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Abstract: We present a classification of plastic-mulched farmland (PMF) and other land cover types
using full polarimetric RADARSAT-2 data and dual polarimetric (HH, VV) TerraSAR-X data, acquired
from a test site in Hebei, China, where the main land covers include PMF, bare soil, winter wheat,
urban areas and water. The main objectives were to evaluate the outcome of using high-resolution
TerraSAR-X data for classifying PMF and other land covers and to compare classification accuracies
based on different synthetic aperture radar bands and polarization parameters. Initially, different
polarimetric indices were calculated, while polarimetric decomposition methods were used to
obtain the polarimetric decomposition components. Using these polarimetric components as input,
the random forest supervised classification algorithm was applied in the classification experiments.
Our results show that in this study full-polarimetric RADARSAT-2 data produced the most accurate
overall classification (94.81%), indicating that full polarization is vital to distinguishing PMF from
other land cover types. Dual polarimetric data had similar levels of classification error for PMF and
bare soil, yielding mapping accuracies of 53.28% and 59.48% (TerraSAR-X), and 59.56% and 57.1%
(RADARSAT-2), respectively. We found that Shannon entropy made the greatest contribution to
accuracy in all three experiments, suggesting that it has great potential to improve agricultural land
use classifications based on remote sensing.

Keywords: TerraSAR-X; plastic-mulched farmland (PMF); classification; agriculture;
polarimetric decomposition

1. Introduction

Mulching farmland with plastic films can effectively reduce soil moisture evaporation and
improve the efficiency of water use. Therefore, plastic-mulched farmland (PMF) has become an
important agricultural landscape in recent years [1]. Accurately monitoring changes to the PMF
distribution pattern and area is relevant to both current and future agricultural management in order
to meet the growing demand for high-quality, sustainable agriculture [2].

Mulching farmland with plastic films has a positive effect on agricultural productivity because
it can raise soil temperature and keep soil moisture. However, residues of plastic film in fields are
beginning to have a negative effect on agricultural environments. Clearly, such large areas of PMF will
inevitably have an impact on the surface energy balance and will put further pressure on agricultural
environments [3]. Therefore, accurate monitoring of spatial and temporal changes to PMF distributions
is also very relevant to the study of environmental change.

Remote sensing encompasses large scales of observation. It provides a convenient way to analyze
the distribution of ground objects on a large scale, making it a feasible approach for monitoring PMF
to determine its scale of impact on the environment and climate. In recent years, several studies have
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carried out the mapping of PMF using remote sensing. Lu et al. [3] showed that the decision-tree
classifier is an effective method for extracting PMF over large geographic areas from Landsat-5 TM
data, making it feasible to map spatial-temporal dynamics of PMF. Picuno et al. [4] employed the
parallelepiped method to extract mulched fields from Landsat TM imagery, as well as synthetic
aperture radar (SAR) imagery to validate their detection accuracy. Levin et al. [5] claimed that
white and transparent plastic-mulch films have three absorption peaks, centered on 1218 nm, 1732 nm,
and 2313 nm wavelengths that are unaffected by dust, rinses, and other surface factors. Lanorte et al. [6]
mapped agricultural plastic waste from Landsat 8 satellite images using the support vector machine
method. Novelli et al. [7] compared the performance of the Sentinel-2 multi-spectral instrument
and Landsat-8 operational land imager for greenhouse detection. Carvajal et al. [8] proposed an
artificial intelligence neural network to detect greenhouses using QuickBird imagery. Agüera and
Liu [9] proposed an algorithm to detect greenhouses based on QuickBird and IKONOS imagery.
Hasituya et al. [10] used spectral and textural features of Landsat-8 operational land imagery to
monitor PMF and obtained satisfactory results. Yang et al. [11] proposed a new plastic greenhouse
index (PGI) based on spectral, sensitivity, and separability analyses of greenhouses using medium
spatial resolution images. They examined the effectiveness and capability of the proposed PGI, showing
that plastic greenhouses in Landsat Enhanced Thematic Mapper Plus images could be successfully
detected using the PGI.

