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Abstract: Soil salinization is a global issue resulting in soil degradation, arable land loss and ecological
environmental deterioration. Over the decades, multispectral and hyperspectral remote sensing
have enabled efficient and cost-effective monitoring of salt-affected soils. However, the potential
of hyperspectral sensors installed on an unmanned aerial vehicle (UAV) to estimate and map soil
salinity has not been thoroughly explored. This study quantitatively characterized and estimated
field-scale soil salinity using an electromagnetic induction (EMI) equipment and a hyperspectral
camera installed on a UAV platform. In addition, 30 soil samples (0~20 cm) were collected in each
field for the lab measurements of electrical conductivity. First, the apparent electrical conductivity
(ECa) values measured by EMI were calibrated using the lab measured electrical conductivity derived
from soil samples based on empirical line method. Second, the soil salinity was quantitatively
estimated using the random forest (RF) regression method based on the reflectance factors of UAV
hyperspectral images and satellite multispectral data. The performance of models was assessed by
Lin’s concordance coefficient (CC), ratio of performance to deviation (RPD), and root mean square
error (RMSE). Finally, the soil salinity of three study fields with different land cover were mapped.
The results showed that bare land (field A) exhibited the most severe salinity, followed by dense
vegetation area (field C) and sparse vegetation area (field B). The predictive models using UAV data
outperformed those derived from GF-2 data with lower RMSE, higher CC and RPD values, and the
most accurate UAV-derived model was developed using 62 hyperspectral bands of the image of the
field A with the RMSE, CC, and RPD values of 1.40 dS m−1, 0.94, and 2.98, respectively. Our results
indicated that UAV-borne hyperspectral imager is a useful tool for field-scale soil salinity monitoring
and mapping. With the help of the EMI technique, quantitative estimation of surface soil salinity is
critical to decision-making in arid land management and saline soil reclamation.
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1. Introduction

Salt-affected soils are widespread across the world, especially in arid and semi-arid regions [1].
Approximately 20% of irrigated agriculture land worldwide is affected by salinization [2], which
results in soil degradation, arable lands loss and ecological environmental deterioration. Thus, it is of
great significance to regularly monitor and map salt-affected areas to provide sufficient information
for land informed management and salinized soil reclamation.

Conventional methods to quantitatively determine soil salinity were conducted through the
measurement of the electrical conductivity (EC) of soil solution extracts or extracts at higher than
normal water contents [3–5]. Because it was impractical to extract soil water from samples at typical
field water contents, EC of the saturation extract made at 1:1, 1:2, and 1:5 soil:water ratios, noted as
EC1:1, EC1:2, and EC1:5 , respectively, were generally used to estimate soil salinity. However, the use of
such a traditional approach required a great deal of time and funding, usually leading to low efficiency
and high cost for soil salinity characterization.

In the late 1970s, researchers in the U.S. first applied the theory of EMI technique to measure the
apparent electrical conductivity (ECa) for field-scale soil salinity mapping [6]. Soil properties such
as soil salinity, soil moisture, clay content, and temperature are the dominant factors that influence
ECa [7]. By assuming relative homogeneity in other soil properties or having prior knowledge of them,
the measurement of ECa using EMI has been used extensively to noninvasively characterize and map
soil salinity [8]. In order to develop relationship between ECa with EC of the saturation extract, various
conversion methods have been proposed [9]. Although much research has investigated and compared
non-linear transformations, linear calibration methods were proved to be sufficiently accurate [10].
With the advantage of rapidly acquiring abundant ECa data, the EMI technique was available to aid
the spatial prediction of soil salinity with limited soil samples.

Remote sensing has gained popularity for delineating saline soils over the last two decades
as a rapid, non-destructive and cost-effective method [11–13]. Researchers have found that saline
soils present distinctive morphological features at the soil surface and spectral characteristics from
non-saline soils, with an overall higher reflectance in the visible and near-infrared parts of the
spectrum [14,15]. Previously, researchers used various multispectral data acquired from satellite-borne
sensors in combination with field measurement to differentiate saline and non-saline soils before
mapping salt-affected regions [16–18]. In 1994, Verma et al. [19] conducted an integrated approach
of visual interpretation method to map salt-affected soils using Landsat TM satellite images. In 2002,
Dehaan and Taylor [20] developed spectral unmixing techniques to derive indicators for characterizing
and mapping soil salinity in the Murray-Darling Basin, Australia. With the occurrence of hyperspectral
technique, remote sensing enabled detailed analysis of the spectral characteristics of the land surface
with a large amount of narrow and contiguous wavelength bands. Soil salinity research has progressed
from qualitative classification to quantitative estimation [21–23]. For example, various absorption
bands have been used for quantifying salt minerals [24–27]. Farifteh et al. [28] in 2007 estimated salt
concentrations in soils based on laboratory data, field measured spectral reflectance and hyperspectral
images, and recommended that the useful spectral bands for salinity estimation were in the near
infrared (NIR) and SWIR regions. In 2014, Pang et al. [29] improved the prediction accuracy for soil
salt content based on the genetic algorithm method, using hyperspectral remote sensing data acquired
in Minqin County, China.

