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Abstract: Optical remote sensing data have been widely used for estimating forest aboveground
biomass (AGB). However, the use of optical images is often restricted by the saturation of spectral
reflectance for forests that have multilayered and complex canopy structures and high AGB values
and by the effect of spectral reflectance from underlayer shrub, grass, and bare soil for young stands.
This usually leads to overestimations and underestimations for smaller and larger values, respectively,
and makes it very challenging to improve the estimation accuracy of forest AGB. In this study, a
novel methodology was proposed by incorporating stand age as a dummy variable into four models
to improve the estimation accuracy of the Pinus densata forest AGB in Yunnan of Southwestern China.
A total of eight models, including two parametric models (LM: linear regression model and LMC: LM
with combined variables), two nonparametric models (RF: random forest and ANN: artificial neural
network) without the age dummy variable, and four corresponding models with the age dummy
variable (DLM, DLMC, DRF, and DANN), were compared to estimate AGB. Landsat 8 Operational
Land Imager (OLI) images and 147 sample plots were acquired and utilized. The results showed
that (1) compared with the two parametric models, the two nonparametric algorithms resulted in
significantly greater estimation accuracies of Pinus densata forest AGB, and the increases of accuracy
varied from 8% to 32% for 100 modeling plots and from 12% to 35% for 47 test plots based on root
mean square error (RMSE); (2) compared with the models without the age dummy variable, the
models with the age dummy variable greatly reduced the overestimations for the plots with AGB
values smaller than 70 Mg/ha and the underestimations for the plots with AGB values larger than
180 Mg/ha and, thus, significantly improved the overall estimation accuracy by 14% to 42% for the
modeling plots and by 32% to 44% for the test plots based on RMSE; and (3) the texture measures
derived from the Landsat 8 OLI images contributed more to improving the estimation accuracy than
the original spectral bands and other transformations. This implied that two nonparametric models,
coupled with the use of the age dummy variable and texture measures, offered a great potential for
improving the estimation accuracy of Pinus densata forest AGB.
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1. Introduction

As forest ecosystems play an important role in global carbon cycling and the mitigation of carbon
concentrations in the atmosphere, accurately estimating forest biomass is necessary and has been
widely studied [1–8]. Due to the difficulty and high cost of collecting field data, especially belowground
biomass, most of the existing studies have focused on forest aboveground biomass (AGB) [9–17] and
the use of remotely sensed data [18–20]. However, the estimation accuracy of forest AGB varies
depending on many factors, including the remotely sensed images, the independent variables used,
and the algorithms used to model the relationship of AGB with the independent variables [9].

As remote sensing technologies develop, various image data from Landsat, SPOT, QuickBird,
IKONOS, WorldView, ASTER, MODIS, AVHRR, Radarsat, and ALOS PALSAR have become available
and are used for AGB estimation [9]. Many studies have also investigated the data fusion of different
sensor images for improving AGB estimation [21,22]. Given a study area, what kind of sensor
data should be selected has become very challenging during the past several decades [23]. Overall,
Landsat imagery has been most widely used for this purpose because of free downloading, a long-time
history, large coverage, and medium spatial and temporal resolutions [9,21,24–27]. Especially, the new
Landsat 8 provides images with more spectral bands and a higher radiometric resolution than previous
Landsat satellites and, thus, a greater potential for improving AGB estimation [12,28].

Selecting spectral variables that have strong relationships with forest AGB is the key to increasing
the accuracy of AGB estimation using remote sensing data [9,12,19,26]. Various spectral bands and
other potential variables derived from the bands, such as vegetation indices, various transformations,
texture measures, and fractional images have been used to construct the estimation models of forest
AGB [9,24,26]. Generally, the models with the combinations of vegetation indices, texture measures,
and environmental variables such as elevation, slope, and aspect can lead to higher estimation
accuracy than those with original bands, and this is especially true for the forests with complex
canopy structures [9,12,19,21].

Various parametric and nonparametric algorithms have been developed for mapping forest AGB
using remotely sensed images [9,19]. Simple linear regression models (LMs) and nonlinear models
such as power models [29,30] and logistic regression models [31] are often used. The LMs account for
the relationships between forest AGB and predictors and are the most popular statistical models [9,32].
However, the relationships are often nonlinear and show power, exponential, or logarithmic forms.
The nonlinear regression models or the linearization of the nonlinear relationship are common methods
to deal with the nonlinear relationships. However, the determination coefficients obtained are often
smaller than 0.5 [27,33], and the estimates obtained are, thus, not reliable [32].

Nonparametric models are an alternative approach to improve the estimation accuracy of forest
AGB using remote sensing images. Many nonparametric algorithms, such as artificial neural networks
(ANN) [34,35], random forest (RF) [36,37], k-Nearest Neighbors (kNN) [38], support vector machine
(SVM) [39,40], and Maximum Entropy (MaxEnt) [41,42], have been explored to model the relationships
between forest AGB and predictors. However, the model structures derived from these algorithms
are often difficult to interpret [9,19,32]. The RF, introduced by Leo Breiman [43], can be used for
either classifying categorical variables or estimating continuous variables such as forest AGB [43,44].
It provides the average prediction from a number of regression models created by a subset of training
data selected randomly with a random subset of predictors [45,46]. Recently RF has been frequently
used in AGB estimation by integrating the samples from field inventories, remote sensing, and other
predictors [47,48]. Moreover, ANN, proposed in 1943, is a mathematical model inspired by biological
neural networks. Its algorithm is the product of artificial intelligence as black-box models due to
unknown weights and a difficulty in terminating the learning process [49]. Therefore, it has a strong
ability for fitting the data [50] and provides a robust solution for complex and nonlinear problems
due to its universal approximation properties [24]. Many different neural network models have been
developed [51] and are widely used in various fields [52]. Unfortunately, the estimation accuracy of
the nonparametric models is very much limited by the used sample sizes.
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Moreover, forest AGB estimates derived from remote sensing data are associated with
uncertainties [19], which has been widely recognized and for which substantial research has been
conducted [53,54]. The uncertainties often result in underestimations for forests with great AGB
values and overestimations for forests with small AGB values. The underestimations usually occur
when AGB reaches 100–150 Mg/ha [33,55,56], while the overestimations often happen for forests
with AGB less than 40 Mg/ha [33]. Many studies have indicated that the uncertainties are related
to the structures of forest ecosystems, the topographic characteristics, the remotely sensed data
(insensitivity and saturation) and their spatial resolutions, and the methods used [33,56–62]. Especially,
spectral reflectance due to data saturation becomes less sensitive to AGB changes in the dense,
multilayer, and complex canopy forest ecosystems and often leads to the underestimations of forest
AGB [19]. Few studies have analyzed the saturation values of forest AGB for different forest ecosystems,
and only a few reports have demonstrated methods to reduce the impact of data saturation on AGB
estimation accuracy [20,22,33].

