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Abstract: This study focuses on the ability of the global Land Data Assimilation System,
LDAS-Monde, to improve the representation of land surface variables (LSVs) over Burkina-Faso
through the joint assimilation of satellite derived surface soil moisture (SSM) and leaf area index (LAI)
from January 2001 to June 2018. The LDAS-Monde offline system is forced by the latest European
Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis ERA5 as well as
ERA-Interim former reanalysis, leading to reanalyses of LSVs at 0.25◦ × 0.25◦ and 0.50◦ × 0.50◦

spatial resolution, respectively. Within LDAS-Monde, SSM and LAI observations from the Copernicus
Global Land Service (CGLS) are assimilated with a simplified extended Kalman filter (SEKF) using
the CO2-responsive version of the ISBA (Interactions between Soil, Biosphere, and Atmosphere)
land surface model (LSM). First, it is shown that ERA5 better represents precipitation and incoming
solar radiation than ERA-Interim former reanalysis from ECMWF based on in situ data. Results of
four experiments are then compared: Open-loop simulation (i.e., no assimilation) and analysis
(i.e., joint assimilation of SSM and LAI) forced by either ERA5 or ERA-Interim. After jointly
assimilating SSM and LAI, it is noticed that the assimilation is able to impact soil moisture in
the first top soil layers (the first 20 cm), and also in deeper soil layers (from 20 cm to 60 cm and
below), as reflected by the structure of the SEKF Jacobians. The added value of using ERA5 reanalysis
over ERA-Interim when used in LDAS-Monde is highlighted. The assimilation is able to improve
the simulation of both SSM and LAI: The analyses add skill to both configurations, indicating
the healthy behavior of LDAS-Monde. For LAI in particular, the southern region of the domain
(dominated by a Sudan-Guinean climate) highlights a strong impact of the assimilation compared to
the other two sub-regions of Burkina-Faso (dominated by Sahelian and Sudan-Sahelian climates).
In the southern part of the domain, differences between the model and the observations are the
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largest, prior to any assimilation. These differences are linked to the model failing to represent
the behavior of some specific vegetation species, which are known to put on leaves before the first
rains of the season. The LDAS-Monde analysis is very efficient at compensating for this model
weakness. Evapotranspiration estimates from the Global Land Evaporation Amsterdam Model
(GLEAM) project as well as upscaled carbon uptake from the FLUXCOM project and sun-induced
fluorescence from the Global Ozone Monitoring Experiment-2 (GOME-2) are used in the evaluation
process, again demonstrating improvements in the representation of evapotranspiration and gross
primary production after assimilation.

Keywords: data assimilation; land surface modeling; reanalysis; remote sensing

1. Introduction

An accurate representation of land surface variables (LSVs), such as soil moisture or vegetation
cover, is critical in climate science as well as environmental monitoring and prediction (e.g., in order to
cope with drought, flood, or other extreme events). To that end, land surface models (LSMs) have been
widely used to simulate and predict the Earth’s water storage energy budgets over a broad range of
time scales [1–4]. For instance, the AMMA (African Monsoon Multidisciplinary Analysis) Land Surface
Model Intercomparison Project (ALMIP) used a set of LSMs forced in offline mode by a combination
of satellite products and high quality in situ measurements in order to better apprehend LSV processes
and their representation [5,6]. These LSMs are intended to reproduce LSVs, such as surface and root
zone soil moisture (SSM and RZSM, respectively), vegetation biomass, and leaf area index (LAI),
together with surface energy fluxes and streamflow simulations. Over the last two decades, much
progress has been made on the degree to which realistic land surface initialization contributes to
the skill and performance of subseasonal land-related predictability as documented by [7,8] in the
Global Land-Atmosphere Coupling Experiment (GLACE). LSMs have subsequently benefited from
the growing development of observational networks. Unfortunately, those are not evenly spaced and
data sparse regions remain very difficult to model with accuracy. This is the case of West Africa ([5,9]),
where LSVs are of primary importance, as emphasized by many studies, see, e.g., [10,11].

Representation of LSVs by LSMs can be improved through the dynamical integration of
observations [12,13], and remote sensing observations are particularly useful in this context as they
are now unrestrictedly available at a global scale with high spatial resolution and with long-term
records. Land data assimilation systems (LDASs) combine LSMs with satellite observations in order to
produce reanalyses of LSVs. Several LDASs now exist, amongst them are the Global Land Data
Assimilation System (GLDAS, [1]), the Carbon Cycle Data Assimilation System (CCDAS, [14]),
the Coupled Land Vegetation LDAS (CLVLDAS, [15–17]), the U.S. National Climate Assessment
LDAS (NCA-LDAS, reference [18]) as well as LDAS-Monde [19] to name a few. More recently, soil
moisture (SM) data from the Soil Moisture Operational Product System (SMOPS) has been assimilated
in the Noah model [20]. Those systems either optimize process parameters (e.g., CCDAS), state
variables (e.g., GLDAS, NCA-LDAS, LDAS-Monde), or both (e.g., CLVLDAS). Only few studies have
considered the integration of multiple remote sensing measurements [17,19] and even less have had a
specific focus over West Africa (e.g., [21]).

In this context, the present study aims to evaluate reanalyses of LSVs obtained with
LDAS-Monde [19] over Burkina Faso in West Africa (domain shown in Figure 1). This country
exhibits three distinctive climates: Sahel, Sudan-Sahel, and Sudan-Guinea that cover most part of West
Africa, making Burkina Faso an area of interest for such study. A southward gradient characterizes
rainfall distribution across the country: Mean annual precipitation decreases from more than 1100
mm in the South to approximately 300 mm in the North [22]. Daily mean temperature fluctuates
between 21 and 34 ◦C (17 and 37 ◦C) during the rainy season (dry season) across Burkina Faso [23].
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LDAS-Monde [19] is based on the CO2-responsive version of the Interactions between Soil, Biosphere,
and Atmosphere (ISBA) LSM [24–27] available through the SURFEX (SURFace EXternalisée; [28])
modelling system of Météo-France. The reanalysis is performed by assimilating jointly satellite-derived
SSM and LAI using a simplified extended Kalman filter (SEKF). For that purpose, the most recent
SURFEX_v8.1 Offline Data Assimilation (SODA) implementation has been utilized considering a
long-term period (January 2001 to June 2018) along with the joint assimilation of both satellite-derived
SSM (from 2007, [29]) and LAI (GEOV2, from 2001, http://land.copernicus.eu/global/, last access
November 2018).
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situ and satellite datasets used to assess the sensitivity of the results to the atmospheric reanalysis, 
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Figure 1. Averaged (a) surface soil moisture from ASCAT (obtained after rescaling to model climatology,
see Section 2.2.3). (b) GEOV2 leaf area index (for pixels covered by more than 90% of vegetation)
from the Copernicus Global Land Service project averaged at 0.25◦ × 0.25◦ spatial resolution over the
domain centred on Burkina Faso (latitudes from 9.0◦N to 16.0◦N and longitudes from 7.0◦W to 3.0◦E).
The symbols, SH (Sahel), SS (Sudan-Sahel), and SG (Sudan-Guinea), represent the three agroclimatic
regions across Burkina Faso (BF).

