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Abstract: Plant height is a morphological characteristic of plant growth that is a useful indicator of
plant stress resulting from water and nutrient deficit. While height is a relatively simple trait, it can be
difficult to measure accurately, especially in crops with complex canopy architectures like cotton. This
paper describes the deployment of four nadir view ultrasonic transducers (UTs), two light detection
and ranging (LiDAR) systems, and an unmanned aerial system (UAS) with a digital color camera to
characterize plant height in an upland cotton breeding trial. The comparison of the UTs with manual
measurements demonstrated that the Honeywell and Pepperl+Fuchs sensors provided more precise
estimates of plant height than the MaxSonar and db3 Pulsar sensors. Performance of the multi-angle
view LiDAR and UAS technologies demonstrated that the UAS derived 3-D point clouds had stronger
correlations (0.980) with the UTs than the proximal LiDAR sensors. As manual measurements require
increased time and labor in large breeding trials and are prone to human error reducing repeatability,
UT and UAS technologies are an efficient and effective means of characterizing cotton plant height.

Keywords: cotton; plant height; high-throughput phenotyping; ultrasonic transducers; unmanned
aerial systems; light detection and ranging

1. Introduction

Cotton (Gossypium sp.) is a critical natural fiber source used by the textile industry worldwide
with no economically viable substitute. Upland cotton (Gossypium hirsutum L.) is the primary species
grown, accounting for over 90% of the annual, global production that supports a multi-billion-dollar
industry [1]. The United States is the third largest producer of cotton with the majority exported to
foreign markets for production of woven fabrics and yarn for apparel and home-goods [2,3]. Increasing
global demand for textile products, along with increasing competition from synthetic fibers has
generated a critical need to improve cotton yield and fiber quality. However, climate uncertainty and
increased demands on agricultural water sources threaten the sustainability of cotton production [4–6].

Cotton has an indeterminant growth habit and one of the most complex canopy architectures of
any major row crop [7]. The intricate nature of cotton growth, characterized by several phenological
developmental stages occurring simultaneously, coupled with environmental interactions makes
breeding for improved fiber yield and quality challenging [7]. Previous studies have found that plant
mapping of height, node spacing, and total nodes is an effective way to quantify cotton growth and
development, and can be utilized to improve yield through crop management [8]. Of these traits, plant
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height is often positively correlated with fiber yield and water-use efficiency when cotton is grown
with low soil moisture conditions [9,10]. These studies indicate that plant height is a useful phenotype
for cotton breeders to identify high yielding lines, particularly under less-than-optimal environmental
conditions. Unfortunately, manual measurements of plant height are labor intensive, prone to human
error, and provide data for a limited number of plants. These factors lead to extreme inefficiencies for
large scale breeding programs, in which thousands of such measurements must be collected.

Field-based high-throughput phenotyping is a novel approach for increasing plant breeding
efficiency by using proximal sensors and imagers on terrestrial or aerial platforms to generate useful
phenotypic data for plant characterization. The power of high-throughput phenotyping (HTP) is
the ability to characterize large populations in both time and space, which improves trait capture of
dynamic plant responses to environmental conditions. Over the last 10 years, a multitude of HTP
platforms and sensor packages have been developed and evaluated in various agronomic crops [11–13].
Platforms and sensors used for plant height evaluation include ultrasonic transducers mounted on
high-clearance tractors or field carts [10,14–16], light detection and ranging (LiDAR) systems mounted
on tractors and rails [13,17–20], and compact digital color cameras mounted on either unmanned aerial
systems (UAS) or terrestrial platforms [16,19,21,22].

The fundamentals of ultrasonic transducer (UT) sensors are based on the time-of-flight (TOF)
principle. These devices use a transmitter to send ultrasonic pulses toward an object at frequencies
higher than 20 kHz while a receiver registers the pulses reflected back from the object. Distance is
calculated as half of the product of the speed of sound with the time required for the ultrasonic waves
to be sent and received [10]. LiDAR sensors are also based on the TOF principle and work the same
way as the UT sensors, but instead of using ultrasonic pulses, light pulses are utilized. Distance is
therefore calculated as half of the product of the speed of light with the time required for the light
pulse to be sent and received [20]. The fundamentals of obtaining distance measurements from digital
color imaging are different from those of UT and LiDAR sensors. Digital color cameras incorporate
a photodetector to measure incoming visible light rays, typically via a complimentary metal-oxide
semiconductor (CMOS), with a red, green, blue (RGB) color filtering system. Electric signals from
the photodetector are represented as digital numbers for each image pixel among the three RGB
channels. With sufficient overlap of images from multiple viewing angles, modern photogrammetry
software can 1) create an orthomosaic image by stitching individual images together and 2) represent
the image scene as a three-dimensional (3-D) point cloud using structure from motion (SfM) technology
to calculate distance among image features [19,23].

Many studies have utilized at least one of these technologies to estimate plant height over time, but
few have reported comparisons among the methods and evaluated their efficiency and effectiveness
for a breeding program. The primary goal of the present study was to assess the performance of
each of these technologies to determine cotton plant height. The objectives were to (1) identify
accurate UT technologies through comparisons of manual height measurements with sensor readings;
(2) identify accurate, more advanced multi-angle point cloud technologies through comparisons
with UT technology; and (3) examine the efficiency and effectiveness of each technology for a cotton
breeding program.