However, optical remote sensing data remain affected by fog, rain and snow, making it difficult
to guarantee their quality. In contrast, SAR remote sensing can function throughout the day in all
types of weather. SAR also can penetrate specific targets. Recently, SAR remote sensing has been
widely used for crop identification. Rabiger et al. [12] used TerraSAR-X and RADARSAT-2 for crop
classification and acreage estimation in Canada; they clearly demonstrated the potential of X-Band
data for crop identification. Ma et al. [13] investigated the potential of multi-temporal polarimetric
RADARSAT-2 data for crop classification in an urban/rural fringe area. Skakun et al. [14] assessed the
efficiency of multi-temporal C-band RADARSAT-2 intensity and Landsat-8 surface reflectance satellite
imagery for crop classification in the Ukraine. They explored different combinations of optical and SAR
images, as well as SAR modes and polarizations, for a better discrimination of crops. Jiao et al. [15]
assessed the accuracy of an object-oriented classification of polarimetric SAR (PolSAR) data to map and
monitor crops using 19 RADARSAT-2 fine beam polarimetric (FQ) images of an agricultural area in
northeastern Ontario, Canada. Sonobe et al. [16] applied the random forest (RF) classifier as well as the
classification and regression tree (CART) to evaluate the potential of multi-temporal dual-polarimetric
(dual-pol) TerraSAR-X data, on strip-map mode, for the classification of crop types. Li et al. [17] used
RADARSAT-2 quad PolSAR and dual-pol TerraSAR-X data to monitor agriculture crop growth stages.
They found that entropy, the mean eigenvector (λ) and differential reflectivity of both data had similar
sensitivities to crop growth stages over their common coverage period.

In the research of monitoring PMF using SAR data, Hasituya et al. [18] and Lu et al. [19] did
some studies, however the potential of multi-band multi-polarization SAR data in the extraction of
PMF has not been fully explored. In this paper, we evaluate the outcome of using different SAR
data for classifying PMF and other land cover types. High-resolution dual-pol X-band TerraSAR-X
data, C-band dual-pol RADARSAT-2 data and full-polarimetric (full-pol) RADARSAT-2 data were
used to explore classifications based on different bands and different SAR data. The organizational
structure of this paper is as follows: Section 2 introduces the test site, field investigations, pol SAR
decomposition principles and the methods used in this study; Section 3 presents the experimental
results of the classification of PMF and other land use types and a discussion of the results while our
conclusions are presented in Section 4.
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2. Materials and Methods

2.1. Test Site and Data

The experimentation area (115◦15′–115◦35′E, 37◦30′–37◦45′N; Figure 1) is situated in Jizhou,
within the southeastern part of Hebei Province, China. The terrain is flat and open, forming a low
plain, with an elevation of approximately 23–29 m and a total area of 8815 km2. It has a semi-humid
continental monsoon climate. The average annual temperature is 12–13 ◦C, and the frost-free period
lasts approximately 170–220 days. The average annual precipitation is approximately 500–900 mm.

Figure 1. The location of the study area and the distribution of samples. Detail is shown on a GF-1 satellite
image of the study area. The five land cover classes sampled were: plastic-mulched farmland (cyan dots),
buildings (red dots), bare soil (yellow dots), winter wheat (green dots) and water (blue dots).

The main land use types are agricultural, where croplands have one or two crops a year.
In addition to PMF, four land cover types cover the study area: winter wheat, bare soil, water and
built-up areas. The main crop type in the study area is winter wheat, which comprises approximately
75% of the total agricultural land. Cotton is the main crop type in the areas covered with PMF and the
phenological stage of it is emergence. The specific phenological periods of winter wheat are shown
in Table 1.

Table 1. The specific phenological periods of winter wheat in Jizhou.