The quality of LSV reanalyses depends on the quality of LSMs and observations used, but also
on the quality of atmospheric forcings used by LSMs. Numerous improvements were made in the
generation of long-term (1979-onwards) global atmospheric reanalyses, leading to more advancements
in land surface modeling fields and their applications (e.g., water resources monitoring [2,30,31].
In line with those improvements, NASA’s (National Aeronautics and Space Administration) Modern
Era Retrospective analysis for Research and Applications (MERRA; [32], and MERRA2; [33]) as
well as ECMWF’s (European Centre for Medium-Range Weather Forecasts) Interim reanalysis
(ERA-Interim; [34]) were the most investigated. We take advantage of the recent development of ERA5,
which was released in 2017 as the fifth generation of ECMWF global atmospheric reanalyses. At the
time of this study, a time-slice of the ERA5 database was available from 2001 within 3 months of real
time. ERA5 brings extensive changes compared to ERA-Interim, including higher spatial and temporal
resolutions as well as a generally improved representation of, e.g., precipitation and incoming solar
radiation (SWin) [4,35,36]. The performance of ERA5 and ERA-Interim precipitation and SWin is
first investigated using in situ measurements over Burkina Faso (BF) before studying the quality of
LDAS-Monde renalysis of LSVs forced by either ERA5 or ERA-interim.

Section 2 provides (i) a description of LDAS-Monde, including details on the CO2-responsive
version of the ISBA LSM and the data assimilation system, (ii) information on the atmospheric
reanalyses used to force the system, the assimilated remotely sensed observations along with the
in-situ and satellite datasets used to assess the sensitivity of the results to the atmospheric reanalysis,
and (iii) the experimental set up and the evaluation strategies. Section 3 presents the results of a
performance assessment of the reanalyses against in situ measurements, the assimilation impact of the
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assimilated variables as well as independent satellite datasets, and Section 4 provides perspectives
and future directions.

2. Materials and Methods

2.1. LDAS-Monde

The LDAS [37–41], developed at Météo France’s Centre National de Recherches Météorologiques
(CNRM), allows the integration of satellite-derived products into the ISBA LSM using a data
assimilation scheme. It has been recently expanded to global scale (i.e., LDAS-Monde) [19,42,43].
LDAS-Monde is accessible through the open-access SURFEX modelling platform [28] (https://www.
umr-cnrm.fr/surfex, last accessed January 2019). The following subsections briefly recall the main
components of LDAS-Monde. More details can be found in [19].

2.1.1. ISBA Land Surface Model

In this paper, the CO2-responsive [19,42,43] version of ISBA is used as well as the itsmulti-layer
soil water and heat transfer [44,45] version. The soil is discretized with 14 layers spanning a 12 m
depth. The lower boundary of each layer is 0.01, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, 5.0, 8.0,
and 12 m deep (see Figure 1 of [45]). In this configuration, ISBA describes the water and carbon fluxes
on a subdaily frequency, plant growth and crucial variables of vegetation components, such as LAI,
and above ground-biomass.

In the ISBA model, the evolution of vegetation variables is controlled by photosynthesis, which
enables vegetation growth resulting from the CO2 uptake. A minimum LAI threshold is prescribed
as 1 m2·m−2 for coniferous forest or 0.3 m2·m−2 for other vegetation types. Conversely, a lack of
photosynthesis triggers higher mortality rates. The carbon uptake related to photosynthesis represents
the gross primary production (GPP) while the CO2 released by the soil-plant system constitutes the
ecosystem respiration (RECO). The difference between these two quantities corresponds to the net
ecosystem CO2 exchange (NEE).

In the model version used in this study, ISBA parameters are prescribed for 12 generic land surface
types, which consist of (i) nine plant functional types (needle leaf trees, evergreen broadleaf trees,
deciduous broadleef trees, C3 crops, C4 crops, C4 irrigated crops, herbaceous, tropical herbaceous and
wetlands), (ii) bare soil, (iii) rocks, and (iv) permanent snow and ice surfaces. Those parameters are
derived from the ECOCLIMAP land cover database [46].

2.1.2. Data Assimilation

LDAS-Monde routinely uses a simplified extended Kalman filter (SEKF, [38]) to assimilate
observations of SSM and LAI. This is a sequential approach with a forecast step followed by an analysis
step (see Figure 2 for schematic diagram describing how it works). The forecast step propagates the
initial state over a 24-h assimilation window with the ISBA LSM. Then, the analysis step corrects
the forecast by assimilating observations. This step involves an observation operator defined as the
product of the model propagation of control variables over the 24-h assimilation window with the
projection of those variables to observation equivalents. The analysis requires the calculation of the
Jacobian of the observation operator. It is computed using finite differences obtained by perturbed
model runs over 24-h assimilation windows. For a given grid point and vegetation patch, each control
variable requires a perturbed model run obtained by initializing ISBA with the initial state perturbed
for the selected control variable (0.1% typically, see [19]). In this study, the analysis step updates the
modeled LAI and soil moisture from layer 2 (1–4 cm) to layer 7 (60–80 cm). The approach is fully
detailed in [19].