2. Materials and Methods

2.1. Data Collection Platforms

2.1.1. Avenger Tractor

The primary data acquisition platform for ground-level proximal sensing was a retrofitted
Avenger Pro high-clearance tractor (LeeAgra Inc., Lubbock, TX, USA) with a modified front boom
to accommodate the proximal sensors (Figure 1a). The sensor boom was made from 0.04 × 0.04 m
extruded aluminum T-slot tubing, framing members, and hardware (Rexroth Bosch Group, Charlotte,
NC, USA). Boom dimensions were 1.29 × 3.05 × 0.80 m (l × w × h) with four adjustable arms for
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simultaneous data collection by multiple sensors. The height of the sensor boom was adjustable by the
tractor hydraulic lift system, total range 1.04 to 2.74 m, to accommodate plant growth over time. In 2016,
the sensor array to characterize plant height included Honeywell 943-F4Y-2D (Honeywell International
Inc., Morristown, NJ, USA), Pepperl+Fuchs UC2000 (Pepperl+Fuchs Group, Twinsburg, OH, USA),
MaxSonar MB7364 (MaxBiotix Inc., Fort Mill, SC, USA), and dB3 (Pulsar Process Measurement Inc.,
Niceville, FL, USA) ultrasonic transducers. In 2017, the MaxSonars and the dB3s were removed and
two LiDAR sensors were added: a fixed beam sensor, LidarLite V3 (Garmin International Inc., Olathe,
KS, USA), and a scanning beam sensor, LMS511-10100 PRO LiDAR unit (SICK Inc., Minneapolis, MN,
USA). The sampling rate, beam angle, Z-offset, calculated field-of-view (FOV), and other specifications
for each sensor are listed in Table 1. The FOV was calculated to estimate the canopy portion captured
by the nadir angle (fixed downward) technologies (ultrasonic transducers and LidarLite V3). The
placement of sensors on the boom is shown in Figure 1a,b. Note other sensors were mounted to the
sensor boom but are not the subject of this manuscript and will not be discussed.
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Ethernet interface. 

 

Figure 1. The high-clearance Lee Agra Avenger tractor fitted with a modified front boom using
aluminum T-slot to mount the proximal sensors. The four arms on the modified boom that carry
the sensors which include inertial measurement unit (IMU), real-time kinematic—global positioning
system (RTK-GPS) and two ultrasonic transducer sensors (MaxSonar and dB3) in 2016 (a), and the
sensor array used in 2017 data collections (b).

Measurements from each sensor were georeferenced by simultaneously recording position from a
Trimble R6 real-time kinematic (RTK) GPS receiver (Trimble Inc., Sunnyvale, CA, USA) via the GGA
and RMC NMEA strings, and heading from an inertial measurement unit (IMU) sensor (VN-100,
VectorNav Technologies, LLC, Dallas, TX, USA). The RTK-GPS antenna/receiver was mounted to
a vertically extended bar on the left side of the sensor boom while the IMU sensor was attached to
the arm directly in-front of the receiver. Sensor offsets from the RTK-GPS receiver were measured
and recorded for geospatial processing described below. Sensor information was logged on either
a PXIe-1085 system (National Instruments, Austin, TX, USA) or a CR1000 data logger (Campbell
Scientific, Logan, UT, USA) which were powered by a Dynasys auxiliary power unit (Tridako Energy
Systems Inc., Alliance, NE, USA). All sensor outputs except for the LidarLite V3, and LMS511 were
recorded as analog signals (0 to 5 V) or RS-232 communications at 5 Hz. The LidarLite V3 was recorded
at 20 Hz using SDI12 communication protocol and the LMS511 at 100 Hz through an Ethernet interface.
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Table 1. List of abbreviations (Abbr.), operation ranges, sampling rate and logging system, beam angle, z-offset, calculated field-of-view (FOV), and approximate cost
for each sensor technology used in 2016 and 2017 measurements of cotton plant height.

Year Sensor Abbr.
Working Temperature Sampling Logging Beam Z-offset FOV Cost

Range Range Rate System Angle (m) (m) (USD)

2016

Honeywell 943-F4Y-2D HW ~0.2 to 2 m N/A 5 Hz PXIe 8◦ 0.51 0.07 $504
Pepperl+Fuchs UC2000 PF ~0.8 to 2 m −25 to + 70 ◦C 5 Hz PXIe 5◦ 0.80 0.07 $362

MaxSonar MB7364 MS ~0.5 to 5 m −40 to + 65 ◦C 5 Hz CR1000 11.3◦ 1.03 0.20 $135
Pulsar db3 db3P ~0.13 to 3 m −30 to + 90 ◦C 0.5 Hz CR1000 10◦ 1.03 0.18 $712

Manual measurements Manual 2/plot Scanner $200

2017

Honeywell 943-F4Y-2D HW ~0.2 to 2 m N/A 5 Hz PXIe 8◦ 0.51 0.07 $504
Pepperl+Fuchs UC2000 PF ~0.8 to 2 m −25–70 ◦C 5 Hz PXIe 5◦ 0.97 0.09 $362