Seeding
Emergence Stage Tillering Stage Overwintering

Period
Turning Green

Stage Jointing Stage Heading and
Flowering Stage

Milk Ripening
Period

Mature
Period

Early October–
Middle October Late October Early December–

Late December
Early March–
Late March

Early April–
Middle April

Late April–
Early May

Middle May–
Early Jun Early Jun

RADARSAT-2 was launched in December 2007. This commercial radar satellite offers powerful
technical options that enhance environmental monitoring, resource management and mapping
worldwide. Full-pol RADARSAT-2 data were used for our analysis in ascending orbit, acquired on
3 May 2018. The incidence angle of the image was 26.6◦ and the pixel resolution was 4.73 m × 4.74 m
(Azimuth × Range). The images have a swath of 25 km × 25 km.
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Meanwhile, the German government and industries developed the TerraSAR-X radar satellite.
It works within the X-band, with a central frequency of 9.6 GHZ. The data used in this study were
dual copolarized (HH, VV) X-band SAR acquisitions of TerraSAR-X in descending orbit, because its
quad-pol mode is still an experimental one and its acquisitions are not available to commercial users.
The acquisition time of the data used for our classification experiment was 17 May 2018. The grid size
of the geocoded images in this study was assigned to 3 m × 3 m. The incidence angle of the image was
33.75◦ and the swath of the image was 15 km × 50 km.

PolSARPro software (open source toolbox; European Space Agency, 2003) was used for the
polarimetric analysis. The data were geometrically corrected using NEST software (The NEST Initiative,
2014). The Refined-Lee speckle filter with a 7 × 7 grid was applied to remove speckles.

2.2. Sampling

Apart from agricultural land, the two other common land cover types at the test site were urban
and water areas. The urban area mainly consists of buildings, roads, and sparse vegetation. A ground
quadrat of different ground classes was obtained using a global positioning system. The specific area
depended on the natural boundary of the crop field. We collected ground sample data according to
the satellite transition times. In the process of data collection, both systematic sampling and random
sampling were adopted. After collecting field point samples, we digitized these polygon samples
based on the location of field point samples on high spatial resolution (2 m) GF-1 satellite images.
The samples were enlarged to polygon samples with a size of 30 m × 30 m. In total, 100 sample
parcels were collected for each type, among them 70 were used for training and 30 were used for
verification. Figure 1 shows the location of test site and the distribution of surface features on the GF-1
satellite image.

2.3. Principles and Methods

2.3.1. Dual Polarimetry and Its Scattering Parameters

We analyzed 26 dual-pol (HH, VV) parameters for the classification of PMF and other land cover
types. These parameters are presented in Table 2.

Table 2. Overview of the 26 parameters derived from the dual-polarimetric TerraSAR-X and
RADARSAT-2 data.

Number Parameter Abbreviation

1 H-A-combination 1 HA
2 H-A-combination 2 H1mA
3 H-A-combination 3 1mHA
4 H-A-combination 4 1mH1mA
5 Probability 1 p1
6 Probability 2 p2
7 The mean eigenvector lambda
8 The first eigenvector l1
9 The second eigenvector l2

10 Entropy_Shannon SEdual
11 Entropy Hdual
12 The mean scattering delta angle delta
13 The first scattering delta angle delta1
14 The second scattering delta angle delta2
15 Anisotropy Adual
16 The mean scattering alpha angle alpha
17 The first scattering alpha angle alpha1
18 The second scattering alpha angle alpha2
19 The coherence amplitude |γHHVV |
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Table 2. Cont.

Number Parameter Abbreviation

20 Backscattering coefficient of VV channel σVV
21 HHVV phase difference ∠〈SVVS∗HH〉
22 Amplitude of 〈SHHS∗VV〉

∣∣〈, SVVS∗HH , 〉
∣∣

23 Backscattering coefficient of HH channel σHH
24 Backscattering coefficient ratio HH/VV σHH/VV
25 Backscattering coefficient HH minus Backscattering coefficient of VV σHH−VV
26 Backscattering coefficient HH plus Backscattering coefficient of VV σHH+VV

In this study, the mathematical entropy/anisotropy/alpha (H/A/α) decomposition method
proposed by Cloud and Pettier [20] was used to analyze the scattering mechanisms. The (H/A/α)
quad-pol decomposition was later transferred by Cloude to an entropy/alpha (H2α) decomposition
for dual-pol data [21]. For this study, we used the modified version of the (H2α) decomposition for
the 2 × 2 Covariance matrix, [C2], defined as follows, where νi represent the characteristic vector

of a matrix.