The heterogeneity of complex forest canopy structures may be the major impact for the data
saturation and underestimation for the forests with high AGB values [22]. The data saturation varies
depending on vegetation types because of the characteristics of their surface reflectance, including tree
species, ages, and forest canopy structures [19,63]. Zhao et al. [22] analyzed the saturation values using
Landsat imagery for different vegetation types, slopes, and aspects in a subtropical region of China;
estimated AGB considering the stratification of forest types using a stepwise linear regression; and
improved the estimation accuracy of AGB. The stratification of forest types based on tree species and
environmental variables can provide the potential of improving the estimation of forest AGB [22,32,33].
Moreover, incorporating the tree age into the estimation models can also lead to an improvement of the
AGB/carbon sequestration estimates and can reduce the overestimation and underestimation [64–68].

Iizuka and Tateishi [64] and Sanga-Ngoie et al. [68] introduced tree volume-derived age into
tree carbon estimation models for improving the estimation accuracy of tree carbon sequestration
using optical remote sensing imagery. Moreover, Zheng et al. [65] used 60 sample trees to obtain
a forest stand age map in which the ages for most of the forests were less than 21 years old, then
developed a polynomial model with spectral variables from Landsat ETM+ images and stand age
involved, and obtained a high estimation accuracy of AGB. Lefsky et al. [66] mapped the forest stand
age using the time series of Landsat images, then estimated the AGB of young stands using Lidar
data in western Oregon, USA, and found that the estimation models were appropriate for the forests
with the classes of ages 14.5 to 20.5 years but resulted in overestimations for the smaller age classes.
Based on the years in which the trees were planted, Liu et al. [67] also obtained and added the age
variable into their linear regression models to estimate the AGB of plantations using Landsat images.
The studies indicate that taking tree ages into account would obtain a considerable improvement in
estimating AGB. The studies dealt with reducing the overestimation of AGB for young forests, but the
reports related to the improvement of the underestimation for the forests with high AGB values are
still lacking.

Overall, the overestimation and underestimation of forest AGB commonly exist when optical
remote sensing imagery is used. Reducing the overestimation and underestimation is critical to
increase the estimation accuracy of forest AGB but is greatly challenging. The objective of this study
was to develop a novel method of reducing the overestimation and underestimation to improve the
accuracy of estimating forest AGB when optical images were utilized. The improvement was explored
first by using Landsat 8 OLI images and four models to estimate AGB, including two parametric
models: LM and a LM with combined variables (LMC), and two nonparametric models: RF and ANN.
The stand group age as a dummy variable was then introduced into the four models, which led to four
new models with the age dummy variable involved. Moreover, the eight models were compared for
the estimation performance of forest AGB, and the significant contributions of adding the age dummy
variable into the models to mitigating the overestimation and underestimation were statistically
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examined. The analyses and examinations were conducted in Pinus densata forests distributed in
Yunnan of Southwestern China.

2. Materials and Methods

In Figure 1, the methodologic framework of this study is illustrated, consisting of the following
steps: 1) the selection of the study area; 2) the collection of the sample plot and tree biomass data; 3)
the calculation of the tree and plot AGB; 4) the acquisition, preprocessing, and analysis of the Landsat
8 OLI images; 5) the development of the models by incorporating the age dummy variable; and 6) the
assessment and comparison of the forest AGB predictions from the models with and without the age
dummy variable.
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Figure 1. The methodological framework of estimating the forest aboveground biomass (AGB) using
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plot data.
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2.1. Study Area

The study area is located in Shangri-La City, northwestern Yunnan of Southwestern China, and
the AGB of Pinus densata forests were mapped (Figure 2). The study area is characterized by a cold
temperate zone with the mean altitude of 3459 m above sea level. The annual mean temperature
is about 5.4 ◦C with the monthly highest and lowest temperature of 13.3 ◦C in July and −3.8 ◦C in
December, respectively. The winters are chilly but sunny because of the high altitude. The annual
mean precipitation is about 607 mm. The seasonal distribution of precipitation is uneven with 70%
in the rainy season (June–September). The evaporation is about 1671 mm per year, and the relative
humidity is about 70%. The soil type is mainly dark brown forest soil [69]. The study area is dominated
by cold, temperate coniferous forests with dominant tree species of Pinus, Picea, Larix, and Abies.
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Pinus densata is an endemic and pioneer tree species for reforestation at the subalpine and
alpine areas in the Hengduan Mountains [70]. It is a typical cool-temperature coniferous tree species
distributed between cold-temperature coniferous forests dominated by Picea, Abies, and Larix and
warm-temperature coniferous forests dominated by Pinus yunnanensis and P. armandii. In the study
area, most of the forests are pure with a single canopy layer dominated by Pinus densata or mixed with
small amount of Quercus pannosa, Pinus armandii, Picea likiangensis, Larix potaninii var. macrocarpa, and
Betula spp., with the altitude ranging from 3000 m to 3700 m.

2.2. Measurement and Calculation of Aboveground Biomass for Sample Trees and Plots

A total of 147 square sample plots were measured in the field in 2017. The plots were selected in
the P. desata pure forests of the study area by considering the stand ages, elevation, slope, and aspect,
and the sampling distances between the plots were about 1 km (Figure 2). Each plot had an area of
30 m × 30 m, and its coordinates of location, elevation, slope, and aspect were measured. Within each
plot, the diameter at breast height (1.3 m above ground) (DBH) and height (H) of each tree were
recorded. The stand age (SA) of each plot is the mean age of three standard trees having similar DBH
values to the average DBH of the plot. The ages of the three trees were measured by counting the
annual rings on the wood cores obtained by a growth cone at the tree base.