LidarLite V3 LLt ~1 to 40 m −20–60 ◦C 10 Hz CR1000 1.35◦ 1.04 0.02 $130
SICK LMS511-10100 LMS511 ~0 to 80 m −30–50 ◦C 100 Hz PXIe 0.68◦ 1.00 0.01 $10,500

RGB camera UAS N/A ~2images/plot SD card $1350
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2.1.2. Unmanned Aerial System (UAS)

Aerial images were collected via a digital color camera aboard a Phantom 4 Pro quad-copter drone
(DJI, Shenzhen, China). The camera featured a 20-megapixel, 2.54 cm complimentary metal-oxide
semiconductor (CMOS) and a red, green, blue (RGB) color filtering system. Camera settings included
aperture at f/6.3, shutter speed at 1/640 s, ISO speed at 100, and a focal length at 9 mm. Digital
images with a resolution of 5472 × 3648 pixels were collected and saved to the onboard storage card in
JPG format.

2.2. Field Experimental Design and Irrigation Management

Cotton (Gossypium hirsutum L.) field trials were conducted in 2016 and 2017 at the University of
Arizona, Maricopa Agricultural Center (33.068 ◦N, 11.971 ◦W, 360 m above sea level), in Maricopa,
Arizona. Maricopa is in an irrigated production area of the low desert that receives less than 100 mm
of rainfall during the cotton growing season (April–September). Air temperatures ranged from 11 ◦C
nighttime lows to 48 ◦C daytime highs during the cotton season. The field was divided into six
irrigation basins with 12 planted columns (raised beds) per basin; each basin was 118.5 m long and
12.2 m wide. In 2016, twenty-eight upland cotton lines from the regional breeders testing network
(RBTN), one experimental line, and one local commercial check were planted on 18 May. In 2017,
thirty-four upland cotton lines from the RBTN and one local commercial check were planted on 10 May.
Experimental plots included two, 12.1 m cotton rows with 1.02 m inter-row spacing and a density of
approximately 8.6 plants m−2. There was a 1.5 m alley between adjacent plots in the same row. Plot
boundaries were geospatially delineated using a geographic information system (ArcGIS v. 10.2, ESRI,
Redlands, CA) to create a plot polygon map in shapefile format prior to planting (Figure 2). The eastern
and western most rows of each basin were planted with the local commercial check (DP1044B2RF
in 2016 and DP1549B2XF in 2017, Monsanto, St. Louis, MO, USA) to reduce edge effects. Likewise,
a 2.02 m buffer of the commercial variety was planted along the north and south ends of each basin.
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Figure 2. Field experimental layout (a) for a cotton study comparing regional breeders testing network
germplasm with two irrigation rates in 2016 and 2017 growing seasons at Maricopa, Arizona, USA.
The two-row, 12.1 m plots are outlined in black, the 48-plot zones are outlined in grey, the mid-plot for
manual measurements are outlined in red, and the 0.5 m diameter soil bed polygons are colored green
(b) shown with an RGB composite image of the field on 10 July 2017.
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In both years, the cotton plants were grown under well-watered (WW) and water-limited (WL)
conditions using a (0,1) alpha lattice design with three replications per treatment. To germinate seed
and establish plants, the field was furrow flooded. Micro-irrigation via buried drip tape (Netafim,
Fresno, CA) installed at 0.2 m depth prior to planting was used for in-season cotton irrigation, which
was initiated on 8 June 2016 and 1 June 2017 after the crop was established. Irrigations were scheduled
using a daily crop water use and soil water balance model based on the Food and Agricultural
Organization-56 (FAO-56) method [24,25]. Meteorological data were obtained from the Arizona
Meteorological Network [26] weather station approximately 280 m from the center of the field site.
Irrigation applications for the water-limited treatment were reduced to 70% of the recommended
amount beginning on 16 July 2016 and 12 July 2017 after approximately 50% of plants within all plots
had flowered. Prior to this date, all plots received equal irrigation at 100% of the recommended amount.

2.3. Data Collections

2.3.1. Tractor

The Avenger tractor was deployed eight times each year ranging from June to September in 2016
and May to September in 2017 (Table 2). Prior to the start of each collection, the sensor boom was
adjusted to 1 m above the cotton canopy. The distance from the soil line to the sensor boom was
measured and recorded over representative plants from a single plot. The representative plants were
also manually measured for plant height (cm) with a standard 3 m measuring tape. Collections were
conducted around solar noon (12:00 to 14:00), and the total duration of data collection averaged 2 h to
complete the 1.5 ha field. The tractor forward speed was kept constant at 0.67 m s−1 during collections.

Table 2. List of collection dates, corresponding day or year (DOY) and calculated days after planting
(DAP) for each platform in 2016 and 2017.