〈[C2]〉 =
[
〈|SXX |2〉 〈SXXS∗YY〉
〈SYYS∗XX〉 〈|SYY|2〉

]
(1)

〈[C2]〉 =
2

∑
i=1

λiνi vT∗
i = λ1[C2]1 + λ2[C2]2 (2)

We calculated different indices based on the HH and VV backscattering coefficients, as well as the
dual-pol [C2], including the coherence amplitude (|γHHVV |), backscattering coefficient of VV channel
(σVV), HHVV phase difference (∠SVVS∗HH), amplitude of 〈SHHS∗VV〉 (|〈, SVVS∗HH , 〉|), backscattering
coefficient of the HH channel (σHH), backscattering coefficient ratio HH/VV (σHH/VV), backscattering
coefficient of HH minus backscattering coefficient of VV (σHH−VV) and the backscattering coefficient
HH plus backscattering coefficient of VV (σHH+VV).

According to the Cloude decomposition, each unitary eigenvector of the [C2] may be
parameterized using two real angular variables.

νi =
[
cos αi, sin αiejδi

]t
(3)

In this way, the estimate of the mean polarimetric parameter set is given by:

(
α, δ
)
=

2

∑
i=1

pi(αi, δi) (4)

Based on the modified Cloude decomposition of the [C2], we obtained the eigenvalues l1 and l2
and their corresponding eigenvectors u1 and u2. The H-A-combination 1 (HA), H-A-combination 2
(H1mA), H-A-combination 3 (1mHA), H-A-combination 4 (1mH1mA), probability 2 (p2), probability 1
(p1), the mean eigenvector (λ), the second eigenvector (l2), the first eigenvector (l1), Shannon entropy
(SEdual), entropy (Hdual), the mean scattering delta angle (δ), the second scattering delta angle (δ2),
the first scattering delta angle (δ1), anisotropy (Adual), the mean scattering alpha angle (α), the second
scattering alpha angle (α2) and the first scattering alpha angle (α1) were calculated using equations
defined below.

Pseudo-probabilities of the [C2] expansion elements are defined as:

pi =
λi

∑2
i=1 λi

=
λi

span
(5)
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The entropy (H) indicates the degree of statistical disorder of the scattering phenomenon:

Hdual =
2

∑
i=1

pilog3 pi (6)

The anisotropy (A) is defined as the relative importance of the secondary scattering mechanisms:

Adual =
P1 − P2

P1 + P2
(7)

The dual-pol coherence between HH and VV channels is given by Equation (8), yielding a complex
number. The coherence amplitude |γHHVV | was used in this study [22].

|γHHVV | =
〈SVVS∗HH〉√
〈|SHH |2〉〈|SVV |2〉

(8)

SEdual characteristic parameter of the H/α polarization decomposition is calculated using
Equations (9)–(11), where Tr represents the trace of a matrix [23,24].

SEdual = SEI + SEP (9)

SEI = 2 log
(

πeTr[C2]

2

)
(10)

SEp = log

(
4

det[C2]

Tr[C2]
2

)
(11)

2.3.2. Full Polarimetry and Its Scattering Parameters

Full-pol data contain all four polarization modes, which provide more information than dual-pol
SAR data and can be used to analyze more complex scattering mechanisms. In this study, we analyzed
25 full-pol (HH, HV, VH and VV) parameters. These parameters are presented in Table 3.

Table 3. Overview of the 25 parameters derived from the full-polarimetric RADARSAT-2 data.