However, the quality of satellite-borne and air-borne remote sensing images can easily be confined
to bad weather and unfavorable revisit times. Also, the lack of imagery with optimum spatial and
spectral resolutions was a critical limitation for real-time crop management using current satellite
sensors [30]. The introduction of UAV provided an easy and cost-efficient approach for soil salinity
monitoring, as UAV-borne hyperspectral sensors not only acquired images with ultra-high spatial
resolution but were also convenient to operate freely in proper conditions. The sensors on board
included digital camera, multispectral camera, hyperspectral imager and Light Detection and Ranging
equipment (LiDAR) [31]. Although UAV has been widely used, applications were mainly focused
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on crops or forest mapping and vegetation feature extraction [32–34]. Studies using UAV images for
soil salinity detection and mapping were still rare. Ivushkin et al. [35] have tried combining a WIRIS
thermal camera, a Rikola hyperspectral camera and a Riegl VUX-SYS LiDAR scanner to measure salt
stress in quinoa plants, and they found UAV-borne remote sensing to be a useful technique for salt
stress measurements. Romero-Trigueros et al. [36] concluded that the red and near-infrared bands
were critical to assess the saline stress Citrus suffered from. However, no existing literature has
discussed the potential of synthesizing UAV-borne hyperspectral data and EMI measurements for soil
salinity estimation.

Our research aimed to (i) evaluate the potential for quantitative estimation of soil salinity and
its spatial distribution at field-scale, using a UAV-borne hyperspectral imager (0.50–0.89 µm) and (ii)
compare these to the predictions of soil salinity from GF-2, a multispectral satellite remote sensor
(0.45–0.89 µm). In both cases, random forest (RF) regression was used to relate spectral information
to soil salinity contents. Meanwhile, a fairly large number of soil samples and spatially dense EMI
measurements were available to provide the electrical conductivity data taken as the dependent
variable of the RF models for quantitative estimation of field-scale soil salinity.

2. Materials and Methods

2.1. Study Area

The study site was located in the center of Aksu (79◦39′~82◦01′E, 39◦30′~41◦27′N), western
Xinjiang, China. It included three fields with variable vegetation cover (A: bare land with no vegetation
cover; B: sparse vegetation cover; C: dense vegetation cover); each covered about 1 ha (100× 100 m) in
area (Figure 1). The region was close to Taklimakan, the biggest desert in China, with a low average
annual rainfall of 67 mm and a high average annual evaporation of 2110 mm. The average annual
temperature varied from 9.9 ◦C to 11.5 ◦C. The soil type was Typic Aridi-Orthic Halosols in Chinese
soil taxonomy. The average pH values of soil samples collected in the study areas were 8.7, 8.4 and
9.1 for fields A, B, and C, respectively. The dominant species in the study areas were halophytes,
belonging to the family of Chenopodiaceae and Tamaricaceae. To be specific, the typical halophytes
presented in the field B was Tamarix ramosissima, and the ones presented in the field C were Halostachys
belangeriana and Halocnemum strobilaceum [37].

Due to the extremely arid local climate, intense evapotranspiration and relatively high ground
water level, salt in the profile tends to accumulate on the surface soil, resulting in visible salt crust and
salt crystals in UAV images (Figure 1a–c). The salts were mainly of sulphates in chemical composition.

2.2. EMI Measurements

The field measurement of EMI was carried out in late October of 2017. In each field, the ECa data
were measured along crisscrossed grid lines with an interval size of 20 m using an EM38-MK2 (Geonics
Ltd., Mississauga, Ontario, Canada) instrument in both vertical (ECav, mS m−1) and horizontal (ECah,
mS m−1) dipole modes with measuring depths of approximately 1.5 m and 0.75 m [7]. A built-in Global
Positioning System (GPS) was used to record spatial information. The EM38-MK2 had a measuring
range of 0~1000 mS m−1, its measurement accuracy was ±0.1%, the working frequency was 14.5 KHz,
and the working temperature ranged from −30 to 50 ◦C. It weighed approximately 5.4 kg, containing
two receiver coils spaced at 0.5 m and 1 m from the transmitter coil.
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Figure 1. Location of study area and electromagnetic induction (EMI) measurements in fields A (a), B
(b), and C (c) within the Xinjiang Autonomous Region.