Date DOY DAP Platform

9 June 2016 161 22 Avenger
14 June 2016 165 26 Manual
16 June 2016 168 29 Avenger
20 June 2016 171 32 Manual
27 June 2016 178 39 Manual
30 June 2016 182 43 Avenger
6 July 2016 188 49 Manual
7 July 2016 189 50 Avenger

11 July 2016 192 53 Manual
18 July 2016 199 60 Manual
21 July 2016 203 64 Avenger
26 July 2016 206 67 Manual

4 August 2016 217 78 Avenger
25 August 2016 238 99 Avenger

15 September 2016 259 120 Avenger

26 May 2017 146 16 Avenger
8 June 2017 159 29 Avenger
19 June 2017 170 40 Avenger
29 June 2017 180 50 Avenger
10 July 2017 191 61 Avenger
10 July 2017 191 61 UAS
25 July 2017 206 76 UAS
31 July 2017 212 82 Avenger

21 August 2017 233 103 Avenger
5 September 2017 248 118 Avenger
1 November 2017 305 175 UAS
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2.3.2. Manual

Manual plant heights were measured with a barcoded height stick with 0.01 m resolution and
a barcode scanner (Symbol CS3000, Motorola Inc., Chicago, IL, USA). Each plot was given a unique
barcode identifier, so height measurements would be associated with the correct plot. The scanned
data was downloaded to a computer as a tab-delimited text (txt) file using the Symbol docking station
via USB connection at the end of each collection. Cotton plant height was measured from the soil line
to the terminal bud of the plant; two plants per plot, from the middle of two planted rows (mid-plot),
were measured for a total of 360 measurements per collection. Collections were made between June
and July in 2016 only with a total of seven collections (Table 2).

2.3.3. UAS

Using a Galaxy TabA Wi-Fi tablet computer (Samsung, Seoul, Korea) with the Pix4Dcapture
flight control application (Pix4D S.A., Lausanne, Switzerland), flight plans were designed for sufficient
overlap (80% front, 70% side) along flight paths to facilitate three-dimensional (3-D) point cloud
reconstruction of the scene in post-processing. The flight altitude was 50 m on day of year (DOY) 191,
29 m on DOY 206, and 13 m on DOY 305 in 2017, which provided images with spatial resolution of
0.01 m or finer. Flights were conducted over the field site on the three dates in 2017 only (Table 2).

2.4. Geospatial Data Processing and Analysis

An additional polygon shapefile was created to further subdivide each plot area into 48 spatial
zones for analysis of plant height (Figure 2b). The size of each zone was 0.5 m by 1.02 m (1 cotton row).
The smaller zones were required particularly for determining plot-level plant height in the multi-angle
view UAS and LMS511 derived 3-D point cloud data described below. Because point cloud data were
scattered throughout the entire plot area, even on the bare soil inter-row areas, plant height could not
be determined by simply averaging the data within the plot area. Spatially subdividing the plot area
allowed for calculation of the maximum height in each zone, and the plot-level mean plant height was
subsequently calculated as the mean of maximum heights across all 48 zones in the plot. This strategy
was not necessarily required for the nadir view ultrasonic transducers and LidarLite V3, because the
design of the data collection platform ensured that data was collected directly above the crop row.
However, to maintain consistency in the data analysis among different sensing technologies, the 3-D
point cloud data and ground-based sensor data were processed using an identical strategy.

2.4.1. Ultrasonic Transducers and LidarLite V3

Geoprocessing methods described by Wang et al. [27] were used to calculate geospatial coordinates
for each sensor measurement and locate the data within a specific zone-level polygon. Briefly, the
latitude and longitude coordinates of the RTK-GPS receiver position at each logger timestamp were
projected to the Universal Transverse Mercator (UTM) coordinate system (units of meters). Using a set
of trigonometric equations for coordinate system transformations, the UTM position of each sensor
measurement was calculated from the vehicle position, IMU heading data, and the known lateral and
forward offset distances between each sensor and the RTK-GPS antenna on the boom. After UTM
coordinates were calculated, each data point located within the zone-level boundaries were annotated
with unique zone identifiers using the “Join attributes” function in Quantum GIS (QGIS). The results
were exported as comma separated value (csv) text files for outlier removal and determination of
maximum height within each zone (Figure 3).
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with an example output of raw plant heights georeferenced by the UTM coordinates from the 2017
DOY191 Pepperl+Fuchs sensors.

Raw plant height (p) was calculated as p = (s − d) − z where s = the recorded soil line to sensor
boom height, d = the displacement data measured by the sensors, and z = the known z-offsets for each
sensor. The HPMIXED procedure within SAS v. 9.3 (SAS Institute, Cary, NC, USA) was used to fit a
mixed linear model to the calculated raw plant heights for each sensor and data collection time point
to remove outliers. The model used was:

Yijkl = µ + αi + βj(k) + (αβ)ij(k) + (γβ)lj(k) + (γζ)l + εijkl (1)

where Yijkl was an individual observation; µ was the grand mean, αi was the effect of the ith cotton
entry; βj was the effect of the jth irrigation treatment, which was either water-limited or well-watered;
(αβ)ij was the interaction effect between the ith cotton entry and the jth irrigation treatment; (γβ)lj(k)
was the effect of the kth replicate within the jth irrigation treatment; (γζ)l was the effect of the lth block
within the j(k)th replicate interaction term; and εijkl was the random error term following a normal
distribution with mean 0 and variance σ2. The model terms (γβ)lj(k), (γζ)l, and εijkl were modeled as
random effects with all other terms being treated as fixed effects. Significant outliers were determined
by setting an upper and lower limit for the Studentized deleted residuals with a criterion of α = 0.05
based on the total number of observations and model terms [28]. Outliers were removed in an iterative
fashion, then maximum heights for each zone were identified using the MAX values output from the
SAS MEANS procedure (Figure 3). The outputs were averaged over the 48 zones to provide plot-level
mean plant heights.