Number Parameter Abbreviation

1 Yamaguchi_vol Y_vol
2 Yamaguchi_odd Y_odd
3 Yamaguchi_hlx Y_hlx
4 Yamaguchi_dbl Y_dbl
5 Probability 1 P1
6 Probability 2 P2
7 Probability 3 P3
8 The mean eigenvector Lambda
9 The first eigenvector l1

10 The second eigenvector l2
11 The third eigenvector l3
12 The gamma parameter Gamma
13 Entropy_Shannon SEfull
14 Entropy Hfull
15 Double bounce Eigenvalue Relative Difference Derd
16 The mean scattering delta angle Delta
17 The beta parameter Beta
18 Anisotropy Afull
19 The mean scattering alpha angle Alpha



Remote Sens. 2019, 11, 660 7 of 16

Table 3. Cont.

Number Parameter Abbreviation

20 Freeman_vol F_vol
21 Freeman_odd F_odd
22 Freeman_dbl F_dbl
23 Backscattering coefficient of HV channel σHV
24 Backscattering coefficient of VV channel σVV
25 Backscattering coefficient of HH channel σHH

We calculated different indices based on different polarimetric backscattering coefficients,
including the backscattering coefficient of the HV channel (σHV), backscattering coefficient of the VV
channel (σVV) and the backscattering coefficient of the HH channel (σHH).

For the full-pol data, the mathematically based entropy/anisotropy/alpha (H/A/α)
decomposition proposed by Cloude and Pottier [20] was also selected for the scattering mechanisms
analysis; it uses an eigenvalue/eigenvector analysis of the 3 × 3 Coherency matrix, [T3], where vi
represent the characteristic vector of a matrix.

T3 =

 〈 1
2 |SHH + SVV |2〉 〈 1

2 [SHH + SVV ][SHH − SVV ]
∗〉 [〈SHH + SVV ]SHV

∗〉
1
2 〈[SHH + SVV ]

∗[SHH − SVV〉] 〈 1
2 |SHH − SVV |2〉 〈[SHH − SVV ]SHV

∗〉
〈[SHH + SVV ]

∗SHV〉 〈[SHH − SVV ]
∗SHV〉 〈2|SHV |2〉

 (12)

〈[T3]〉 =
3

∑
i=1

λiνi vT∗
i = λ1[T3]1 + λ2[T3]2 + λ3[T3]3 (13)

According to the Cloude decomposition, each unitary eigenvector of [T3] may be parameterized
using four real angular variables.

νi =
[
cos αi, sin αi cos βiejδi , sin αi cos βiejγi

]t
(14)

In this way, the estimate of the mean polarimetric parameter set is given by:

(
α, β , δ, γ

)
=

3

∑
i=1

pi(αi, βi, δi, γ) (15)

Based on the Cloude decomposition of [T3], many useful parameters can be calculated, including
probability 3 (p3), probability 2 (p2), probability 1 (p1), the mean eigenvector (lλ), the third
eigenvector (l3), the second eigenvector (l2), the first eigenvector (l1), the gamma parameter (γ),
Shannon entropy (SEfull), entropy (H), double-bounce eigenvalue relative difference (derd), the mean
scattering delta angle (δ), the beta parameter (β), anisotropy (A) and the mean scattering alpha angle
(α). The main full-pol parameters used in this study are defined as follows:

Probabilities of the [T3] expansion elements are defined as:

pi =
λi

∑3
i=1 λi

=
λi

span
(16)

The entropy (H) indicates the degree of statistical disorder of the scattering phenomenon:

H =
3

∑
i=1

pilog3 pi (17)



Remote Sens. 2019, 11, 660 8 of 16

The anisotropy (A) is defined as the relative importance of the secondary scattering mechanisms:

A =
P2 − P3

P2 + P3
(18)

SEfull characteristic parameters of the (H/A/α) polarization decomposition are calculated using
Equations (19)–(21), where Tr represents the trace of a matrix [23,24].