Moreover, a spatial distribution map of the Pinus densata forest stand ages for the study area was
obtained from the Shangri-La City forest inventory conducted in 2016 for forest management and
planning. In the forest inventory, a spatial distribution map of forest types, that is, stand compartments,
was produced in the field using visual interpretation based on aerial photographs. The compartments
had similar dominant tree species and homogeneous canopy structures. Within each of the forest
compartments, a certain number of 25.8 m × 25.8 m plots were selected, and within each of the plots,
the DBH of each tree was measured and the average DBH was obtained. Then, 3 to 5 trees having a
DBH similar to the plot average DBH were selected to measure the tree ages by counting the layers of
branches along the tree trunk because the growth of Pinus densata trees is characterized by adding a
layer of branches each year.

In addition, a total of 100 sampling trees were selected from the 147 sample plots to measure tree
AGB. The selection of the sample trees was based on their DBH classes from 6 cm to 76 cm with a 2 cm
interval and on their elevation, slope, and aspect. At least three sample trees were obtained for each of
the DBH classes. The values of the tree AGB components including wood, bark, branches, and needles
were obtained according to the method of Wang [71]. The biomass samples of wood and bark for
each sample tree were collected by taking a 3 cm thickness disk at a 2 m interval along the tree trunk.
The biomass values of each stem and its bark were measured by a method of volume and density.
The volumes of the wood segments and barks were calculated using their lengths and diameters
of the surfaces and under the barks. The samples of branches and leaves were selected, collected,
and weighted by the method of graded branches. All the samples were dried to constant weights
at 105 ◦C using an oven, and the sample density values of wood and bark were measured using a
drainage method. Finally, the biomass values of wood and bark for the sample trees were calculated
using the volumes and the corresponding sample density values. The branch and needle biomass of
the sample trees were obtained using the ratios of fresh weight to the corresponding dry matter.

The AGB data of the individual sample trees (Unit: kg) were fit using a power function, and the
AGB of each plot (Unit: Mg/ha) was summed using following Equation (1).

AGBs =
∑n

i=1 AGBi

900
·10000/1000 (1)

where AGBs is the AGB of a plot, AGBi is the estimated AGB of tree i, and n is the number of trees
within the plot. Although the biomass samples of tree components were used, in fact, the biomass
values of the sample trees and plots were associated with uncertainties and should be considered as
reference values.
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2.3. Remote Sensing Data and Preprocessing

Three Landsat 8 Operational Land Imager (OLI) images obtained from the website of the United
States Geological Survey (USGS) were used in this research (Table 1). The images were geo-referenced
to a Universal Transverse Mercator coordinate system with zone 47 north with a root mean square error
(RMSE) of less than one pixel. An atmospheric calibration of the images was conducted using the dark
object subtraction approach [72], and their topographic correction was made using the C-correction
approach using a digital elevation model (DEM) at a spatial resolution of 30 m × 30 m [73,74].
The images were then mosaicked and clipped according to the study area (Figure 2b).

Table 1. The parameters of the three Landsat 8 Operational Land Imager (OLI) images.

Image ID Acquisition
Date

Central Longitude
(degree)

Central Latitude
(degree)

Solar
Elevation

Solar
Azimuth

Mean Cloud
cover (%)

LC81310412016005LGN00 5 Jan. 2016 100.7358 27.4313 34.8442 152.9510 0.44
LC18320402016012LGN00 12 Jan. 2016 99.5527 27.8694 34.2138 152.4214 2.39
LC81320412016012LGN00 12 Jan. 2016 99.1871 27.4312 35.3745 151.6833 2.71

A total of 231 remote sensing variables were derived (Table 2), and they included 8 bands,
22 vegetation indices, 9 image transformations, and 192 textural measures (including mean, variance,
homogeneity, contrast, dissimilarity, entropy, angular second moment, and correlation on seven bands
with three moving window sizes: 3 × 3, 5 × 5, and 7 × 7 pixels). Vegetation indices and image
transformations have been widely used in the estimation of forest AGB, and the texture measures
were selected to capture the forest canopy structures [32]. The relationships between the spectral
variables and AGB were analyzed using a Pearson correlation analysis, and the spectral variables with
significant correlations (p ≤ 0.05) were selected to build the AGB estimation models.

Table 2. The spectral variables (SV) derived from eight bands of the Landsat 8 OLI images.

SV Definitions of SV # of SV

Original band
Band1: coastal aerosol, band2: blue (BLU), band3: green (GRN), band4: red

(RED), band5: near infrared (NIR), band6: shortwave infrared 1 (SWIR1),
band7: shortwave infrared 2 (SWIR2), and band8: cirrus

8

Vegetation indices

Normalized difference vegetation index (NDVI), ND32 = (GRN −
BLU)/(GRN + BLU), ND67 = (SWIR1 − SWIR2)/(SWIR1 + SWIR2), ND452 =
(RED + NIR−BLU)/(RED + NIR + BLU)), difference vegetation index (DVI),
soil adjusted vegetation index (SAVI = (NIR − RED)(1 + 0.1)/(NIR + RED +

0.1)), soil adjusted vegetation index 2 (SAVI2 = (NIR − RED)(1 +
0.5)/(NIR+RED+0.5)), simple ratio index (RVI, SR = RED/GRN)),

perpendicular vegetation index (PVI), brightness vegetation index (B),
greenness vegetation index (G), temperature vegetation index (W),
atmospherically resistant vegetation index (ARVI), short infrared

temperature vegetation index (MVI5), mid-infrared temperature vegetation
index (MVI7), mid-infrared vegetation index (VI3), infrared vegetation index

(II), modified soil adjusted vegetation index (MSAVI), transformation
vegetation index (TVI), nonlinear vegetation index (NLI), optimization

simple ratio index (MSR), structure insensitive pigment index (SIPI)

22

Image transformations

Sum visible bands (VIS234), albedo (ALBEDO), ratio of RED and albedo
(red_ALBEDO), the first three components from tasseled cap transform (K-T

transform), the first three principal components of principal component
analysis (PCA)