The EM38-MK2 measured ECa by first inducing an electrical current in the soil. Then, a fraction of
the secondary induced electromagnetic field from each loop was intercepted by the receiver. Finally, the
sum of these signals was formed into an output voltage which is linearly related to a depth-weighted
soil ECa [7]. In this case, the EM38-MK2 sensor was carried out in auto-collecting mode through
the fields by an operator on foot. It took about an hour to survey a field with the EMI, there was
no significant temperature change during the surveys. Compared with other EM38 devices, the
EM38-MK2 we used implemented the temperature-compensation circuitry to avoid thermal drift as a
consequence of internal temperature influence [38], hence temperature correction on the EMI sensor
signal could be waived. For each site more than 2000 points have been collected via EMI, however,
when the EMI measurements were conducted in auto-collecting mode, inevitably there were some
densely clustered points within a very small region when the operator stopped to avoid the road
bumps or stones. After removing those densely clustered points, there were 1500 points for each site.
We later converted their ECa values to EC1:5 using empirical line method.

2.3. Soil Sampling and Laboratory Measurement

In the same days as the EMI data were obtained in auto-collecting mode, 30 sample points were
chosen on the EMI measurement lines in each field. When selecting sample points, we tried to cover
the different values of ECa measurements, including high, medium, and low values in each field [5].
First, the ECa of every sample point was measured via handheld EM38-MK2. Then, a total of 90 soil
samples of the chosen points were collected to the depths of 0~0.20 m. Soil sampling for each site was
conducted within one day. After that, soil samples were transferred to laboratory, air-dried, crushed
and sieved to 1 mm size. Finally, the leachate was extracted from the suspension to measure the EC1:5

using a LeiCi DDS-307 (ShengKe, Shanghai, China) conductivity meter [39].
The EC values of the EM38-MK2 measurement points were predicted from linear regression

relationship [39]. Empirical linear regression was established between the ECa and EC1:5 of the
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30 sampling points for each field. Such method derived the coefficients needed to fit original EMI
measurements and then converted all the 1500 ECa values to EC1:5.

2.4. Remote Sensing Data Processing

A frame-based hyperspectral camera (Rikola Ltd., Oulu, Finland) was loaded on the UAV platform.
The camera had 62 spectral bands in the visible-near infrared (Vis-NIR) region with a spectral resolution
of approximately 10 nm. The narrow bands could provide sufficient data for salinity prediction, but
the camera we used did not capture data in the shortwave wavelength region less than 0.50 µm. The
UAV-borne hyperspectral images of fields B, C, and A were collected on 27, 29, and 30 October, 2017.
The ground pixel size was 0.1 m with the flying height of approximately 154 m. The camera weighed
approximately 720 g and had a maximum image size of 1010× 1010 pixels. The image field of view
(FOV) was 36.5◦, which was suitable for field-scale to regional-scale investigations.

Hyperspectral Imager 2.0 software (Rikola Ltd., Oulu, Finland) could help users of the UAV-borne
Rikola hyperspectral sensor carry out sensor parameter settings, real-time imaging, image quality
evaluation, and image preprocessing such as dark current correction. The dark current correction was
carried out using a dark current measurement taken before the flight by covering the lens, and the raw
images were converted to at-sensor-radiance images after the dark current correction [35]. The radiance
images were then transformed into reflectance factor images through empirical line method using the
measurement of the reference panel taken before each UAV flight [40]. Due to intrinsic characteristics
of the Fabry–Pérot interferometer (FPI) technology, the UAV images on different wavelengths were
captured at different times, thus band-to-band alignment was performed to correct the difference
between the extents of each wavelength. Thereafter, the reflectance factor images were coordinated
after orthorectification and georeferencing.

In addition, the GF-2 images were acquired on 27 October, 2017. The Chinese GF-2 environmental
satellite was launched on 19 August, 2014. Each image consists of 5 spectral bands, and the spatial
resolution is relatively high among environmental satellite data. Radiometric calibrations were applied,
and the raw GF-2 images were converted to radiance images using the absolute calibration coefficients
provided by the China Centre for Resources Satellite Data and Application (CRESDA). The atmospheric
correction was carried out using the Fast Lin-of-Site Atmospheric Analysis of Spectral Hypercubes
(FLAASH) [41] algorithm and the GF-2 spectral response function provided by CRESDA. Details on
the remote sensing sensors and platforms were given in Table 1.