2.4.2. UAS Images

Open-source photogrammetry software (OpenDroneMap) was used to compute 3-D point clouds
and orthomosaic images for each collection date. The software used a structure from motion library
(OpenSfM, Mapillary AB, Malmö, Sweden) to perform feature extraction matching and 3-D point cloud
computation. Construction of dense point clouds was based on the multi-view stereo algorithm of
Shen [29]. Geographic coordinates from 81 ground control points (GCPs) evenly distributed across the
field area were surveyed with an RTK-GPS receiver and were incorporated into the photogrammetry
calculations for georeferencing purposes. Resulting orthomosaic images were visually inspected for
georeferencing accuracy relative to plot boundaries, while only the 3-D point cloud data was used for
subsequent analysis of plant height.
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Geoprocessing methods described by Wang et al. [27] were used to calculate the spatial intersection
of 3-D point cloud data within zone-level polygons and to determine the maximum height within each
zone. Because values for the height dimension (i.e., Z axis) of the 3-D point clouds were relative to the
flight altitude of the drone, a procedure for referencing plant data with neighboring soil surface data
was necessary for calculation of absolute plant height. In this study, the issue was further complicated
by the presence of raised planting beds, which created an undulating pattern of heights in the 3-D
point cloud for bare soil reference areas (Figure 4). To obtain the heights of the raised beds, the
analysis focused on the 1.5 m alleys between the northern and southern edge of each plot. Based on
the known geographic coordinates of plot boundaries, a Python script was developed to calculate
coordinates centrally located on the raised bed of each cotton row in the bare soil area between plots.
Using QGIS, a shapefile was created with circular polygons of 0.5 m diameter around each raised
bed point (Figure 2b), and the bed height at each location was calculated by averaging the 3-D point
cloud data within each circular polygon, facilitated by spatial intersection of the two data layers
(Figure 4). Bed heights at the central location of each of the 48 zones in each plot were calculated
by spatial interpolation between the bed heights determined at opposing ends of the field plot. This
provided unique reference heights for all 48 zones in each plot, such that absolute plant height could
be determined by differencing the maximum 3-D point cloud height with the bed reference height
(Figure 4). The maximum height results were averaged over the 48 zones to provide the plot-level
mean plant heights.
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Figure 4. Flow chart for multi-angle view sensors (UAS and LMS511) data processing. The green boxes
and arrows depict steps unique to the UAS and blue, steps unique to the LMS511 (a). Example outputs
(3-D cloud and 2-D cross section) of raw plant heights georeferenced by the UTM coordinates from
the 2017 DOY191 UAS collection (b) and plants heights before bed height interpolation from the 2017
DOY191 LMS511 collection (c).

2.4.3. SICK LMS511

Two files were needed for LiDAR data processing: one containing the LiDAR distance/angle/
timestamp; and another containing the RTK-GPS latitude/longitude/timestamp. LiDAR processing
consisted of two main components: conversion to the standard PCD point cloud format and selection
of plant heights by plot [30]. To convert the raw LiDAR data to the PCD format, a custom R script
was developed to join the distance and GPS files via timestamp to associate the latitude and longitude
coordinates (x and y) of the RTK-GPS receiver position to each LiDAR scan (Figure 4). The x and y
coordinates were then projected to the UTM coordinate system, and LiDAR offsets were applied as
described above following Wang et al. [27]. The resulting output file was written in the ascii-text PCD
format and raw plants heights were calculated as above where d = the PCD-file vertical distances.
As above, geoprocessing methods described by Wang et al. [27] were used to calculate the spatial
intersection of the 3-D point cloud data within zone-level polygons (Figure 4). The top 10% height
quantiles for all 48 zones in each plot were determined then averaged to provide plot-level mean
plant heights.

2.4.4. Sensor Performance and Plot-Level Statistical Analysis

In 2016, nadir view sensor precision and accuracy were evaluated against the manual plant height
measurements. Since manual measurements were taken from the central zone of each row from each
plot (mid-plot), the corresponding maximum height from each sensor was used for regression analysis
(Figure 2b). As manual and tractor measurements were not conducted on the same days, measurements
were paired to minimize the difference between collection dates and reduce error (Table 2). Based
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on the manual measurements, the cotton plants grew an average of 0.8 cm per day, so dates were
paired such that four days (~3.2 cm) was the maximum difference. The r2 values were calculated
using a Python script with the “scipy.stats” and “numpy” packages and visualized with “pyplot”.
In 2017, nadir and multi-angle view derived plot-level mean plant heights were evaluated against the
Pepperl+Fuchs plot-level mean plant heights. As in 2016, not all measurements were conducted on
the same days, so measurements were paired to minimize the difference between collection dates and
reduce error. The r2 values and visualization were performed using the Python script described above.