9

Texture measures

Grey-level co-occurrence matrix-based texture measures including mean,
angular second moment, contrast, correlation, dissimilarity, entropy,

homogeneity, and variance using moving window sizes of 3 × 3, 5 × 5, and
7 × 7 pixels

192
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2.4. Modeling Methods

Four models including LM, LMC, RF, and ANN were compared to estimate the AGB of the Pinus
densata forests. The spectral variables that had statistically significant correlations with plot AGB
were selected to develop the LM model by a stepwise regression with the variance inflation factor
(VIF) of 10 to test the collinearity of the independent variables. In addition to the spectral variables
above, logarithmic, quadratic, and cubic transformations were calculated for each spectral variable
and used as the combined variables to construct the LMC model using a stepwise regression with
VIF of 10. The introduction of the combined variables provided the potential to model the nonlinear
relationship of AGB with the spectral variables. The modeling of RF was carried out by the Random
Forest package in R software. Both the number of regression trees (ntree) and the number of input
variables per node (mtry) were set, the optimal ntree was determined by bootstrap and RMSE, and the
mtry was tested from one-third of all the independent variables [43]. Finally, we used the neuralnet
package in R software to develop the ANN model. The number of nodes and layers for the models was
set according to the default of the package, and the number of hidden layers was adjusted according
to the predicted results. In addition, the independent variables used for ANN and RF were the same
as those utilized for LM.

2.5. Modeling Methods with Age Dummy Variable

In this study, the sample plots were grouped into young stand, middle age stand, near-mature
stand, mature stand, and overmature stand according to the stand ages (SA) of the Pinus densata forests.
The age intervals of young stand, middle age stand, near-mature stand, mature stand, and overmature
stand were SA ≤ 20 years, 20 years < SA ≤ 30 years, 30 years < SA ≤ 40 years, 40 years < SA≤ 60 years,
and SA > 60 years, respectively. The age intervals of the stand groups were determined according to
the growth rate and forest management objectives of Pinus densata. In this region, Pinus densata forests
with the age range of 40 to 60 years are considered as wood mature with the maximum annual value
and can be harvested [75,76]. Whether the stand age was used as a dummy variable and included into
the models (LM, LMC, ANN, and RF) of AGB prediction and whether the potential combination of
neighboring age groups was made were determined by following steps:

(1) The models LM, LMC, ANN, and RF were developed and used to predict the AGB values of
both the modeling and test plots;

(2) The predictions of AGB were compared with the reference values from the field plots, and the
mean residuals of the predictions were statistically tested for their significant differences from zero at
the significance level of 0.05 based on each of the stand age groups;

(3) Given a stand group and a model, the existence of the significant difference implied an
overestimation or underestimation, and the age of the stand group as a dummy variable was, thus,
added into the model; otherwise, the age dummy variable was not involved;

(4) The models with the age dummy variable were developed, the significant difference tests of the
obtained mean residuals from zero were conducted, and the reduction of the error was analyzed; and

(5) When the models without the age dummy variable led to the mean residuals that were not
significantly different from zero at the significance level of 0.05 for two neighboring age groups,
the sample plots of the neighboring age groups were combined and the above four steps were repeated
using the combined dataset.

Based on the results, the forest stands were divided into four groups: young stand, middle-age
stand, near-mature stand, and mature and overmature stand in which the stand group ages were used
as a dummy variable and added into the models.

2.6. Assessment and Validation of Predictions from Models

The evaluation of the obtained AGB models and the corresponding estimates was conducted
using a determination coefficient (R2) and RMSE between the observed values and estimated values



Remote Sens. 2019, 11, 738 9 of 24

of AGB to assess and validate the models based on the plot dataset used for model fitting. Moreover,
the applicability of the models was also validated using the test dataset with the mean error (ME)
defined as the average value of the residuals (observed values minus estimated values). The mean
error of each age group for the different estimation models was statistically tested for its significant
difference from zero at the significance level of 0.05 using single sample t-test by SPSS. Among the
147 plots, 100 plots were randomly selected and used for the model fitting and 47 plots were used for
the validation of the models.

3. Results

3.1. Statistical Characteristics of Sample Plot Data

The AGB values of individual sample trees were graphed against their DBH and H values, and the
relationships of tree AGB with both DBH and H could be fit using a power function. Figure 3 shows
the relationship for DBH, and the corresponding relationship for H was omitted. The obtained model
with the determination coefficient of 0.992 and the RMSE of 30.778 kg was as follows:

AGB = 0.073·DBH1.739·H0.880 (2)

The AGB values of the trees within each plot (Unit: Mg/ha) were estimated using this equation,
and the AGB value of each sample plot was obtained using Equation (1).
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Figure 3. The scatter plot of forest aboveground biomass (AGB) with diameter at breast height (DBH)
from 100 sample trees.

The statistics of plot AGB values were shown based on stand age groups in Table 3. The stand
ages of the modeling plots, test plots, and all the sample plots were 37.77 years, 38.02 years, and
37.85 years with the maximum AGB values of 344.38 Mg/ha, 235.35 Mg/ha, and 344.38 Mg/ha,
respectively. Their sample means were 112.15 Mg/ha, 115.43 Mg/ha, and 113.20 Mg/ha with the
variation coefficients of 54.25%, 49.21%, and 52.47%, respectively. The sample means were not
significantly different from each other at the significance level of 0.05.
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Table 3. The statistics of the sample plot AGB values (MAS (year): mean age of stands; AGB (Mg/ha):
aboveground biomass).