Table 1. Remote sensing sensors used for detection and mapping of soil salinity. UAV: unmanned
aerial vehicle; NIR: near infrared.

Sensor No. of Bands Spectral Range (µm) Spatial Resolution Platform

Hyperspectral Imager 62 Visible and NIR 0.1 m UAV
B1~62: 0.50–0.89 (flight height: 154 m)

GF-2 5 Visible and NIR 1 m (Panchromatic)/
4 m (Multispectral) Satellite

Band1: 0.45–0.52 (Blue)
Band2: 0.52–0.59 (Green)
Band3: 0.63–0.69 (Red)
Band4: 0.77–0.89 (NIR)

Panchromatic: 0.45–0.90

The ultra-high spatial resolution of UAV images may bring noises such as shadows into
quantitative estimation of soil properties. Additionally, the scale differences between the EMI sampling
interval and the spatial resolution of UAV data attributed to the poor prediction results of the
models derived from original UAV data. In our case, the spatial distance between two adjacent
EMI measurements was approximately 1 m, while the spatial resolution of the original UAV data was
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0.1 m. We have tried a series of grid sizes, and the model got relatively more accurate predictions
when using spatial resampled UAV data with resampling size of 1 m.

To make comparison between UAV-borne and satellite-borne data, this research used three
data sets for building RF regression models; 1) the hyperspectral UAV data set which was spatially
resampled to 1 m spatial resolution from the original images, 2) the multispectral GF-2 data set and 3)
the multispectral UAV data set produced from spectral resampling of the hyperspectral UAV data set.
The spectral resampling was undertaken by turning narrow bands into broad bands similar to that of
the GF-2 data, the GF-2’s spectral response function was used in the process.

Matrices of the input variables of the RF method was made by combining the EC1:5 data (n = 1500)
with the reflectance factors of spectral data. For each point of the EC1:5 samples, the reflectance factors of
hyperspectral or multispectral bands were extracted according to their spatial location. The data rows
of each matrices were later split into a training set and a validation set following the ratio of 2:1 [42].
The training set was used to build the prediction model of each field by tuning model parameters
(in this case, the number of trees in the forest and the number of randomly selected independent
variables at each mode), and the validation set was used to evaluate the model’s robustness and
prediction accuracy.

2.5. Soil Salinity Prediction Using RF

Random forest (RF) was an ensemble learning method proposed by Ho in 1998, then developed
by Breiman and Cutler [43–45]. Due to its high accuracy, the novel method of determining variable
importance and the ability to model complex interactions among predictor variables, RF has been
increasingly used for classification and regression in recent years [46–48]. In this study, the RF
regression method was used to develop the soil salinity prediction models due to its proved robustness
and efficiency when dealing with abundant variables.

RF regression was operated by constructing a multitude of single regression trees and outputting
the mean prediction of the individual trees, it predicted the dependent variable (the soil salinity) from
a set of independent variables (the reflectance factors of 62 UAV-derived hyperspectral bands or 4
satellite-derived multispectral bands). Each regression tree was independently constructed using a
bootstrap sample of the training data set (the 1000 EC1:5 samples which were used to build the model).
Then, for each independent variable, the data were split at several split points. The sum of squared
error (SSE) at each split point between the predicted EC1:5 and the actual EC1:5 was calculated, and the
variable resulting in the minimum SSE was selected for the node splitting. This process was recursively
continued until the entire data set was covered. In our case, RF regression was operated using the
package ‘randomForest’ [49] within R environment software [50].

RF required no assumption of the probability distribution of the target predictors as with linear
regression [51]. Moreover, the variable importance analysis of RF was a useful tool to describe the
significance of any variable in the model. In carrying out the procedure, first, the mean square error
(MSE) on the out-of-bag (OOB) portion of the data (the EC1:5 samples which were left out when
constructing a regression tree using the bootstrap sampling) was calculated in the whole regression
model, then the values of a variable were randomly shuffled to compute the MSE again on the
perturbed data, and finally the normalized difference between these two MSE was taken as the
importance score for this variable [49]. The statistical definition can be found in Zhu et al. [52].

After training the models using the training datasets, the validation datasets were taken as the
input of these models. Several prediction accuracy indicators, including CC [53], RPD, and RMSE
were adopted to compare and evaluate the prediction results. CC quantified the agreement between
the EC1:5 samples and the predicted EC1:5 of a RF model, it ranged from -1 to 1, also represented how
well the measured versus predicted data follows the 1:1 line. RPD calculated the ratio of the standard
error of prediction to the standard deviation of the samples. RMSE explained the difference between
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the samples and the model predictions. Generally, a model that performed well would have high CC
and RPD values, and a low RMSE value [28,54].