SE f ull = SEI + SEP (19)

SEI = 3 log
(

πeTr[T3]

3

)
(20)

SEp = log

(
27

det[T3]

Tr[T3]
3

)
(21)

In terms of physical model-based polarimetric decomposition, the Freeman–Durden
decomposition and Yamaguchi decomposition methods were selected for scattering mechanism
analysis and feature extraction. The Freeman–Durden decomposition is based on a physical scattering
model, it is very traditional and widely used. It decomposes the backscatter response into the three
categories of volume scattering (Freeman-vol), double-bounce scattering (Freeman-dbl), and surface
or single-bounce scattering (Freeman-odd) [25]. Yamaguchi et al. [26] extends the Freeman–Durden
decomposition method by adding a helix scattering mechanism as the fourth component for the
non-reflection symmetric scattering case. The measured coherency matrix is expanded into four
sub-matrices which correspond to surface (Yamaguchi-odd), double-bounce (Yamaguchi-dbl), volume
(Yamaguchi-vol), and helix (Yamaguchi-hlx) scattering mechanisms for the more general scattering
case encountered in complicated geometric scattering structures.

2.3.3. Random Forest Classification Method

In this study, the RF algorithm was used for the classification of PMF and other land cover types.
The algorithm uses many decision trees as basic classifiers; the classification results of the random
forest output are determined by simple voting on the classification results of each decision tree [27–29].

The RF algorithm has many advantages in classification, especially when processing big data sets,
because it can deal with a large number of input variables. It is not easy to over-fit and it has a shorter
running time when training high-dimensional data. The RF algorithm has been widely used in remote
sensing classification [30–32]. Two parameters, the number of trees and the number of variables, were
set beforehand. A total number of 100 trees and the square root of the input features number were
set in this study. After the trees were generated, their different classification results for input were
compared and the most popular class (“majority vote”) was assigned as the classification output.
Another advantage of the RF algorithm is the possibility to assess the importance of each classification
parameter (variable) in the classification [28,29]. The importance of a variable is usually given as the
mean decrease in the accuracy of the classification. In this study, we calculated the importance values
of different polarization parameters to the classification using the RF algorithm.

The main flowchart for the polarimetric SAR data processing is shown in Figure 2, in which
symmetrization means to transform the 4-D polarimetric coherency T4 and covariance C4 matrices to
3-D polarimetric coherency T3 and covariance C3 matrices.
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Figure 2. Flowchart for polarimetric SAR data processing.

3. Results and Discussion

First, the full-pol data were filtered to eliminate coherent noise. Next, we applied the polarimetric
decomposition methods to obtain the polarimetric decomposition components.

Using the different backscattering coefficients and their combinations, as well as different
polarimetric components as inputs, we executed a supervised classification. The classification of
the polarimetric SAR images was performed using the RF algorithm implemented in R.

Based on the ground data, regions of interest corresponding to winter wheat, PMF, bare soil,
urban, and water areas were selected as training areas. A total of 100 samples were collected for each
land use type, among them 70% (2520 pixels) and 30% (1080 pixels) were randomly assigned to either
training or testing sets, ensuring there was no overlap between the training and testing data.

Using dual-pol SAR data, we carried out both X-band and C-band classification experiments;
while both dual-pol and full-pol RADARSAT-2 data were also tested. Classification results obtained
for TerraSAR-X, dual-pol RADARSAT-2 and full-pol RADARSAT-2 data are shown in Figures 3–5.

To compare the importance of various parameters in this study, we selected the “mean decrease
in accuracy” as a measure of importance because it considers the impact of each predictor variable.
It is calculated during the out-of-bag error calculation phase of the RF classification and represents
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the difference between the prediction accuracy before and after permuting the variable of interest.
The mean decrease in accuracy is given for each class separately [22,27,33]. The RF algorithm was used
to evaluate the importance of these variables, including the backscattering coefficients of different
polarizations, their combinations and the different polarimetric decomposition components. Because
the importance of these variables may vary with each experimental run, we applied the RF classifier
10 times and used the average values in our analysis.

Figure 3. Classification map based on dual-polarimetric TerraSAR-X data.