Datasets Age Groups Variables Minimum Maximum Mean Standard Deviation

Model

Young (n = 24) MAS 8.00 20.00 17.58 3.98
AGB 2.11 65.07 41.57 16.65

Middle age (n = 24) MAS 24.00 30 27.08 2.36
AGB 65.09 99.70 82.43 12.13

Near mature (n = 26)
MAS 35.00 40.00 38.85 2.15
AGB 100.75 150.10 125.84 15.06

Mature and overmature (n = 26)
MAS 45.00 160.00 65.19 28.27
AGB 152.04 344.38 191.06 41.70

Total (n = 100)
MAS 8.00 160.00 37.77 23.07
AGB 2.11 344.38 112.15 60.84

Test

Young (n = 10) MAS 9.00 20.00 16.60 3.89
AGB 3.70 97.50 44.76 25.52

Middle age (n = 11) MAS 22.00 30.00 26.18 2.86
AGB 35.51 155.22 95.10 32.69

Near mature (n = 13)
MAS 32.00 40.00 37.54 2.90
AGB 80.02 229.34 127.68 37.50

Mature and overmature (n = 13)
MAS 45.00 150.00 65.00 30.48
AGB 116.14 235.35 174.76 32.66

Total (n = 47)
MAS 9.00 150.00 38.02 24.26
AGB 3.70 235.35 115.43 56.80

All

Young (n = 34) MAS 8.00 20.00 17.29 3.92
AGB 2.11 97.50 42.51 19.31

Middle age (n = 35) MAS 22.00 30.00 26.80 2.52
AGB 35.51 155.22 86.41 21.20

Near mature (n = 39)
MAS 32.00 40.00 38.41 2.47
AGB 80.02 229.34 126.45 24.37

Mature and overmature (n = 39)
MAS 45.00 160.00 65.13 28.62
AGB 116.14 344.38 185.62 39.26

Total (n = 147)
MAS 8.00 160.00 37.85 23.37
AGB 2.11 344.38 113.20 59.40

3.2. Correlation between Spectral Variables and AGB

In this study, the Pearson correlation coefficients between all 231 spectral variables and the
plot forest AGB were calculated. It was found that only 36 spectral variables had statistically
significant correlations with plot forest AGB and are listed in Table 4, including 28 texture measures,
7 vegetation indices, and 1 component of PCA. The variance texture measure of band 4 using
window size 3 × 3 pixels (VA3_4) and the angular second moment of band 1 with window size
of 7 × 7 pixels (SM7_1) had the highest correlation. The absolute values of the correlation coefficients
varied from 0.200 to 0.326. Overall, the texture measures had higher correlations with AGB than other
spectral variables.

Table 4. The spectral variables that had significant correlations with AGB (ND32: normalized difference
vegetation index using G and B bands; ND452: normalized difference vegetation index using RED, NIR,
and B bands; SIPI: structure insensitive pigment index; KT_1: the first component of K-T transform;
KT_2: the second component of K-T transform; B6_PCA: the 6th component of PCA; MSAVI: modified
soil adjusted vegetation index; and all other variables are texture measures: the first two capital letters
represent the names of texture measures, including mean (ME), angular second moment (SM), contrast
(CO), correlation (CC), dissimilarity (DI), entropy (EN), homogeneity (HO), and variance (VA), the first
number represents window size: 3 for 3 × 3, 5 for 5 × 5, and 7 for 7 × 7, and the second number
represents the band number of the Landsat images; * and ** indicate significance levels of 0.05 and 0.01,
respectively; the significance level of 0.01 is highlighted).

No. Spectral
Variable

Correlation
Coefficient No. Spectral

Variable
Correlation
Coefficient No. Spectral

Variable
Correlation
Coefficient

1 ND32 0.207 * 13 DI3_4 0.240 * 25 SM5_1 0.309 **
2 ND452 −0.200 * 14 EN3_1 −0.242 * 26 CC5_5 −0.233 *
3 MSAVI −0.230 * 15 CC3_1 0.240 * 27 CC5_7 −0.241 *
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Table 4. Cont.

No. Spectral
Variable

Correlation
Coefficient No. Spectral

Variable
Correlation
Coefficient No. Spectral

Variable
Correlation
Coefficient

4 SAVI 0.249 * 16 SM3_1 0.243 * 28 CO7_4 0.222 *
5 SIPI −0.249 * 17 ME5_5 −0.201 * 29 DI7_4 0.200 *
6 KT_1 −0.232 * 18 VA5_1 −0.223 * 30 EN7_1 −0.304 **
7 KT_3 0.251 * 19 VA5_4 0.217 * 31 EN7_3 −0.227 *
8 B6_PCA 0.217 * 20 HO5_1 0.229 * 32 SM7_1 0.326 **
9 ME3_4 −0.210 * 21 CO5_4 0.301 ** 33 SM7_3 0.210 *

10 ME3_5 −0.236 * 22 DI5_1 −0.205 * 34 CC7_3 −0.221 *
11 VA3_4 0.326 ** 23 EN5_1 −0.298 ** 35 CO7_4 0.222 *
12 CO3_4 0.311 ** 24 DI5_4 0.249 * 36 CC7_7 −0.286 **

3.3. Model Fitting

3.3.1. Models without Age Dummy Variables

Four models, LM, LMC, RF, and ANN, were used to fit the modeling dataset, and their results
are listed in Table 5. By a linear stepwise regression, the correlation texture measure for band 7 using
the window size 7 × 7 (CC7_7), the variance texture measure for band 4 using the window size
at 3 × 3 (VA3_4), the angular second moment texture measure for band 1 using the window size
5 × 5 (SM5_1), the dissimilarity texture measure for band 1 using the window size 5 × 5 (DI5_1),
and structure insensitive pigment index (SIPI) were selected for LM. For LMC, the selected variables
included quadratic VA3_4 ((VA3_4)2), cubic SM5_1 ((SM5_1)3), logarithmic entropy for band 1 using
the window size at 5×5 (Log(EN5_1)), and SIPI. The spectral variables used for LM were also utilized
for developing the models ANN and RF.

The results showed that both parametric models, LM and LMC, had smaller values of R2 and
larger values of RMSE than the two nonparametric methods, RF and ANN. The ANN led to the
largest R2 (0.663) and smallest RMSE (35.158 Mg/ha). The determination coefficient R2 from ANN was
statistically significantly larger, and its RMSE was significantly smaller than those from LM and LMC.
However, the R2 and RMSE values from ANN were not significantly different from those obtained by
RF. The LMC only slightly improved the estimates compared with LM based on their RMSE values.
This indicated that ANN provided the most accurate estimates of AGB, then RF, LMC, and LM.

Table 5. The evaluation results of the four models without the age dummy variable used to fit the
modeling dataset (n = 100, LM: linear regression model, LMC: linear regression model with the
combined variables, ANN: artificial neural network, RF: random forest; R2: coefficient of determination,
and RMSE: root mean square error).