To identify and remove significant outliers from the plot-level means, a mixed linear model
for each sensor and/or platform from each collection was fitted using ASReml-R version 3.0 [31].
The model used was the same as described above (Model 1). Outliers were identified using
Studentized deleted residuals with degrees of freedom being calculated using the Kenward and
Rogers approximation [32]. Once plot-level mean outliers were removed, an iterative mixed linear
model fitting procedure was conducted in ASReml-R version 3.0 using Model 1 as above. To remove
all non-significant random terms from the full model, likelihood ratio tests were conducted with
a significance threshold set at α = 0.05 generating a final, best fitted model for each sensor and/or
platform from each collection [33]. This final model was used to generate best linear unbiased
estimators (BLUEs) for each cotton entry across the irrigation treatments within the respective year.
Sequential tests of fixed effects were carried out with degrees of freedom being calculated with the
Kenward and Rogers approximation in ASReml-R version 3.0.

For each sensor and/or platform, repeatability (r) was calculated to express the proportion of the
variance due to permanent, non-localized differences between cotton entries providing a measure of
technical performance (Model 2). Model 1 was reformulated so that all terms were modeled as random
effects to estimate the respective variance components for use in Model 2. The variance component
estimates for the full model were used to estimate r as follows:

r =
σ̂2

α

σ̂2
α +

ˆσ2
αβ

nβ + σ̂2
ε

nξ

(2)

where σ̂2
α was the estimated variance due to the cotton entry, ˆσ2

αβ was the estimated variance associated

with cotton entry by irrigation treatment, σ̂2
ε was the residual error variance. The variable nβ was

the harmonic mean of the number of irrigation treatments in which each cotton entry was observed,
and nξ was the harmonic mean of the number of plots in which each cotton entry was observed.
The denominator of Model 2 is the equivalent to the phenotypic variance, σ̂2

p . Standard errors of the
estimated repeatability were approximated using the delta method [34,35].

3. Results

3.1. 2016 Estimates of Plant Height with Manual Measurements and Nadir View Sensors

Comparing plant heights obtained from the four nadir view ultrasonic transducers in 2016 with
manual measurements revealed varying levels of agreement across the 360 mid-plot measurements.
The Honeywell (HW) and Pepperl+Fuchs (PF) sensors (Figure 5a,b) showed strong correlations
between the two sets of measurements (r2 values 0.85 and 0.86, respectively) while the MaxSonar (MS)
and db3 Pulsar (db3P) sensors (Figure 5c,d) showed weak correlations with the manual measurements
(r2 values 0.37 and 0.26, respectively). The root mean squared errors (RMSE) ranged from 9.03 to
10.11 cm. The RMSE was affected by the differences in collection days between the sensors and manual
measurements causing increased error. All four sensors underestimated plant height when plants were
small (DOY 165 and 171) which is attributed to soil interference or lower canopy leaves within the
sensor field-of-view (FOV). On DOY 188 all sensors overestimated plant height, which is attributed to
a mis-recording of the soil line to sensor boom height affecting the raw plant height calculations.
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Figure 5. Manual plant height measurements (cm) compared to the Honeywell (HW) (a); Pepperl+Fuchs
(PF) (b); MaxSonars (MS) (c); and db3 Pulsar (db3P) (d) height measurements within the 360 mid-plots
grown at that Maricopa Agricultural Center in Maricopa, AZ in 2016 on the corresponding day of year
(DOY).

The standard deviation of plot-level plant height means recorded by each sensor increased over
time for each variety grown (Figure 6a, Figure S1). Some increased deviation is expected with multiple
varieties as each genotype will express the trait differently over time. The db3P sensor showed the
greatest increase in deviation where the HW showed the least (Figure 5a, Table S1). The calculated
repeatability (r) for the db3P sensor was consistently low (0.0–0.13) compared to the HW and PF sensors
(Figure 7a, Table S2). This indicates more of the calculated deviation for the db3P was caused by the
sensor rather than the expected genotype variation. The deviation in the manual measurements ranged
from 1.19–4.59 cm (Figure 6a, Table S1) and the r increased as the season progressed (Figure 7a, Table S2).
This could be attributed to the summer interns becoming more familiar with the barcode scanner
equipment and demonstrates the effect human error can have on repeated manual measurements.
The low deviation and high r of the HW and PF sensors indicate that temporal genotypic differences
can effectively be measured by proximal UTs.
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Figure 6. Calculated plant height (cm) means and standard deviation obtained from the Honeywell
(HW), Pepperl+Fuchs (PF), MaxSonar (MS), db3 Pulsar (db3P), and manual measurements (MN) across
the growing season in 2016 (a), and the means and standard deviations for the Honeywell (HW),
Pepperl+Fuchs (PF), LidarLite v3 (LLt), unmanned aerial system images (UAS), and SICK-LMS511
(LMS511) sensors used to collect plant height data across the 2017 growing season (b).
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Figure 7. Estimated repeatability (r) for plant height measured using the Honeywell (HW),
Pepperl+Fuchs (PF), MaxSonar (MS), db3 Pulsar (db3P), and manual measurements (MN) in 2016 (a);
and the Honeywell (HW), Pepperl+Fuchs (PF), LidarLite v3 (LLt), unmanned aerial system images
(UAS), and SICK-LMS511 (LMS511) sensors in 2017 (b) for each collection day.

