large regions implies a lack of flexibility to adapt to specific features and dynamics of sub regions. By
restricting the geographical extent of the mapping area, we adapt the mapping framework to chart
relevant land uses specific to the ecoregion and thus, improve thematic detail.

The advancement of cloud storage and computing capabilities and the increase in imagery from
medium resolution sensors have led to the recent emergence of global-scale analysis and global
medium spatial resolution products. Yet there are significant advantages of using cloud storage
and computing capabilities for the study of smaller and coherent ecoregions, since it can enable the
development of regional-based products that identify relevant key land use classes and land use
processes, targeting specific questions and bringing analysis closer to managers and decision makers.

5. Conclusions

This work presents a mapping approach specifically designed for agricultural systems of the
Sudan-Sahel region. This approach has the potential to be replicable in successive years and expanded
to other locations within the Sudan-Sahel ecozone. The present work underscores the relevance of
incorporating expert knowledge in the design mapping strategies in regions where other data sources
are scarce. This work also highlights the importance of interannual land surface dynamic to achieve a
robust characterization of land use in the study area, and it demonstrates the potential of dense stacks
of medium resolution imagery to capture these dynamics.

The mapping framework was applied to produce a 30 m spatial resolution LCLU map with a
focus on agricultural landscapes for northern Nigeria for year 2015. The map provides up-to-date
information at higher spatial resolution, and an improved characterization of agriculture in a region
with limited land use information where agriculture is the main livelihood strategy.

The map shows high farming intensity throughout the region and a cropland area significantly
higher than in the rest of the country. Rain-fed cultivation systems already occupy most of the
landscapes at the expense of natural vegetation and the majority of floodplains suitable for irrigation
agriculture are already under use. The map also identifies the landscape variations associated with
well-defined north–south gradients in the region.

In a region under increasing environmental and demographic stress, this work highlights the
potential of multi temporal medium resolution satellite data to generate detailed and up-to-date land
use information in the Sudan-Sahel region. This type of information is essential to design efficient
policy interventions, improve famine-related early warning and response systems, and understand the
links between land use and agricultural development, migration and conflict.
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