A mean volumetric standard deviation error of 0.04 m3·m−3 was affected to soil moisture in the
second layer of soil (i.e., the model equivalent of the SSM observations). Then, for deeper layers,
the mean volumetric standard deviation error of 0.02 m3·m−3 was used, as suggested by several

https://www.umr-cnrm.fr/surfex
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authors for RZSM [37,38,40,47]. The observational SSM error is set to 0.05 m3·m−3 as in [37]. This
value is consistent with errors typically expected for remotely sensed soil moisture (e.g., [47–49]). Soil
moisture observational and background errors are assumed to be proportional to the soil moisture
range (the difference between the volumetric field capacity (wfc) and the wilting point (wwilt), calculated
as a function of the soil type, as given by [24]). The standard deviation of errors of GEOV2 LAI is
assumed to be 20% of GEOV2 LAI. The same assumption is made for the standard deviation of errors of
the modelled LAI (20% of modelled LAI) for modelled LAI values higher than 2 m2·m−2. For modelled
LAI values lower than 2 m2·m−2, a constant error of 0.4 m2·m−2 is assumed, according to [40].
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Figure 2. Diagram depicting the sequential cycle of LDAS-Monde using an SEKF. The forecast
step consists of propagating the analysis at previous time step to the next one using the ISBA LSM.
The analysis step corrects the forecast by assimilating observations. The SEKF involves the computation
of a Jacobian matrix obtained through perturbed model runs initialized by the analysis at a previous
time step slightly perturbed by a small amount (δx1...8). The number of perturbed model runs is equal
to the number of control variables (in our case, eight variables).

2.2. Datasets and Data Processing

2.2.1. In Situ Measurements

In this study, in situ data of precipitation for the 2010–2016 period were provided by the General
Directorate of Meteorology (GDM) of Burkina Faso (BF), as previously used by [22]. It consists of
134 stations, which are relatively well spread over the country except for less density in the north of
BF also called the Sahel zone (SH) and the eastern part of the Sudan-Sahel zone (SS) of the domain
(Figure 3). All stations include a daily time series of good quality (with few missing data) over the
considered period. The in situ measurements of SWin are also from the GDM with data available
every 15 min for 4 stations (Figure 4). In the present study, 24 h-mean values of these radiative fluxes
are used.
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Figure 3. Maps of correlation (R) on precipitation time series (a) and ubRMSD (mm/month) on
precipitation time series (b) between in situ measurements and both ERA-Interim and ERA5. For
each station presenting significant R (p values < 0.05), the simulation that presents the better R values
is represented. Triangle symbols indicate when ERA5 presents the best value and circles when it
is ERA-Interim.
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Figure 4. Maps of correlation R (a) and ubRMSD (b) between incoming solar radiation time series from
ERA5 and in situ measurements. (c,d) represent the difference between ERA5 and ERA- Interim in
correlation and ubRMSD for 2017, respectively. For each station presenting significant R (p values <
0.05), the simulation that presents the better R values is represented.

2.2.2. ERA-Interim and ERA5 Atmospheric Reanalyses

ERA-Interim is a global atmospheric reanalysis produced by the ECMWF [34]. Reanalyses
provide a numerical description of the recent climate by combining models with observations using
data assimilation systems. ERA-Interim overlays the period from 1 January 1979 onward and continues
to be extended forward in near-real time. It is based on the integrated forecast system (IFS) version
31r1 (more informations at https://www.ecmwf.int/en/forecasts/documentation-and-support/, last

https://www.ecmwf.int/en/forecasts/documentation-and-support/


Remote Sens. 2019, 11, 735 7 of 26

access: November 2018) using approximately an 80 km (T255) spatial resolution and with analyses
available for 00:00, 06:00, 12:00, and 18:00 UTC. A detailed explanation of the ERA-Interim product
archive is provided in [34,50].

Recently, ERA5 [51], the latest version of ECMWF reanalyses, was released as the fifth generation
produced. It is envisioned that ERA5 will replace the release of the current ERA-Interim reanalysis,
from 1979 to the near real time period (on a regular basis). Regarding climate information, ERA5 has
numerous improved characteristics compared to ERA-Interim reanalysis. It presents one of the most
updated versions of the Earth System Model and data assimilation techniques used at ECMWF, which
enables the use of more sophisticated parametrization of geophysical processes in comparison to the
previous versions used in ERA-Interim. Moreover, ERA5 has two other important features, which
are the improved temporal sampling and spatial resolution: From 6-hourly in ERA-Interim to hourly
in ERA5, and from 79 km in the horizontal dimension and 60 vertical levels to 31 km and 137 levels
in ERA5. Eight variables from ERA5 and ERA-Interim have been used to constrain LDAS-Monde,
including the lowest model level (about 10-m above ground level), air temperature, wind speed,
specific humidity and pressure, and the downwelling fluxes of shortwave and longwave radiation as
well as precipitation partitioned in the liquid and solid phases (the latter being null over the considered
domain).

At the time of this study, ERA5 is a new product and to the best of our knowledge, only three
other studies compared the performance of ERA5 and ERA-Interim. In [4], the authors assessed the
two reanalysis ERA5 and ERA-Interim using them to force the ISBA LSM over North America. Better
performances in the representation of evaporation, snow depth, soil moisture, and river discharge
estimates were observed in the simulations forced by ERA5. They were attributed by the authors
to the improved precipitation estimates. Urraca et al. [36] compared SWin estimates from ERA5
and ERA-interim at a global scale, and observed a better performance with ERA5. Finally, Beck et
al. [35] highlighted the good performance of ERA5 precipitation with respect to 26 gridded subdaily
precipitation datasets using Stage-IV gauge-radar data for the evaluation over the continental United
States of America.