Models R2 RMSE (Mg/ha)

LM 0.324 51.335
LMC 0.354 50.163
ANN 0.663 35.185

RF 0.620 40.108

Similar results were noticed in the scatter graphs of the predicted AGB values against the
referenced values in Figure 4. The scatter graphs from ANN and RF had a narrower distribution and
looked closer to the line of y = x than those scatter graphs from LMC and LM. For all the four models,
however, there were overestimations when the plot AGB values were smaller than about 70 Mg/ha and
underestimations when the plot AGB values were greater than about 180 Mg/ha. The only difference
was that, compared with LMC and LM, the ANN and RF resulted in slightly smaller overestimations
and underestimations.
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3.3.2. Models with Age Dummy Variables

Overall, two nonparametric models, ANN with age dummy variable (DANN) and RF with age
dummy variable (DRF), had a larger R2 and a smaller RMSE than the wo parametric models, LM with
age dummy variable (DLM) and LMC with age dummy variable (DLMC) (Table 6). The DRF had
the largest R2 and smallest RMSE, followed by DANN, then DLMC, and then DLM. Compared with
the models without the age dummy variable, all the models with the age dummy variable greatly
increased the coefficients of determination R2 and reduced the RMSE values. Compared with the
corresponding models without the age dummy variable, the DLM led to the greatest increase of R2,
then DLMC, DRF, and DANN. The DRF resulted in the greatest decrease of RMSE, then DLMC, DLM,
and DANN. The improvements were also noticed by the scatter graphs of the predicted AGB values
against the plot referenced values in Figure 5. The overestimations still happened for the plots with
AGB values smaller than about 50 Mg/ha, and the underestimations occurred for the plots with AGB
values larger than 190 Mg/ha for both DLMC and DLM (Figure 5a,b) and 200 Mg/ha for both DRF
and DANN (Figure 5c,d). However, the overestimations and underestimations greatly decreased by
the models with the age dummy variable compared with the models without the age dummy variable.
In addition, compared with those without the age dummy variable, the models with the age dummy
variable slightly reduced the predicted AGB values of the plots at which the overestimations existed
and slightly increased the predicted AGB values of the plots at which the underestimations occurred.
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Table 6. The evaluation results of the four models with the age dummy variable based on the modeling
dataset (n = 100). (DLM: the linear regression model with the age dummy variable; DLMC: the linear
models with combined variables and the age dummy variable; DANN: the artificial neural network
with the age dummy variable; DRF: the random forest with the age dummy variable; R2: the coefficient
of determination, RMSE: the root mean square error).

Models R2 RMSE (Mg/ha)

DLM 0.696 34.421
DLMC 0.720 33.020
DANN 0.752 30.297

DRF 0.864 23.311
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Figure 5. The scatter plots of the predicted plot AGB values against the observed values based on
the modeling dataset (n = 100): (a) the linear regression with the age dummy variable (DLM); (b) the
linear models considering combined variables and the age dummy variable (DLMC); (c) the artificial
neural network with the age dummy variable (DANN); and (d) the random forest with the age dummy
variable (DRF).

3.4. Model Validation

In this study, we conducted the validation of the models with and without the age dummy
variable based on the test dataset. For both the young and middle-age stands, the negative mean
errors of the predictions from all the models without the age dummy variable except for ANN in the
middle-age forests were statistically significantly different from zero (Figure 6a), indicating that the
overestimations were statistically significant. Introducing the age dummy variable into the models
significantly reduced the residuals and the resulting mean errors (that is, overestimations), except that
from the model DRF became not significantly different from zero (Figure 6b). For the near-mature
stand, the positive mean errors (underestimations) did not significantly differ from zero for all the
models without the age dummy variable, and the models with the age dummy variable slightly
deteriorated the estimations of the plot AGB. For the mature and overmature stand, the LM, LMC,
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ANN, and RF resulted in positive mean errors, that is, underestimations, being significantly different
from zero at the significance level of 0.01. The models DLM, DLMC, DANN, and DRF greatly mitigated
the underestimations but were still statistically significant at the significance level of 0.05 for DLM and
DLMC and at the significance level of 0.01 for DANN. For all the test plots, the overall mean errors
were not significantly different from zero at the significance levels of 0.05 for all the models with and
without the age dummy variable.
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Figure 6. The statistical test results of the significant differences of mean errors from zero: (a) for the
models without the age dummy variable and (b) the models with the age dummy variable (LM: linear
regression, LMC: linear models considering combined variables, ANN: artificial neural network, RF:
random forest; DLM: LM with the age dummy variable, DLMC: LMC with the age dummy variable,
DANN: ANN with the age dummy variable, DRF: RF with the age dummy variable; YF: young forest,
MA: middle-age forest, NM: near-mature forest, MO: mature and overmature forest; * and ** represent
the significance levels of 0.05 and 0.01, respectively).
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Compared with the coefficients of determination R2 obtained using the models without the age
dummy variables, the models with the age dummy variable increased the correlations between the
referenced and predicted values of AGB for all the age group stands, but the increases were slight
(Table 7). However, for the pooled test dataset, the increases were significant for all the models with
the age dummy variable except for the DRF. Moreover, all the models with the age dummy variable
significantly decreased the values of RMSE compared with those without the age dummy variable
for all the age group stands and the pooled dataset. The decreases of RMSE using DLM, DLMC,
DANN, and DRF were 69%, 71%, 69%, and 47% for the young stand; 45%, 47%, 53%, and 39 % for
the mature and overmature stands; and 41%, 44%, 38%, and 32% for the pooled dataset, respectively.
The decreases of RMSE for the middle-age stand and near-mature stand were relatively smaller and
varied from 12% to 21%. There were also three exceptions: DANN increased the values of RMSE by 4%
and 7% for the middle-age stand and near-mature stand and DRF increased the RMSE value by 6% for
the near mature stand compared with the corresponding models, ANN and RF. Overall, the amount of
RMSE decreases and the portion of R2 accounted for by adding the age dummy variable within the
models decreased with the increase of the model performance without the age dummy variable.