CC =
2rsŷsy

s2
ŷ + s2

y +
(
ŷ− y

)2 (1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

RPD =
sy

RMSE
(3)

where r is the usual Pearson product-moment correlation coefficient between the observed and
predicted values, sy and sŷ are the standard deviation of the observed and predicted values, s2

y and
s2

ŷ are the variances of the observed and predicted values, y and ŷ are the mean of the observed and
predicted values, n is the number of the observation samples used, and yi and ŷi are the observed and
predicted values of sample point i, respectively.

3. Results

3.1. Soil Salinity Content and Variation

The descriptive summary of the ECa and the EC1:5 value of each point measured by hand-hold
EM38-MK2 and chemical analysis were presented in Table 2.

Table 2. Descriptive summary of electrical conductivity ECa and EC1:5 measured on the samples in
fields A, B, and C.

Field Conductivity Descriptive Statistics (ECa, mS m−1; EC1:5, dS m−1)

N Min Max Mean Median Std.Dev. CV

A
ECah 30 571.15 955.72 765.05 766.72 119.02 16%
ECav 30 598.15 1065.57 846.74 865.22 144.53 17%
EC1:5 30 20.25 54.90 37.64 35.80 9.21 25%

B
ECah 30 450.20 1092.15 830.47 903.09 200.58 24%
ECav 30 585.67 1035.90 824.51 779.02 154.27 19%
EC1:5 30 7.20 14.68 11.73 11.91 2.38 20%

C
ECah 30 695.86 1126.99 890.15 861.09 136.54 15%
ECav 30 560.17 955.56 778.00 782.09 118.92 15%
EC1:5 30 9.64 19.64 14.11 14.50 2.94 21%

As shown in Table 2, the minimum ECah value was 450.20 mS m−1, which was measured in the
field B. The maximum ECah value was 1126.99 mS m−1 and was found in the field C. The minimum
and the maximum ECav values were measured in the field C and the field A, with the values of 560.17
mS m−1 and 1065.57 mS m−1, respectively. When it comes to EC1:5, the highest and the lowest values
were 54.90 mS m−1 and 7.20 mS m−1, which could be found in the field A and the field B, respectively.

Taking the mean values of ECa into consideration, the field A had the lowest average ECah value
of 765.05 mS m−1, and the highest average ECah value was 890.15 mS m−1, which was measured in
the field C. The field C had the lowest average ECav value of 778.00 mS m−1, and the average ECav

value of the field A was the highest among three fields, which was 846.74 mS m−1. As for the mean
values of EC1:5, the field A had the biggest EC1:5 value of 37.64 dS m−1, and the smallest average EC1:5

was found in the field B with the value of 11.73 dS m−1.
For fields A, B, and C, the relationships between EM38-MK2-measured ECah, ECav, and

laboratory-analyzed EC1:5 of the samples (n = 30) were given as Equations (4–6):

EC1:5

(
dS m−1

)
= 0.0278ECav + 0.0234ECah − 5.52532

(
R2 = 0.85, adjusted R2 = 0.84, RMSE = 3.00 dS m−1

)
(4)
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EC1:5

(
dS m−1

)
= −0.0119ECav + 0.0177ECah + 6.85742

(
R2 = 0.75, adjusted R2 = 0.73, RMSE = 1.14 dS m−1

)
(5)

EC1:5

(
dS m−1

)
= 0.0275ECav − 0.0042ECah + 0.28139

(
R2 = 0.95, adjusted R2 = 0.95, RMSE = 0.73 dS m−1

)
(6)

Combining Table 2 and Equations 4–6, it was clear that the fitted linear relationship of field C
produced the most accurate prediction of EC1:5 using ECah and ECav, and the prediction accuracies of
all three fields were satisfying with R2 and adjusted R2 values no less than 0.7.

For each field, the corresponding equation was used to calibrate the ECa values (n = 1500) of the
EMI survey and convert them to EC1:5 values. The descriptive summary of calibrated EC1:5 in study
fields were presented in Table 3.

Table 3. Descriptive summary of EC1:5 in fields A, B, and C.