Figure 4. Classification map based on dual-polarimetric RADARSAT-2 data.
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Figure 5. Classification map based on full-polarimetric RADARSAT-2 data.

The importance of TerraSAR-X variables for mapping PMF and other land cover types in Jizhou
was ranked as follows: SEdual, σHH+VV , l1, σVV , λ, l2, σHH , |〈SVVS∗HH〉|, σHH−VV , |γHHVV |, α1, α2, p1,
Adual, H1mA, p2, δ1, ∠〈SVVS∗HH〉, σHH/VV , 1mHA, Hdual, α, 1mH1mA, HA, δ and δ2. The importance
of each of these 26 variables is shown in a bar graph (including their standard deviations) for
TerraSAR-X data, as assessed by the RF algorithm (Figure 6).

Figure 6. Bar graph of the average and standard deviation values of the importance of each variable to
mapping of plastic-mulched farmland and other land cover types in Jizhou using dual-polarimetric
TerraSAR-X data, as assessed by the random forest algorithm. Values 1–26 reflect their listing in Table 2.

The importance of dual-pol RADARSAT-2 variables for mapping PMF and other land cover types
in Jizhou was ranked as follows: SEdual, σHH , l2, σHH+VV , α1, α2, σVV , l1, |〈γHHVV〉|, σHH−VV , λ,
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α, σHH/VV , |〈SVVS∗HH〉|, H1mA, p1, p2, Adual, 1mHA, H, HA, 1mH1mA, ∠〈SVVS∗HH〉, δ1, δ and δ2.
The importance of each of these 26 variables is shown in a bar graph (including their standard
deviations) for dual-pol RADARSAT-2 data, as assessed by the RF algorithm (Figure 7).

Figure 7. Bar graph of the average and standard deviation values of the importance of each variable to
mapping of plastic-mulched farmland and other land cover types in Jizhou using dual-polarimetric
RADARSAT-2 data, as assessed by the random forest algorithm. Values 1–26 reflect their listing
in Table 2.

The importance of full-pol RADARSAT-2 variables to mapping PMF and other land cover types
in Jizhou was ranked as follows: SEfull, σHV , F_vol, α, l3, l2, σVV , σHH , λ, l1, Y_vol, Hfull, P1, P3, F_odd,
P2, Y_hlx, derd, Y_odd, Y_dbl, Afull, β, δ, F_dbl and γ. The importance of each of these 25 variables is
shown in a bar graph (including the standard deviation) for full-pol RADARSAT-2 data, as assessed
by the RF algorithm (Figure 8).

Figure 8. Bar graph of the average and standard deviation values of the importance of each variable
to mapping of plastic-mulched farmland and other land cover types in Jizhou using full-polarimetric
RADARSAT-2 data, as assessed by the random forest algorithm. Values 1–25 reflect their listing
in Table 3.



Remote Sens. 2019, 11, 660 13 of 16

Analysis of variable importance (Figures 6–8) suggests that the Shannon entropy is the most
important variable for classification in all three mapping experiments. Furthermore, the Shannon
entropy of the five land cover types was calculated from different SAR data types and compared
in Figure 9.

Figure 9. Shannon entropy of all five land cover types calculated from different synthetic aperture
radar data (i.e., full-polarimetric RADARSAT-2, dual-polarimetric RADARSAT-2 and dual-polarimetric
TerraSAR-X).

Clearly, the Shannon entropy value of PMF was smaller than that of bare soil in all three data types.
Physically, Shannon entropy is a measure of randomness. Both PMF and bare soil are dominated by
surface scattering. When PMF is covered, the ground needs to be leveled, and the geometric structure
of the ground is changed. After plastic mulching, the randomness of the bare soil declines, making the
Shannon entropy value of these two targets different.