2.2.3. ASCAT Soil Water Index and GEOV2 Leaf Area Index

This study uses the ASCAT Soil Water Index (SWI) product distributed by the CGLS through
its third version, i.e., SWI-001 Version 3.0. The SWI refers to the soil moisture content in relative
units between 0 (dry) and 100 (saturated). It is computed based on a recursive exponential filtering
method [52] using the backscatter observations from the ASCAT C-band radar on board MetOP
satellites [53,54]. The SWI retrieved from the exponential filter using a T-value (characteristic time
length; the higher the T-values, the smoother the SWI) of one day is used. It represents the SWI in the
top soil layer [52]. It is used in the present study as a proxy for SSM. During the period considered in
the experiment, the amount of soil moisture data increases in 2015 because the data from MetOP-B
(launched in 2012) are used in addition to those from MetOP-A (launched in 2006) (see Table 1).
Figure 1a presents the map of the average ASCAT SSM estimate for the whole January 2007–June 2018
period over the study area. For more details on the ASCAT SSM, readers are referred to [29]. Consistent
with previous studies, e.g., [55], SSM displays a typical spatial structure, which is dominated by a
strong meridional gradient (with wetter soil to the South and drier to the North). Some smaller scale
patterns also emerge, such as enhanced SSM spots along the Sourou river (13.04◦N, 3.04◦W) and
around Niono in Mali (around 14.15◦N, 5.59◦W) in the north eastern part of the domain. These are
consistent with the existing mapping of water bodies in the region (e.g., [56]) and are also probably
related to the presence of irrigated rice puddles and crops [57].
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Table 1. Yearly N points of SWI and LAI from 2007 to 2018–06.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

SWI 36,154 39,624 38,761 41,687 41,699 41,652 41,086 41,129 173,818 319,565 319,097 157,476

LAI 37,107 37,500 37,342 37,425 37,269 36,706 37,024 38,778 38,839 38,757 38,243 19,908

For the purpose of assimilating the SSM product, a rescaling of observations into model
climatology space is needed in order to avoid introducing any artificial bias in the system caused,
for example, by a possible mis-specification of physiographic parameters related to soil texture
types [54,58]. To that end, the SWI product is transformed into model-equivalent SSM (from the model
second layer of soil, 1–4 cm), based on the first two statistical moments (the mean and the variance)
through a linear transformation [59]. The relevance of performing a seasonal rescaling was emphasized
by several studies (e.g., [37,47]). In this study, the matching of SSM statistical distributions was made
on a monthly basis by using a 3-month moving window over the January 2007–June 2018 period
after screening for the presence of urban areas (>15%) and complex terrains (1500 m a.s.l.). Finally,
the SWI observations are interpolated by an arithmetic average to the 0.25◦ model grid points (from
their original 12.5 km spatial resolution).

The GEOV2 LAI observations are also distributed by the CGLS. They are retrieved from the
SPOT-VGT and PROBA-V satellite data using the methodology prescribed in [60]. The 1 km × 1 km
resolution observations are interpolated to 0.25◦ model grid points through an arithmetic average
as in [19], so that at least 75% of the grid points are observed. In terms of temporal resolution,
LAI observations are available with a 10-day frequency (at best). Figure 1b illustrates the averaged
LAI (January 2001–June 2018). As in Figure 1a, the spatial structure of LAI is dominated by a strong
meridional gradient (from lower LAI to the North to higher LAI to the South). This corresponds to
three climatic regions: The Sahel (SH), the Sudan-Sahel (SS), and the Sudan-Guinea (SG). The country’s
climate is characterized by two distinct seasons: A dry season and a rainy season (May to October)
with growing seasons varying from six (SG region) to three (SH region) months [22]. Observations are
rescaled to match the spatial resolution of the two atmospheric forcing data-sets, 0.25◦ × 0.25◦ and
0.50◦ × 0.50◦ for ERA5 and ERA-Interim, respectively

2.2.4. Evapotranspiration, Gross Primary Production, and Sun-Induced Fluorescence

Independent datasets of evapotranspiration and gross primary production (GPP) are used to
assess the quality of the LDAS-Monde reanalysis of LSVs.

Terrestrial evapotranspiration estimates are from the GLEAM (Global Land Evaporation
Amsterdam Model) v3.1. product [61]. They cover the period of 1980–2016 and are available at
a spatial resolution of 0.25◦ × 0.25◦. The GLEAM dataset is widely used for investigating both
trend and spatial variability in the terrestrial water cycle (e.g., [62–64]) as well as land atmosphere
interactions (e.g., [65,66]). In short, the model computes the terrestrial evaporation and root-zone
soil moisture [55] and is mainly driven by microwave remote sensing observations, the potential
evaporation amount being constrained by satellite-derived soil moisture.

For the evaluation of GPP, we use estimates derived from meteorological parameters through the
use of machine learning algorithms within the FLUXCOM project [67]. This set of observations can
be found at the Max Planck Institute for Biogeo-chemistry data portal (https://www.bgc-jena.mpg.
de/geodb/projects/Home.php, last access: November 2018) and is available at a 0.5◦ x 0.5◦ spatial
resolution with a monthly temporal frequency over the 1982-2013 period. In this study, GPP products
were used over the 2001–2013 time period.

We also use estimates of sun-induced fluorescence (SIF) from the GOME-2 (Global Ozone
Monitoring Experiment-2) scanning spectrometer [68,69] to evaluate GPP. Leroux et al. [43] has
shown that observations of SIF can be used as a proxy to evaluate the influence of data assimilation

https://www.bgc-jena.mpg.de/geodb/projects/Home.php
https://www.bgc-jena.mpg.de/geodb/projects/Home.php
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on simulated GPP using correlations. We use in this study the Level-3 v27 SIF product, giving a
daily-averaged SIF at 0.5◦ × 0.5◦ resolution over the 2010–2016 period.

Observations are rescaled to match the spatial resolution of the two atmospheric forcing data-sets,
0.25◦ × 0.25◦ and 0.50◦ × 0.50◦ for ERA5 and ERA-Interim, respectively.

2.3. Experimental Setup and Evaluation Strategies

In this study, we first evaluate both precipitation and SWin variables from ERA-Interim and ERA5
reanalyses against in situ measurements. Then, LDAS-Monde is driven by both ERA5 and ERA-Interim
reanalyses, with all atmospheric variables interpolated at a spatial resolution of 0.25◦ × 0.25◦ and
0.5◦ × 0.5◦, respectively. In order to drive the model to the equilibrium state, the first year (2001) is
spun-up 20 times for both the ERA5 (LDAS-ERA5 hereafter) and ERA-Interim (LDAS-ERAI hereafter)
configurations. Then, a comprehensive application of LDAS-Monde is performed using the SEKF as
well as its open-loop counterpart (model only without assimilation). It is the same framework as used
in [19]. The experiment covers the period of 2001–June 2018.