Field
Descriptive Statistics (EC1:5, dS m−1)

N Min Max Mean Median Std.Dev. CV

A 1500 18.81 47.14 31.54 31.22 4.17 13%
B 1500 5.04 15.20 9.89 10.00 1.64 17%
C 1500 11.98 25.94 18.13 18.37 2.10 12%

Ranging from 5.04 dS m−1 to 47.14 dS m−1, the EC1:5 measured in the study area had a broad
value domain. As shown in Table 3, the average EC1:5 value of the field A, B and C was 31.54 dS
m−1, 9.89 dS m−1 and 18.13 dS m−1, respectively, showing considerable difference between fields with
variable vegetation cover. The maximum EC1:5 value was measured in the field A, which was bare land
with no vegetation cover and with a large area of visible salt crust, and the minimum was measured in
the field B, which had relatively moderate vegetation cover of clustered halophyte, Tamarix ramosissima.
The coefficients of variation in the three fields were all greater than 10%, indicating moderate variation
of soil salinity within the study areas. The EC1:5 was directly taken as the proxy of soil salinity [55,56],
and was denoted as EC hereafter.

3.2. Prediction Accuracy of RF Regression Models

Table 4 showed the soil salinity prediction accuracy (training and validation) of RF regression
models using UAV, GF-2 and spectral resampled UAV data. Although the prediction accuracies of
training and validation were quite similar, showing robustness in each of the RF prediction models,
the training statistics were generally better than the validation stats as expected.

Table 4. Training and validation statistics of random forest (RF) regression models. CC: concordance
coefficient; RPD: ratio of performance to deviation; RMSE: root mean square error.

Data Set Source
A B C

CC RPD RMSE CC RPD RMSE CC RPD RMSE
(dS m−1) (dS m−1) (dS m−1)

Training
(n = 1000)

UAV 0.96 3.92 1.05 0.94 3.29 0.49 0.81 1.91 1.07
GF-2 0.93 2.93 1.40 0.92 2.75 0.58 0.74 1.67 1.22

Resampled UAV 0.95 3.22 1.28 0.92 2.72 0.59 0.70 1.55 1.31

Validation
(n = 500)

UAV 0.94 2.98 1.40 0.86 2.15 0.74 0.56 1.29 1.59
GF-2 0.88 2.23 1.87 0.84 2.00 0.80 0.44 1.20 1.71

Resampled UAV 0.89 2.35 1.78 0.81 1.85 0.86 0.40 1.12 1.83

In each field, it was true both for training and validation sets that the CC and RPD values of UAV
model were generally greater, and the RMSE values smaller than that of GF-2 and resampled UAV
models. It indicated that the prediction performance of the UAV model was the best among three types
of models. Comparing the validation results of three different fields, the models constructed from the
UAV hyperspectral data of bare land (A) showed the best prediction performances with the highest CC
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and RPD values of 0.94 and 2.98, whereas the resampled UAV model of the area with dense vegetation
cover (C) produced the worst prediction performance with the lowest CC and RPD values of 0.40 and
1.12. It suggested that dense vegetation cover might deteriorate the predicting capability of soil salinity
through covering soil surface and blurring the spectral information of surface soil. In addition, the
prediction accuracy was sharply higher (lower RMSE) for the field B with moderate vegetation cover.

The fitted lines of the field A (Figure 2a,d) were the closest to the 1:1 lines, showing the best
prediction performance of the UAV models among all three fields, while the measured versus predicted
points using the validation data set were dispersed in the scatter plot of the field C (Figure 2f). Moreover,
the field B exhibited the lowest RMSE values of the prediction models.
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3.3. Soil Salinity Maps Derived from UAV and GF-2 Data

Figure 3 showed the soil salinity maps of the study areas developed using RF regression models.
Since the resampled UAV data didn’t produce better prediction accuracy than the original UAV data
did (Table 4), only the salinity maps derived from the original UAV and GF-2 data were shown to make
comparisons. For both the UAV and GF-2 prediction models, the predicted EC values of fields A, B and
C covered the range of around 20.0~44.0 dS m−1, 6.0~14.0 dS m−1, and 13.0~22.0 dS m−1, respectively.
In general, the maps of the field A (Figure 3a,b) and B (Figure 3c,d) showed distinct spatial variation
pattern of soil salinity, whereas the GF-2 map of field C (Figure 3f) was too fragmented and scattered
to recognize any salinity spatial pattern due to its dense vegetation cover.
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Figure 3. EC maps derived from RF regression models using UAV (the left three: a,c,e) and GF-2 (the
right three: b,d,f) data for the field A (a,b), B (c,d), and C (e,f).