3.2. 2017 Estimates of Canopy Height with Nadir and Multi-Angle View Sensors

In 2017, the plot-level plant height means from the multi-angle view sensors, SICK-LMS511
(LMS511) and UAS derived images (UAS), and the nadir view LiDAR Lite v3 (LLt) were compared to
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the Pepperl+Fuchs (PF) ultrasonic transducers. The PF ultrasonics were used because of the stronger
correlations and lower RMSE as compared with manual measurements in 2016 and higher repeatability.
To determine across year consistency of the PFs, the Honeywell (HW) ultrasonics were retained in
2017 and compared with the PFs. A strong correlation (0.997) and a RMSE of 3.69 cm between the
HW and PF sensors indicated consistency across years (Figure 8a). The RMSE for the multi-angle
sensors (UAS and LMS511) and the nadir view LLt derived plant heights ranged from 8.68 to 11.40 cm.
Of the two multi-angle view technologies, the UAS had the strongest correlation with the PF sensors at
0.980, which is higher than previously reported in sorghum (0.73 and 0.678) between UAS and manual
measurements [16,22] (Figure 8c). The LMS511 was found to have no correlation with the PFs on the
single day of collection and had the highest RMSE (11.40 cm), which is not consistent with previous
findings in cotton where RMSE was estimated at 6.5 cm [20] (Figure 8d). This is due, in part, to “gaps”
in the LiDAR scans as seen in the Figure 4c cross-section. These gaps are attributed tractor travel speed.
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Figure 8. Pepperl+Fuchs (PF) derived plant height (cm) plot-level means compared to the Honeywell
(HW) (a); LiDAR Lite v3 (LLt) (b); unmanned aerial system (UAS) (c); and LMS511 (d) height
measurements for all 35 cotton entries grown at that Maricopa Agricultural Center in Maricopa,
AZ in 2017.

Similar to 2016, the standard deviation of the mean by each sensor increased over time (Figure 6b,
Table S1). As seen in 2016 the HW sensors showed less deviation compared to the PFs during the
season (Figure 6b, Table S1). The LLt showed similar deviation to the HW sensor (Figure 6b, Table S1)
but had the greatest variation in estimated height over time (Figure S2c). The variation in heights are
likely due to the very narrow beam angle of the sensor causing a small FOV. This reduced FOV means
that instead of delineating the canopy profile, the beam penetrated the cotton canopy and returned
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distances from lower leaves or branches or detected profiles with reduced leaf angle (i.e., wilt) caused
by the irrigation treatment at time of capture.

The HW, PF, and UAS had higher repeatability (r) ranging from 0.43 to 0.95 than the other sensors
in 2017 (Figure 7b, Table S2). The HW r values were similar to findings from 2016, however the values
decreased on DOYs 180, 191, and 206 (Figure 7b). These results may indicate that the HW sensor
were more prone to thermal drift in this year or that the sensors need to be replaced. The PF sensor
consistently had the highest r values both within and between years. The LLt consistently had low
r throughout the season and reflects the increased variability seen in the growth curve (Figure 7b
and Figure S2c). This indicates proximal nadir view lidar methods may not be the most effective
for measuring plant height in the complex cotton canopy. These results highlight the importance
of calculating FOV for nadir view fixed angle sensors to assess their suitability for measuring the
desired trait.

4. Discussion

Of the four ultrasonic transducers (UT) tested in 2016, the Honeywell (HW) and Pepperl+Fuchs
(PF) had the strongest correlations with manual measurements, low RMSE, low variability, and high
repeatability. These two sensors had the smallest beam angles and calculated field-of-views (FOV)
of the nadir view sensors aside from the LidarLite v3 (LLt). The smaller beam angles, along with
the proximal position to the plants detected less variance in the canopy enabling a more accurate
delineation of the canopy profile from which height was estimated. The wider beam angle and
calculated FOV of the db3 Pulsar (db3P) and MaxSonar (MS) indicates the sensors also detected lower
canopy leaves leading to increased variation in the collected data as these lower leaves “contaminated”
the readings. Mounting the db3P and MS sensors lower, relative to the canopy profile, may improve
the precision of these sensors thereby decreasing variability and increasing the repeatability of the
measurements. This is supported in previous findings by Andrade-Sanchez et al. [14] where the db3P
was mounted 0.3 m above the canopy and RMSE ranged from 4 cm to 7 cm with manual measurements.
Transducer placement in the vertical plane (z-offset) should be determined by considering how the
beam angle and sensor FOV relate to the width of the intended plant target. Better estimates of plant
height can be obtained when the UT sensor views only the uppermost leaves and lower canopy leaves
are excluded from view. Comparison of the HW and PF showed the PFs to have slightly higher
repeatability values (r) in 2016 and maintained higher r values in 2017 indicating it is the more effective
UT sensor for cotton height measurements.

The Lidar Lite v3 (LLt) gave the most accurate plant height measurements of the two LiDAR
systems tested. Despite strong correlations with the PF measurements, the calculated repeatability
for this sensor was consistently low, and variation in the captured data was high. This is likely due
to the much narrower beam angle, approximately 1/8 that of the HW and PF sensors, which would
consistently penetrate the canopy structure, missing the upper canopy leaves that are within the
FOV of the ultrasonic sensors. These results were similar to those reported by Wang et al. [16] in
young sorghum plants, where poor emergence showed peaks and valleys in the Lidar Lite v2 data
plot profile that was smoothed out in the ultrasonic sensor profile. Given this variation, the LLt was
determined to be less effective for determining cotton plant height but could be valuable in detecting
other architectural or drought related traits. Further testing is needed for this sensor to determine if it
will be useful for other architectural traits.