Performance metrics are used (i) to assess the ability of LDAS-Monde to represent the land
surface conditions as well as (ii) to evaluate ERA-Interim and ERA5 reanalyses. Metrics, such as the
correlation coefficient (R), mean bias, standard deviation of differences (SDD), root mean squared
differences (RMSD), unbiased RMSD (ubRMSD), and bias, are applied. A 10,000 samples bootstrapping
is used to determine the 95% confidence interval of the median from the precipitation reanalyses (see
Table 2). For the evaluation of both precipitation and SWin from ERA5 and ERA-Interim reanalyses,
the 2010–2016 period and the year of 2017 are considered, respectively.

3. Results

3.1. Evaluation of ERA5 and ERA-Interim Reanalyses

The performance of ERA5 and ERA-Interim precipitation and SWin is assessed by comparing
reanalyses with the in situ measurements described earlier.

The statistical scores for 2010–2016 daily precipitation from ERA5 and ERA-Interim with respect
to 134 gauge stations spanning all over BF are shown in Table 2. The Median R, ubRMSD, bias,
and RMSD values for the total monthly precipitation time series along with their 95% confidence
interval are 0.82 ± 0.009, 52.02 ± 1.39 mm/month, −15.00 ± 3.27 mm/month, and 56.15 ± 3.60
mm/month for ERA5, and 0.77 ± 0.010, 58.44 ± 1.42 mm/month, −19.85 ± 3.77 mm/month,
and 63.89 ± 3.25 mm/month for ERA-Interim. These results demonstrate the ability of ERA5
reanalysis to better represent precipitation variability than ERA-Interim. ERA5 performs better than
ERA-Interim for 84% of the precipitation gauging stations for R values, 89% for ubRMSD values,
83% for bias values, and 86% for RMSD values. This is also illustrated by the maps in Figure 3, where
triangle (circle) symbols indicate stations where ERA5 performs better (worse) than ERA-Interim
in terms of R (Figure 3a) and ubRMSD (Figure 2b). Overall, triangle symbols dominate the two
maps of Figure 3, which implies that ERA5 precipitation reanalyses are in better agreement with
in situ observations than ERA-Interim over BF. Precipitation from ERA-interim or ERA5 are both
closer to in situ observations in the northern (lower ubRMSD values) than in the southern part of the
domain. Overall, ERA5 performs better than ERA-Interim, likely due to an improved representation of
convective precipitation in the tropical region [70] and to the larger number of assimilated data; it is
also possibly related to its higher spatial resolution.

The statistical scores for the 2010–2016 daily mean surface SWin from ERA5 and ERA-Interim with
respect to four stations (see Figure 4) are shown in Table 2. Median R, ubRMSD, bias, and RMSD values
along with their 95% confidence interval are 0.59 ± 0.07, 36.23 ± 6.48 W/m2, 19.40 ± 32.43 W/m2,
and 42.24 ± 21.76 W/m2 for ERA5, and 0.46 ± 0.15, 41.03 ± 4.22 W/m2, 28.12 ± 29.80 W/m2,
and 50.72 ± 18.63 W/m2 for ERA-Interim.
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Table 2. Comparison of precipitation and incoming solar radiation forcing with in situ observations for ERA5 and ERA-Interim over the period of 2010–2016 (based on
monthly sum). Scores are given for significant correlations with p-values < 0.05.

Median R 1, 95% Confidence Interval 2

(% of Stations for Which This
Configuration Is the Best)

Median ubRMSD 1 on Precipitation Time
Series (in mm/month) and Incoming Solar

Radiation (in w·m−2), 95% Confidence
Interval 2 (% of Stations for Which This

Configuration is the Best)

Median Bias 1 on Precipitation Time Series
(in mm/month) and Incoming Solar

Radiation (in w·m−2), 95% Confidence
Interval 2 (% of Stations for Which This

Configuration is Better)

Median RMSD 1 on Precipitation Time
Series (in mm/month) and Incoming Solar

Radiation (in w·m−2), 95% Confidence
Interval 2 (% of Stations for Which This

Configuration is Better)

ERA5
(precipitation) 0.82 ± 0.009 (84%) 52.02 ± 1.39 (89%) −15.00 ± 3.27 (83%) 56.15 ± 3.60 (86%)

ERA-Interim
(precipitation) 0.77 ± 0.010 (16%) 58.44 ± 1.42 (11%) −19.85 ± 3.77 (17%) 63.89 ± 3.25 (14%)

ERA5
(incoming solar radiation) 0.59 ± 0.07 (100%) 36.23 ± 6.48 (100%) 19.40 ± 32.43 (100%) 42.24 ± 21.76 (100%)

ERAI
(incoming solar radiation) 0.46 ± 0.15 (0%) 41.03 ± 4.22 (0%) 28.12 ± 29.80 (0%) 50.72 ± 18.63 (0%)

1 Only for stations presenting significant R values on precipitation time series (p-value < 0.05): 134 stations; 2 95% confidence interval of the median derived from a 10,000
sample bootstrapping.
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Figure 4 shows maps of R and ubRMSD values between ERA5 daily mean surface SWin and in
situ measurements at four stations (Figure 4a,b) as well as their differences against R and ubRMSD
values from ERA-Interim (Figure 4c,d) over 2017. From Figure 4, one can clearly observe higher
correlations and lower ubRMSD values for ERA5 compared to ERA-Interim for the considered four
stations. This is consistent with the observed positive correlation differences (ERA5—ERA-Interim,
Figure 4c) and negative ubRMSD differences (ERA5—ERA-Interim, Figure 4d). Figure 4 shows the
2017 time series of the daily SWin for ERA-Interim (blue), ERA5 (green), and the in situ observations
(red) for Bobo (Figure 5a; 11.16◦N, 4.30◦W) and Dori (Figure 5b; 14.03◦N, 0.03◦W) stations belonging to
the SG and SS zones, respectively. At these subtropical sites, the temporal structure of the annual cycle
of SWin is strongly shaped by the top-of-the atmosphere incoming radiation, which drives the two
well defined maxima of SWin [71,72]. At Bobo, they occur in April and October while further North
in Dori, the second maximum is less pronounced. Both reanalyses broadly capture these features,
even though they tend to overestimate SWin (in particular during the monsoon, when clouds induce
sharp drops which can reach more than 100 W/m2)—a similar bias also noted by [73] at the relatively
close Sahelian site of Niamey. However, this bias is slightly reduced in ERA5. This implies that ERA5
performs better in representing SWin variations than ERA-Interim over BF. This better performance of
ERA5 is also probably related to the implementation of an improved radiation scheme (see [74] for
more details).
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3.2. LDAS-Monde Impact

3.2.1. Model Sensitivity to the Observations

The Jacobians are governed by the physics of the model and their examination is crucial to
understand the data assimilation system performances [19,40,41,75]. Mean Jacobians values over
January 2010 to June 2018 for the whole domain of Burkina-Faso are presented in Table 3.