The field A had the most extreme soil salinity. High salts (>35.0 dS m−1) were mostly located
in the northwest area (Figure 3a). An obvious difference was visible between the UAV and GF-2
models of the field A. For example, a large area with high salt content (>35.0 dS m−1) using the UAV
model (Figure 3a) exhibited with relatively lower salt contents (32~35 dS m−1) using the GF-2 model
(Figure 3b). In the UAV prediction map of the field B (Figure 3c), relatively high EC values (>10.4 dS
m−1) were mostly found in the north and the west part of the study area, and EC values less than
9.0 dS m−1 were mainly distributed in the southern region and places with clustered populations of
halophytes (Tamarix ramosissima). However, the GF-2 prediction map of the field B (Figure 3d) showed
fewer areas of moderate EC values (9.8~10.4 dS m−1) and more areas of relatively high EC values
(>11.0 dS m−1). In the soil salinity map of the field C derived from UAV data (Figure 3e), high salt
content (>19.0 dS m−1) soils were located in the northeast part of the area. Compared with the UAV
prediction map (Figure 3e), there was a greater area with EC values higher than 18.5 dS m−1 in the
GF-2 prediction map of the field C.
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4. Discussion

4.1. Comparison of RF Regression Models Based on UAV and GF-2

Accurate atmospheric correction was critical to remote sensing-based soil properties estimation
as mainly atmospheric scattering distorted the real surface reflectance especially for the blue
bands. However, conventional atmospheric correction methods for satellite images were not directly
applicable for UAV-borne hyperspectral images. Although the lack of atmospheric correction may
lead to inaccurate retrieval of soil salinity because of atmospheric perturbations, the Rikola camera we
used did not capture data in the shortwave wavelength region less than 0.50 µm. The reflectance of the
UAV-borne hyperspectral data was more detailed and intense than the reflectance of the satellite-borne
multispectral data. Thus, the fully empirical approach with the RF can be applied without atmospheric
correction. Even so, many researchers have tried to develop different radiometric correction methods
especially for UAV-borne hyperspectral data. Honkavaara et al. [57] constructed a physically-based
method which includes a radiometric block adjustment utilizing radiometric tie points and utilized
in situ irradiance measurements. Lorenz et al. [58] performed a radiometric correction using a single
atmospheric correction spectrum for each scene.

The RF regression modelling permitted reliable estimations and mapping of soil salinity at the
field-scale (Table 4). The RF regression models using the UAV data source had higher CC and RPD
values and lower RMSE values than the models using the GF-2 data source. This indicated that the
62-band hyperspectral images provided better prediction results than the multispectral GF-2 data in all
three fields, despite lacking spectral information in the wavelength range from 0.45 to 0.50 µm. After
spectral resampling, the accuracy of the UAV prediction models reduced, revealing that narrow bands,
compared with broad bands, provide more detailed spectral information which could contribute to
improving model performance. The RF regression models of field A were accurate with RPD values of
2.98 and 2.23, and the predictions of RF regression models of field B were good with RPD values of
2.15 and 2.00, but both the UAV and GF-2 prediction models of field C were ineffective as the RPD
values were below 1.80 [59].

Because EMI measurements were conducted densely at field-scale, OOB and validation samples
were often almost identical to samples used in the training of the models. It inevitably resulted in
overestimation of the model’s prediction accuracy [60,61]. Even so, this study developed a novel
approach of combining EMI and remote sensing techniques to map field-scale soil salinity. Our results
presented relatively reliable spectral inversion of salinity in three fields with variable vegetation cover.
In future research, spatial independence selection methods such as spatial blocking will be employed
to conduct cross-validation in order to address the overoptimism of the prediction models.

4.2. Soil Salinity under Various Vegetation Cover Conditions

In this study, the highest surface soil EC value (47.14 dS m−1) was measured in the field A where
no vegetation existed. However, although the field C had the densest vegetation cover, the soil salinity
was generally higher than that of the field B where vegetation cover was sparse. It suggested that
soil salinity was not simply negatively correlated with vegetation cover. As given in Table 2, the
average soil salinity in the field C was above 15 dS m−1, which was much greater than the soil salinity
in the field B. One possible reason is that halophytes, unlike other plants or crops, were adapted to
moderate and even high contents of salt in soils. For the phreatophyte Tamarix ramosissima in the
field B, their root could reach deep down in the soil, and the physiological activity and biomass
accumulation majorly rely on the stable groundwater [62]. Moreover, for halophytes in the field C,
their physiological characteristic enabled them to not only survive but also flourish with optimal
growth in saline conditions that would kill other species [63].