Table 7. The coefficients (R2) of determination and root mean square errors (RMSE) between the
referenced and predicted values of AGB based on the test dataset (LM and DLM are linear regression
without and with the age dummy variable, respectively, and LMC and DLMC are linear models
considering combined variables without and with the age dummy variable, respectively; ANN and
DANN are artificial neural network without and with the age dummy variable, respectively; RF and
DRF are random forest without and with the age dummy variable, respectively; and given a stand age
group, the greatest R2 values and the smallest RMSE values from the models with and without the age
dummy variable are highlighted).

Indices
The Models Without Age Dummy Variable The Models with Age Dummy Variable

LM LMC ANN RF DLM DLMC DANN DRF

R2

Young 0.85 0.76 0.79 0.91 0.86 0.83 0.90 0.94
Middle age 0.90 0.89 0.95 0.97 0.92 0.91 0.94 0.97

Near mature 0.94 0.93 0.95 0.97 0.94 0.94 0.93 0.98
Mature and overmature 0.91 0.93 0.94 0.97 0.96 0.96 0.98 0.98

Total 0.83 0.81 0.88 0.92 0.94 0.94 0.95 0.96

RMSE
(Mg/ha)

Young 61.96 72.20 51.28 44.33 18.96 20.94 15.98 23.59
Middle age 35.01 36.21 26.94 20.88 29.81 30.31 27.90 16.57

Near mature 38.50 39.14 31.27 25.50 33.87 33.98 33.58 26.99
Mature and overmature 67.14 68.56 59.46 47.45 36.73 36.44 27.75 28.94

Total 52.54 56.03 44.47 36.37 31.22 31.55 27.59 24.81

Finally, the maps of the predicted AGB values for the Pinus densata forests were generated using
all eight models in Figure 7. For the models with the age dummy variable, in addition to the selected
spectral variables, the spatial distribution map of the Pinus densata forest stand ages obtained from
the Shangri-La City forest inventory was used. Overall, the spatial distributions of the predicted
AGB values by the models with the age dummy variable, especially by DANN and DRF, were
more heterogeneous than those by the models without the age dummy variables, implying that the
models with the age dummy variable reduced the overestimations for the smaller AGB values and the
underestimations for the larger AGB values and, thus, increased the heterogeneity of the predicted
AGB values.
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Figure 7. The spatial distributions of the predicted aboveground biomass (AGB) values of the Pinus
densata forests using eight models (LM: linear regression without the age dummy variable, LMC:
linear models considering combined variables without the age dummy variable, ANN: artificial neural
network without the age dummy variable, RF: random forest without the age dummy variable; DLM:
linear regression with the age dummy variable, DLMC: linear models considering combined variables
with the age dummy variable, DANN: artificial neural network with the age dummy variable and DRF:
random forest with the age dummy variable).

4. Discussion

4.1. Remote Sensing Variables

Optical remote sensing data are commonly used for biomass estimation due to significant
correlations between the spectral variables and biomass [12,19,33]. Especially, Landsat images have
been most widely utilized for this purpose because of free availability, a large coverage, and a
long history [55,56,77–81]. However, the selection of the spectral variables becomes very critical
for improving the estimation of forest AGB [19]. In this study, the correlation analysis revealed that the
texture measures had more significant contributions to increasing the estimation accuracy of forest
AGB than other spectral variables, mainly because the texture measures captured the complex forest
canopy structures [63,82]. The finding was also supported by previous studies [12,33,82–86].

4.2. Overestimation and Underestimation of Forest AGB

An obvious disadvantage of optical images is the saturation of their reflectance for the forests
that have complex canopy structures and large values of AGB, which often leads to underestimations
of high biomass values. Moreover, the reflectance values of young stands might also be affected by
understory vegetation such as shrub, grass, and bare soils due to a low canopy density, which usually
results in the overestimation of low biomass values. The results are widely known [19,33,56].
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The underestimations may occur if the forest biomass values are greater than the saturation value.
In this study, it was found that all the original models led to underestimations when the biomass of the
Pinus densata forest was greater than 180 Mg/ha. The threshold value at which the underestimation
happened was higher than that (159 Mg/ha) of the pine forests dominated by Pinus massoniana [33]
and those (100–155 Mg/ha) of the tropical forests [55,56], mixed forests, Cunninghamia lanceolata forests,
and broadleaf forests [33]. The difference might be due to different forest canopy structures caused by
biophysical environments [19,33]. Zhao et al. [33] found that pine forests had higher saturation values
because of their relatively simple canopy structures than broadleaf forests and mixed forests [66].
In addition, in this study the original models resulted in overestimations of the Pinus densata forest AGB
for the forests that had AGB values lower than 70 Mg/ha because of a low canopy density. However,
the threshold value was higher than that (40 Mg/ha) obtained by Zhao et al. [33] for plantations and
young broadleaf forests.

In addition, in this study, the overestimation in the young stands and the underestimation in
the mature and overmature stands were significant for the models without the age dummy variable.
The estimation errors were significantly reduced by the models obtained by incorporating the age
dummy variable by 47% to 71% for the young stands and 39% to 53% for the mature and overmature
stands based on RMSE. For the middle-age and near-mature stands, the decreases of RMSE were not
significant. This implied that the uncertainties of AGB estimates for the Pinus densata forests using
remote sensing could be significantly decreased by considering the stand age as a dummy variable
included into the estimation models.

4.3. Improvement of AGB Estimation by Incorporating Stand Age as a Dummy Variable

The heterogeneity and complexity of forest canopy structures may be the major reason for the
reflectance saturation of optical images [19,33]. In order to reduce the impact of data saturation on the
estimation accuracy of forest AGB, various methods have been proposed. For example, Zhao et al. [33]
used the stratification of vegetation types and slope aspects. In this study, stand age was introduced
as a dummy variable into the original models for the young forests, middle-age forests, near-mature
forests, and mature and overmature forests, which significantly reduced the overestimations for the
young stands and the underestimations for the mature and overmature stands. Adding the age dummy
variable into the models also decreased the threshold of the overestimations happening and increased
the threshold of the underestimations occurring. Compared with the models without the age dummy
variable, overall, the models with the age dummy variable reduced the values of RMSE by 32% to 44%
depending the models for the pooled dataset. This might be mainly because stand age was highly
correlated with forest growth and canopy structure and, thus, forest AGB. This implied that the use
of stand age as a dummy variable provided a great potential in improving the estimation of forest
AGB. However, the improvement of the forest AGB prediction accuracy by adding the age dummy
variable within the models decreased with the increase of the model performance without the age
dummy variable. This was because the room for potential improvement by adding the age dummy
variable became smaller as the model performance without the age dummy variable became better.