Table 3. Mean Jacobians values for the eight control variables considered in this study over the whole
spatial domain for January 2001 to June 2018.

January 2001
to June 2018

δSSM
δLAI

1–4 cm

δSSM
δw3

4–10 cm

δSSM
δw4

10–20 cm

δSSM
δw5

20–40 cm

δSSM
δw6

40–60 cm

δSSM
δw7

60–80 cm

δSSM
δw8

80–100
cm

Mean –0.0006 0.5372 0.2033 0.0818 0.0441 0.0142 0.0049 0.0020

δLAI
δLAI

δLAI
δw2

1–4 cm

δLAI
δw3

4–10 cm

δLAI
δw4

10–20 cm

δLAI
δw5

20–40 cm

δLAI
δw6

40–60 cm

δLAI
δw7

60–80 cm

δLAI
δw8

80–100
cm

Mean 0.2578 0.0134 0.0223 0.0432 0.0911 0.0522 0.0318 0.0188

The top row of Table 3 represents the impact of perturbating individually each control variable of
LDAS-Monde (LAI, soil moisture from layers 2 to 8), by a (positive) small amount at the beginning
of an assimilation window, on the model equivalent of SSM at the end of the assimilation window
(i.e., 24 hours later). As the model equivalent of SSM is the second layer of soil (W2 between 1 and
4 cm depth), it is expected that the sensitivity of SSM to changes in soil moisture of that layer ( δSSM

δw2
)

will be higher compared to those of the other layers of soil ( δSSM
δw3

to δSSM
δw8

). As seen in Table 3, the mean
Jacobian value is clearly higher for W2 than for any other layers. The model sensitivity to SSM decreases
with depth, suggesting that the assimilation of SSM will be more effective in modifying soil moisture
from the first layers than the deeper layers. Over Burkina-Faso, mean Jacobian values with respect to
SSM observations (Table 3, top rows) range from 0.5372 to 0.0020 for layers, w2 to w8, respectively and
is –0.0006 for LAI ( δSSM

δLAI ). This negative value indicates that a small positive increments of LAI will
generally lead to a decrease of SSM (w2).

Table 3, bottom row, shows the same for LAI: The sensitivity of LAI to changes in LAI ( δLAI
δLAI )

and in soil moisture ( δLAI
δw2

to δLAI
δw8

), from left to right, respectively. The sensitivity of LAI and in
soil moisture suggests that the control variables related to soil moisture will also be impacted by
the assimilation of LAI. Table 3 also illustrates that the assimilation of LAI will be more effective in
modifying soil moisture from layers 4 to 6 than from the surface layers.

Figure 6 illustrates the seasonal cycles of the Jacobians averaged over January 2001 to June 2018.
For sake of clarity, only δLAI

δLAI , δSSM
δLAI , δSSM

δw4
, δSSM

δw6
, and δSSM

δw8
are presented. Looking at the SSM Jacobians,

the depth impact already highlighted by Table 3 is visible (i.e., less sensitivity to surface soil moisture
at deeper layers than at upper layers). From Figure 6, a seasonal impact is also visible, δSSM

δLAI are
higher in winter months than in summer months, suggesting that LDAS-Monde will be more efficient
at assimilating SSM during winter months. Similarly, from δLAI

δLAI , one may notice a dual seasonal
cycle; LDAS-Monde will be more efficient at assimilating LAI during April to June, and October
to November.

It is worth mentioning that the configuration where ERA5 is used to force LDAS-Monde was
considered to present the Jacobians evaluation. Using the ERA-Interim configuration leads to similar
results (not shown).
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3.2.2. Assimilation Impact on LAI and Soil Moisture

In order to obtain the land surface analysis, satellite derived observations are combined with
the model simulations through the above-mentioned data assimilation technique. In doing that,
the resulting analysis is expected to be closer to the assimilated observations (LAI and SSM) than the
open-loop (i.e., model with no assimilation). The largest impact is observed for LAI. Figure 7 shows
maps of the monthly average values of precipitation from ERA5 as well as LAI from the LDAS-ERA5
openloop, the observations, LDAS-ERA5 analysis, and the difference between the analysis and the
openloop. Observations indicate a sharp jump of LAI in April, very likely in response to the increase
of soil moisture availability due to the start of the rainy season. However, an increase in LAI is also
observed earlier in the SG region (southern part of the domain) from February to May; i.e., before the
first rains. Interestingly, this peculiar behaviour would be consistent with findings from in situ studies
from [76–78], which point to some tree species that put on leaves before the first rains of the season.
This functioning does not appear to be linked to soil moisture [79]. It could involve rises of the air
temperature or humidity, though the precise mechanisms at play are still unknown. In any case, this
process is not represented in the ISBA LSM, leading to a temporal shift of two to three months in the
leaf onset and an underestimation of the observed LAI.

Figure 7 also shows little impact of the assimilation on the estimated LAI where observations
are below 0.4 m2·m−2. This is due to a limitation of the ISBA LSM. As mentioned in Section 2.1.1,
a minimum LAI threshold is prescribed to 0.3 m2·m−2 for every vegetation type (except coniferous
forests) in ISBA. To satisfy that threshold, we force the SEKF to reset every LAI estimate below
0.3 m2·m−2 to that value, thus limiting the impact of assimilation.

The analysis is efficient at compensating for these two model caveats, as shown in Figures 7
and 8. This is also clear in Figure 9, which shows the LDAS-ERA5 configuration LAI monthly mean
time series averaged values over the whole domain for January 2001 to June 2018. Observations
indicate interannual fluctuations in the yearly maximum of LAI, with, for instance, higher values
in 2003, 2010, and 2012 and lower values in 2002, 2011, and 2017 (consistent with [80,81]). Beyond
differences in the structure of their annual cycles, the model and the analysis both capture part of this
interannual variability.
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Figure 8 presents similar maps for the following months, from July to December. While the model
underestimates LAI in spring, it significantly overestimates the LAI in November, after the demise of
the rainy season.