With the increase of vegetation cover, the prediction performance of spectral retrieval models
presented a decreasing trend with higher RMSE and lower CC and RPD values. It was reasonable
because reflectance of the canopy rather than surface soil was collected via UAV. Although the canopy



Remote Sens. 2019, 11, 736 12 of 16

spectra did not directly depict the salt content in soils, it could be an indirect indicator of salinity.
Under salt stress, the spectral reflectance and morphology of plant or crops on the ground would
change due to insufficient water uptake and specific ion toxicity. Existing literatures have proposed
methods to assess soil salinity using environmental indicators, including spectral vegetation indices
such as normalized difference vegetation index (NDVI). Peng et al. [42] used a variety of environmental
and ecological covariates, including NDVI, to quantitatively characterize the salinity of arid-area soils,
the prediction accuracy of the cubist model was good with the R2, RMSE, MAE and RPD values of
0.91, 5.18 dS m−1, 3.76 dS m−1, and 3.15, respectively. In the Yellow River Delta of China, Zhang et
al. [64] assessed the applicability of monitoring soil salinization utilizing vegetation indices derived
from the MODIS time series data. Additionally, Allbed et al. [65] analyzed NDVI values and salinity
index properties to monitor changes in soil salinity and vegetation cover from multispectral images.
Further study about delineating soil salinity using salinity indices will be carried out to overcome the
low prediction accuracy of models derived from a dense vegetation area.

4.3. Evaluation of the Variable Importance for Hyperspectral Soil Salinity Modeling

To understand which variables were the most significant among the 62 hyperspectral bands,
variable importance analysis of RF regression models was utilized and the result was shown in
Figure 4.
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UAV-derived prediction models of field A (a), B (b), and C (c).

As shown in Figure 4, B18 (0.61 µm), B23 (0.65 µm), and B60 (0.87µm) were the most important
bands for the UAV-derived prediction models of fields A, B, and C, respectively. They provided
approximately 42%, 36%, and 34% increase in MSE for the regression models of the study area. It
indicated that the red bands of fields A and B were of great significance, and the bands in the NIR
spectral range were more important for field C when estimating soil salinity using UAV-derived
hyperspectral data. As shown in Figure 4a, six of the top ten important bands for the prediction model
of field A were NIR bands. The accumulated variable importance of NIR bands in Figure 4a reached up
to 156%, suggesting that those bands are also critical to the modeling of soil salinity in the field A. The
results were in accordance with the results of existing research. Sidike et al. [66] selected soil salinity
sensitive bands using PLSR method, and the results indicated that the near-infrared band had the most
contribution to the estimation of soil salinity. The statistical analysis of Fan et al. [67] demonstrated
that soil salinity was more correlated with NIR and SWIR bands with larger negative correlation
coefficients. Resulting from raw reflectance correlogram, first derivative reflectance correlogram, and
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PLSR carried out by Zhang et al. [68], wavelengths at 395~410, 483~507, 632~697, 731~762, 812~868,
884~909, and 918~930 nm were found to be the most sensitive wavebands. In the spectral range of
500~890 nm, wavelengths at 632~697, 731~762, and 812~868 nm covered B22~B31, B40~B47, and
B53~B60 of the hyperspectral data in this research, respectively. Regarding to Figure 4, it was worth
noticing that B23, B24, and B46 were among the top five most important hyperspectral bands for RF
models in all three fields. Meanwhile, some NIR bands, including B53, B55, B56, B57, and B59, were all
presented as important variables for RF model of the field A, as shown in Figure 4a.

5. Conclusions

This paper examined unmanned aerial vehicle-borne hyperspectral data and Chinese GF-2
satellite data for RF modeling to quantitatively estimate soil salinity in fields with various vegetation
cover conditions. The strongest linear relationships between EM38-MK2-measured ECah, ECav, and
laboratory-analyzed EC1:5 of the samples was found in the field C with R2 values 0.95. The bare land
(field A) had the most saline soil, and its average EC1:5 of the soil samples was 37.64 dS m−1. The
results showed that bare land with high salt content in soil had the most accurate estimation result
among three fields. In addition, resampling UAV data to 1 m was necessary to get a reasonable relation
to EMI measurements. For UAV-derived prediction models, the most important spectral band for
salinity prediction was B18, B23, and B60 for the fields A, B, and C, respectively. Whereas B23, B24,
and B46 were all significant to RF models of three fields. While the UAV platform was satisfactory
for collecting spectral information to establishing regression models between EC and soil surface
reflectance, soil salinity estimation achieved more accurate results for bare land and sparse vegetation
area than dense vegetation area. As the acquired ultra-high-resolution images can capture details of
ground objects, the UAV-borne hyperspectral imager was recommended for very accurate soil salinity
mapping, monitoring and assessment in order to assist decision making in precision agriculture.
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