It has to be pointed out that the stand age may interact with the selected spectral variables. Thus,
the contributions of adding the age dummy variable into the models to improving the prediction
accuracy of the forest AGB may include the additive and interactive effects. In order to clarify the
effects, a potential method could compare the result (such as R2) from a model with the age dummy
variable with the sum of the R2 values from the model without the age dummy variable and the model
with the age dummy variable only. However, due to the limited space and time, this comparison was
not conducted in this study. Thus, a further study is needed in the future.

Moreover, it is sometimes difficult to get a spatial distribution map of the forest stand ages
for large regions. This is especially true for broad-leaf and natural forests. Several studies have
dealt with the methods of how to obtain a stand age map. For example, Iizuka and Tateishi [64]
and Sanga-Ngoie et al. [68] obtained tree ages using a tree age–volume relationship. Liu et al. [67]
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obtained stand ages based on the years in which the trees were planted. Zheng et al. [65] created a tree
age map using sample trees. Lefsky et al. [66] derived the forest stand ages using the time series of
Landsat images. The remote sensing-based method for estimating stand age looks cost-efficient, but
the stand age estimates are associated with uncertainties that might decrease the accuracy of forest
AGB estimates [66].

In this study, the Pinus densata forests are distributed over the subalpine and alpine areas of
the Hengduan Mountains and geographically in one of three major forest regions in China, which
consists of the south Qinghai, west Sichuan, northwest Yunnan, and southeast Tibet [70,71,87]. Most of
the Pinus densata forests are even-aged pure plantations or Pinus densata-dominated secondary mix
forests [71,72]. The stand age observations are relatively easily obtained by counting the layers of
branches along the trunk of each tree due to its growth characteristics. Moreover, in China, the
aforementioned forest inventories for forest management and planning are conducted nationally every
five to ten years depending on the area. The forest inventories often lead to spatial distribution maps
of stand age. Thus, obtaining stand age is not difficult. On the other hand, for the forested areas
and the tree species for which stand ages are often difficult to obtain, an alternative is the use of tree
growth cones. However, this method is often time-consuming and costly and also may lead to the
damage of the trees. Thus, a cost-efficient method to create stand age maps should be developed
in the future studies. In addition, the tropic rainforests often have not only various tree species but
also different vertical and horizontal structural heterogeneities of canopy caused by different species,
different growth, and different canopy sizes and structures. The stand ages are difficult to obtain.
The application of the proposed modeling method with the age dummy variable is, thus, limited
to the tropic rainforests. An alternative is modeling forest AGB by tree species or by canopy layer
based on dominant species. The further studies are, of course, very challenging but important and
urgently needed.

Although there is a limitation for the tropic rainforests, the proposed method can be widely
applied to improve the estimation accuracy of forest AGB for even-aged pure or one species dominated
forests, especially planted forests. China has an area of plantations with 62,000,000 ha that occupies 40%
of plantations in the world. The plantations are often even-aged pure or one species dominated forests,
and their stand ages are easily obtained. The plantations play an important role in the mitigation of
carbon concentrations in the atmosphere. Thus, the proposed method provides a great potential in
increasing the estimation accuracy of forest AGB for the plantations.

4.4. Method Comparison

Parametric and nonparametric algorithms have been widely used for biomass estimation of
forests with remotely sensed data [19]. In this study, two parametric models (LM and LMC) and two
nonparametric algorithms (ANN and RF) were used to estimate the AGB of Pinus densata forests. It was
found that compared with LM, LMC slightly improved the estimation of Pinus densata forest AGB
because of the use of combined variables in LMC. Moreover, the two nonparametric methods led to
significantly higher estimation accuracy of the Pinus densata forest AGB by reducing the overestimations
for the forests with smaller AGB values and the underestimations for the forests with larger AGB
values than the two parametric models. This implied that the two nonparametric methods had a
stronger ability to capture the heterogeneity of the Pinus densata forest AGB. This finding was similar
to previous studies [22,36,37,79,80,88–92]. The use of the age dummy variable further increased the
estimation accuracy of the Pinus densata forest AGB for all the models, but the improvement in the
estimation accuracy was relatively smaller for the two nonparametric models because of their higher
accuracy when stand age was not used as a dummy variable.

5. Conclusions

When optical remote sensing images such as Landsat imagery are used to estimate forest AGB,
overestimations and underestimations often take place for forests with small and large AGB values,
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respectively. Reducing the overestimations and underestimations becomes very important but difficult
mainly due to the mixed structures of tree canopies with shrubs, grass, and soil in young forests and
the insensitivity and saturation of spectral reflectance in forests with multilayered canopy structures
and high AGB values. In this study, a novel method was proposed to improve the estimation
accuracy of Pinus densata forest AGB using Landsat 8 OLI images by reducing the overestimations and
underestimations. In this method, a stand age dummy variable was introduced into two parametric
models and two nonparametric models, leading to four new models. The models with and without the
age dummy variable were compared to investigate the significant effects of the age dummy variable to
reducing the overestimations and underestimations. The results led to following conclusions: 1) The
two nonparametric algorithms had better performances of fitting and prediction for the modeling and
test plots than the two parametric algorithms. The prediction differences between the kinds of models
were statistically significant based on RMSE for all age group stands and the pooled dataset; 2) the
models with the age dummy variable statistically significantly improved the estimation accuracy of
Pinus densata forest AGB compared with the corresponding models without the age dummy variable
for all age group stands and the pooled dataset, by greatly reducing the overestimations for the plots
with smaller AGB values and the underestimations for the plots with larger AGB values; and 3) the
texture measures derived from the Landsat 8 OLI images had higher correlations with the Pinus densata
forest AGB than the original spectral bands and other transformations. This implied that the two
nonparametric models, coupled with the use of the age dummy variable and texture measures, offered
a great potential for improving the estimation accuracy of the Pinus densata forest AGB.
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