The improved annual cycle of LAI provided by the analysis is associated with a higher correlation
and a positive impact on the SDD, Bias, and RMSD scores over the study region in all months (as seen
on Figure 10). It is also visible that the analyses add skill to both configurations, LDAS-ERA5 and
LDAS-ERAI, which indicates the healthy behavior from the land data assimilation system.

Considering now the three climatic regions of BF, it appears that the correlation between the
analyzed and observed LAI is lower during the rainy season in the SG region while it is higher in the
SS and SH regions (Figure 11b for the LDAS-ERA5 configuration). This reduction of R values in the
analysis during the rainy season in the SG region could be related to a decrease in the number of the
observed LAI linked to cloud cover (see Table 4). Overall, the assimilation corrects the model seasonal
responses by increasing the LAI during the rainy season and decreasing the LAI after the rainy season,
especially in the Sudanian region (SS and SG regions).
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considering the three climatic regions (SH, SS, and SG) over January 2001 to June 2018 for the
LDAS-ERA5 configuration.

Analysis increments for the LAI and for soil moisture from the LDAS-ERA5 configuration in (i)
the second layer of soil (w2, between 1 and 4 cm), (ii) the fourth layer (w4, between 10 and 20 cm),
and (iii) the sixth layer (w6, between 40 and 60 cm) are averaged for the period of January 2001 to June
2018. They are presented in Figure 12. Overall, the analysis removes the LAI in the central part (SS)
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of the domain. However, small spots of increases are noticeable in both the south-western (SG) and
north-eastern part (SS) of the domain. Regarding the w2 soil moisture values, the analysis adds water
in some parts of the domain (SH, SG, and the eastern part of SS) and removes water in the central part.
For w4 and w6, i.e., for deeper soil layers, the impact is less pronounced (in agreement with the above
mentioned study of the Jacobians), but a perceptible north-eastward oriented drying is still observed.
It is worth mentioning that the dark blue point in the north-western part of Figure 12a (positive
LAI increments) around Mopti in Mali corresponds to the Niger inner delta, including wetlands and
irrigated areas. Irrigation is not accounted for in the version of ISBA used in this study and the analysis
tends to compensate for this model weakness. This area is also visible in the map of the observed
LAI (Figure 1b). While Figure 12 illustrates analysis increments for the LDAS-ERA5 configuration,
the LDAS-ERAI one follows the same description (not shown).

Table 4. Seasonal number of LAI values (N) from 1 January 2001 to 30 June 2018 for the
LDAS-ERA5 configuration.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

BF 59,724 59,723 59,724 59,715 58,914 53,840 48,140 48,006 46,022 54,265 56,406 56,406

SH 18,684 18,683 18,684 18,679 18,674 18,678 17,638 17,644 17,646 17,646 17,646 17,646

SS 19,440 19,440 19,440 19,440 19,440 19,440 18,334 18,357 18,319 18,360 18,360 18,360

SD 21,600 21,600 21,600 21,596 20,800 15,722 12,168 12,005 10,057 18,259 20,400 20,400Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 26 
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illustrated: (a) leaf area index and soil moisture in (b) the second (WG2, 1–4 cm), (c) fourth (WG4, 10–
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Figure 12. Averaged analysis increments for January 2001 to June 2018. Four control variables are
illustrated: (a) leaf area index and soil moisture in (b) the second (WG2, 1–4 cm), (c) fourth (WG4,
10–20 cm), and (d) sixth (WG6, 40–60 cm) layer of soil for the LDAS-ERA5 configuration.
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As mentioned above, the impact of assimilation on SSM is relatively weaker than on LAI. This can
be seen, for instance, in Figure 13a, which shows the correlation values between SSM from the openloop
and the analysis (for both LDAS-ERA5 and LDAS-ERAI configurations) and the SSM estimates from
CGLS. Note that the seasonality effect has been removed through the use of the anomaly time series in
order to assess the shorter-term variability of soil moisture. Figure 13a indicates a positive impact of
the assimilation especially from January to May and from October to December regarding the model,
emphasizing the improvement in SSM values. The impact of the assimilation on the representation of
the shorter-term soil moisture variability is further presented using maps of the anomaly correlations
between soil moisture before and after assimilation against ASCAT SSM estimates (Figure 13b,c);
as well as using their correlation differences (Figure 13d) for the LDAS-ERA5 configuration. It is
evident from Figure 13b,c that the analysis improves soil moisture simulations over the whole domain
with a more pronounced impact over the Sudanian region, i.e., SH and SG (Figure 13c). Looking at the
correlation differences based on the anomaly time series (Figure 13d), it is evident that positive values
dominate, especially in the SH and SS regions, along with a rather neutral effect in the southern part of
the domain.
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Figure 13. Seasonal correlations for (a) anomaly time series between SSM estimates from the CGLS
project and SSM from the second layer of soil of ISBA LSM (in blue) and the assimilation (in red) over
the period of 2007–06/2018 for both the LDAS-ERA5 and LDAS-ERAI configurations. (b,c) Maps of
the anomaly correlation between SSM of the model, the analysis, and the SSM estimates from CGLS,
respectively, (d) map of the correlation differences. (a–c) are for the LDAS-ERA5 configuration.

3.2.3. Evaluation Using Independent Datasets

For evapotranspiration and GPP, seasonal scores (RMSD and R values in Figure 14) are computed
for the model and for the analysis in both the LDAS-ERA5 and LDAS-ERAI configurations. Only
vegetated grid points (>90%) are considered. After the joint assimilation of SSM and LAI, a small
positive impact on evapotranspiration is observed for the correlations, as found in [40], and it is
interesting to note a small degradation of the RMSD values in the second part of the year (August
to December). However, there is a clear improvement in GPP in terms of the RMSD and R scores,
especially from January to August (Figure 14c,d). While the impact on R values of the analysis is
equally distributed over the domain for both evapotranspiration and GPP, a larger (positive) impact
on RMSD values is found on the southern part of the domain (not shown). This is in agreement with
the analysis impact on LAI described above. LDAS-ERA5 generally performs better than LDAS-ERAI
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for both the openloop and the analysis. It is particularly true when considering RMSD values for
evapotranspiration (Figure 14a).
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Figure 14. Seasonal evapotranspiration (a,b) and gross primary production (GPP) (c,d) scores when
compared to the observations over January 2001 to June 2018.