It can be seen that Shannon entropy has a similar performance in other studies. Magdalena et al.
studied the suitability of the Shannon Entropy for wetland mapping and found that the partially
flooded grasslands could be identified and mapped through the Shannon Entropy decomposition [34].
Deng et al. found that three polarimetric features (entropy, Shannon entropy, T11 Coherency
Matrix element) and one TF feature (HH intensity of coherence) were most helpful in urban area
classification [35]. Chen et al. studied the influence of polarimetric parameters and an object-based
approach on land cover classification in coastal wetlands and found that Shannon entropy greatly
improved the classification results [36].

The classification accuracy was verified using the confusion matrix method. In this case,
the confusion matrix for the classification result corresponding to each method was calculated.
The accuracies of the classifications of all five land cover types using different SAR data are provided
in Table 4, including the values for overall accuracy, user accuracy, mapping accuracy and the kappa
coefficient, which together describe the classification accuracy from various perspectives.

Table 4. The accuracies of the classification of the five land cover types using different SAR data.

SAR Data Type
Mapping Accuracy (%) User Accuracy (%)

Overall
Accuracy (%)

Kappa
CoefficientPMF Bare

Soil Wheat Urban
Areas Water PMF Bare

Soil Wheat Urban
Areas Water

TerraSAR-X 53.28 59.48 93.34 88.27 99.20 64.92 59.82 88.44 85.63 99.38 90.15 0.8464
RADARSAT-2 (HH,VV) 59.56 57.1 91.78 93.79 98.81 56.85 55.98 98.81 92.80 97.82 90.71 0.8545
Full-pol RADARSAT-2 72.56 75.90 98.07 99.93 98.24 70.01 74.51 98.19 96.26 99.86 94.81 0.9189
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There are many studies which use decomposition parameters to do land use classification. In the
articles using decomposition parameters, there are fewer studies aimed to distinguish between PMF
and other ground objects, especially in the comparison of multi-band SAR data.

Our results show that the accuracy of the overall classification of PMF and other land cover
types was higher than 90% for all three SAR data types, although the full-pol data had the highest
classification accuracy. Both dual-pol TerraSAR-X and RADARSAT-2 data had nearly the same overall
accuracy and kappa coefficient values.

Specifically, the classification results based on the TerraSAR-X data show that its mapping
accuracies were approximately 53% for PMF, 60% for bare soil, 93% for winter wheat, 88% for urban
areas and 99% for water. The kappa coefficient computed for this classification was 0.85. This shows
that despite the TerraSAR-X data having a relatively high resolution, they still were not able to
distinguish between PMF and bare soil.

The mapping results based on the dual-pol RADARSAT-2 data gave a slightly higher overall
accuracy of 90.71%. Its mapping accuracies were approximately 60% for PMF, 57% for bare soil, 92% for
winter wheat, 94% for urban areas and 99% for water. These data also could not discriminate effectively
between PMF and bare soil. Their kappa coefficient was 0.86.

In contrast, the mapping results based on the full-pol RADARSAT-2 data gave an overall accuracy
of 95%. Mapping accuracies based on these data were approximately 73% for PMF, 76% for bare
soil, 94% for winter wheat, 98% for urban areas and 99.9% for water. The kappa coefficient for this
classification was 0.92, which indicates that it was very good. In Table 4, misclassification of pixels
mainly occurred because of confusion between PMF and bare soil. Such misclassification reflected the
similar responses of these land covers to SAR signals.

4. Conclusions

The development of polarization decomposition technology has allowed polarization
decomposition to be more widely used for remote sensing image classification. However, few studies
have systematically compared classifications based on different SAR bands, especially when applied
to the remote sensing classification of PMF.

In this study, we evaluated the classification of PMF and other land cover types using the features
obtained from the decomposition components of three SAR data types (i.e., TerraSAR-X, dual-pol
RADARSAT-2 and full pol RADARSAT-2) for a study area in Jizhou, China. Overall, in this study
the accuracy of classification using the full-pol SAR data was higher than both dual-pol data types.
We showed that the classification accuracy of PMF using the full-pol RADARSAT-2 SAR data was
higher than 70%. Analysis of the importance of polarization parameters showed that the Shannon
entropy made the greatest contribution to mapping accuracy.
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