The LMS511 did not perform as expected based on previous reports by Madec et al. [19] or
Sun et al. [20] who found proximal multi-angle LiDAR measurements to be an effective means of
estimating plant height in cotton and wheat, respectively. There are several reasons why the LMS511
data presented in this study do not compare to those previously reported including differences in
planting density, tractor speed, and mounting position. The tractor speed in this study was double
the speed reported in other studies [19,20]. The faster speeds reduced the total number of scans per
plot and left “gaps” in the plot profile. The reduction in data prevented identification of heights from
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each plot zone, skewing the plot average. A final factor to consider was the placement of the LMS511
in this study relative to that in Madec et al. [19] and Sun et al. [20]. In this study, the LMS511 was
mounted in between the plot rows to capture a whole plot (i.e., two rows) in one pass. Madec et al. [19]
and Sun et al. [20] mounted their LiDAR instruments directly over the plot row ensuring the tops of
all plants would be captured. Mounting the LiDAR over the inter-row area diminished the ability to
capture a full vertical profile of the plant, leading to underestimated plant height in some of the taller
varieties. The tractor speed, sensor placement, row spacing, and collection time-of-day presented in
this paper follow previous collection methods described by Pauli et al. [5], Andrade-Sanchez et al. [14],
and Thompson et al. [15] for capture of heat and drought-related traits, which are the primary focus of
the research occurring at this location. The results of this study suggest the LMS511 is not compatible
with the previous collection methods and requires a separate platform and collection protocol to be
effective. In addition, the intensive computational requirements for LiDAR data and the cost, reduces
the efficiency of LiDAR for characterizing plant height in the cotton breeding program but could be
valuable in detecting very detailed traits of the canopy architecture.

The UAS image-based 3-D point clouds performed the best overall for the two multi-angle
view technologies tested. The correlation with the PF ultrasonics was similar to previous findings
in wheat [19] but stronger than those reported in sorghum [16,22]. The sorghum studies utilized a
similar approach to estimate plant height from the UAS image-based 3-D point clouds where the drone
altitude during flight was used to calculate the z-axis value (soil line reference) across the entire field.
Previous experience has shown that UAS altitude is not constant during overflight even though it
is reported as such in the image EXIF information. Herein, a strategy was devised for referencing
plant measurements to local bed measurements in the 3-D point cloud. The z-axis reference was
calculated for each plot zone using four known localized bare soil reference areas per plot (two per
row). A similar strategy of referencing plot data to localized bare soil data was also performed in the
Madec et al. [19] study, although the methodology was different. The repeatability estimates estimated
from the UAS-generated data in this study were high and increased with each collection. The change
in flight altitude, which decreased with each successive flight, improved the spatial resolution of the
3-D point cloud. Future UAS flights that intend to estimate plant height should fly 15 to 30 m above
the canopy and ensure sufficient alley row spacing for referencing experimental plot data to localized
bare soil reference data in the alleyway area. Future data processing should also include an outlier
removal step prior to calculating the final plot average, which was not done in this study. Removal of
outliers would improve overall estimates of plant height by reducing variation in the data.

The results presented in this study describe the efficiency and effectiveness of different sensors
for estimating plant height in cotton. The ultrasonic transducers were the easiest to deploy and had
relatively simple data processing requirements. They also provided accurate estimates of plant height
which were repeatable across the growing season and separate years. The only drawback with the
UTs in this study was the overestimation of plant height when plants were small due to bed (soil)
interference in the sensor FOV. In the future, a bed height interpolation similar to the UAS data
processing could reduce the error seen with small plants. The 3-D point clouds derived from the UAS
were also very effective for estimating plant height, although the computational requirements for
processing the data were higher than those for ultrasonics. Also, specialized expertise and certification
is legally required to deploy the UAS for research purposes. Of the two proximal LiDAR systems
tested, the LidarLite v3 was more efficient and effective than the SICK despite its lower cost. Although
the LiDAR Lite v3 did well and had similar efficiency in terms of deployment and data processing, it
was considered less effective than the ultrasonics. However, this sensor may perform better in less
complex plant architectures than cotton. The LMS511 had the least efficiency and effectiveness overall
which was due to the capture method. Future studies are needed to determine the best platform and
deployment protocol for this sensor; however, the cost, effort required for data capture and processing
will likely still make it inefficient to characterize plant height for breeding programs with limited
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resources and expertise. The instrument may be most useful for characterizing discrete distance in
more complex plant architectural traits like leaf angle, canopy volume, and fruit load.

5. Conclusions

Plant height is an important phenotype for cotton management and an indicator of plant health.
This study shows that simple and relatively inexpensive industrial ultrasonic transducers are an
effective and efficient means of measuring cotton plant height over time. Three-dimensional point
clouds generated by photogrammetry from UAS-based images were also found to be an effective way
to measure plant height. The LiDAR sensors explored in this study were found to be less effective
and efficient overall but may have more intrinsic value for more complex traits such as leaf and
branching angle.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/6/700/s1,
Figure S1: Growth curves 2016, Figure S2: Growth curves 2017, Table S1: Plant height means and standard
deviations, Table S2: Repeatability and standard error.
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