Figure 14a indicates, however, the degradation of the evapotranspitation estimation by
LDAS-ERA5 and LDAS-ERAI when compared to the GLEAM dataset. It is worth noting that the
GLEAM dataset is not a direct remotely sensed observation, but rather a remote sensing-based
evaporation retrieved model with its own uncertainties. For instance, Pagán et al. (2018) [82] have
recently assessed the potential of satellite observations of solar-induced chlorophyll fluorescence
(SIF), normalized by photosynthetically-active radiation (PAR), to diagnose the ratio of transpiration
to potential evaporation (“transpiration efficiency”) from several state of the art models, including
SURFEX and GLEAM. They obtained better results with SURFEX than with GLEAM, in particular
during the vegetation decaying phase.

Looking at the seasonal time series of the analysis increments (Figure 15 for the LDAS-ERA5
configuration), it is very interesting to notice that the degradation from the analysis over the open-loop
(from August in both the LDAS-ERA5 and LDAS-ERAI configuration) corresponds to a sign inversion
in the LAI increments (from positive to negative) as well as a sharp positive increase in soil moisture
increments (analysis increments of soil moisture from the second (WG2) and fourth (WG4) layer of soil
are presented). This situation in the vegetation decaying period seems conflictual and may suggest
a lack of consistency between the two observation types (LAI and SSM), leading to the observed
degradation in RMSD values.
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Figure 15. Seasonal evolution of LDAS-ERA5 analysis increments averaged over January 2001 to June
2018 for three control variables: LAI, and soil moisture from the second (WG2) and fourth (WG4) layer
of soil.

For SIF, seasonal scores (R values in Figure 16) comparing the observed SIF and simulated GPP
for vegetated grid points are computed for model and analysis estimates in both the LDAS-ERA5 and
LDAS-ERAI configurations. A positive impact of DA on R can be seen from January to August with
an averaged improvement of 0.1 on R for both configurations. For the rest of the year, the impact is
rather neutral. Using ERA5 or ERA-Interim as atmospheric forcing does not have much influence
on R. This was also the case for FLUXCOM GPP in Figure 14. This is due to a diminished impact
of atmospheric forcing on the modelled GPP. The positive impact is of the same scale for the three
agroclimatic areas covering BF (not shown). This is consistent with what was observed for correlations
between simulated GPP and the FLUXCOM dataset.
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4. Discussion and Conclusions

This study focused on the capability of LDAS-Monde to provide an improved reanalysis of land
surface conditions through the joint assimilation of satellite-derived soil moisture and vegetation
products over Burkina-Faso in western Africa. The LDAS-Monde offline system was forced by both
ERA5 new atmospheric reanalysis and ERA-Interim former atmospheric reanalysis, leading to a
0.25◦ × 0.25◦ and a 0.5◦ × 0.5◦ degree spatial resolution reanalyses. The quality of ERA5 with respect
to the former ERA-Interim reanalysis was evaluated using (i) in situ measurements of precipitation
and incoming solar radiation (Swin) as well as (ii) the output of LDAS-Monde. The comparison of the
two atmospheric forcing yields two key results: ERA5 provides substantial improvements compared to
ERA-interim for precipitation (over 2010–2016), and also for the SWin variable (over 2017). Using ERA5
and ERA-Interim to force the ISBA LSM (open-loop) provides a good model first guess, e.g., on the LAI
variable with an advantage to ERA5. However, comparing the open-loop with the observed LAI has
highlighted the missing processes in the representation of vegetation phenology. The assimilation is
able to improve the simulation of both SSM and LAI when using either ERA5 or ERA-Interim, showing
that the analyses add skill to both configurations and indicating the healthy behavior of LDAS-Monde.
From the analysis, important improvements in the representation of the LAI, SWI, and GPP variables
were obtained with better scores for the analysis than for the model equivalent (open-loop simulation).
In particular, the LAI analysis is very good at compensating for caveats, such as the model’s failure in
capturing leaf onset prior to the first rains for particular plant species.

The LAI representation could be enhanced even more using more efficient observation and
assimilation systems. For example, one single LAI observation was used within a grid cell for
all types of vegetation to perform the assimilation, making the Kalman gain and the increment
disaggregation rely on the vegetation type as in [37]. This procedure could be improved by performing
the assimilation using disaggregated values of LAI for each individual vegetation type. Such a LAI
disaggregation method was recently proposed by [83]. Munier et al. [83] produced disaggregated
global LAI maps available every 10 days for each vegetation type available from ECOCLIMAP-II over
1999–2015. Assimilating the disaggregated LAI could impact the analyzed LAI and other vegetation
related variables, mainly evapotranspiration and GPP as emphasized in [83]. Also, LDAS-Monde
analyses for the SSM variable could be improved by implementing an observation operator for the
ASCAT radar (backscatter coefficients), instead of assimilating a retrieved soil moisture product. This
would allow a direct assimilation of level 1 data and the use of all the information contained in these
observations [84]. Based on these preliminary results, future work should focus on the use of ERA5 and
on the improvement of LDAS-Monde through the direct assimilation of satellite-based soil moisture
and vegetation characteristics from remote sensing. This could lead to possible applications, such
as monitoring LSVs related to hydrometeorological and agrometeorological variables as well as the
development of forecasting systems based on analyzed initial conditions. The ERA5 reanalysis is
not only one high resolution atmospheric reanalysis (31 km), but also an ensemble reanalysis using
10 members available at 3-hourly intervals at a lower resolution (62 km). This ensemble not only
provides a reanalysis, but also information on the uncertainty of the atmospheric reanalysis. Using
this ensemble together with the whole available period (1979–present) would provide a long-term
ensemble of LSV reanalyses driven by high quality meteorological data. This would help in quantifying
the uncertainties in the description of land surface variables. LDAS-Monde could also be forced by
ECMWF Integrated Forecasting System High Resolution operational analysis (~ 0.1◦ × 0.1◦ spatial
resolution). In addition to its higher spatial resolution, it offers the possibility to monitor and forecast
LSVs, as shown in [85]. Our results over Burkina-Faso are very promising and pave the way toward
large-scale long-term reanalyses of the land surface conditions in Western Africa.
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