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Abstract: Continuous high spatio-temporal resolution monitoring of evapotranspiration (ET) is
critical for water resource management and the quantification of irrigation water efficiency at both
global and local scales. However, available remote sensing satellites cannot generally provide ET
data at both high spatial and temporal resolutions. Data fusion methods have been widely applied
to estimate ET at a high spatio-temporal resolution. Nevertheless, most fusion methods applied
to ET are initially used to integrate land surface reflectance, the spectral index and land surface
temperature, and few studies completely consider the influencing factor of ET. To overcome this
limitation, this paper presents an improved ET fusion method, namely, the spatio-temporal adaptive
data fusion algorithm for evapotranspiration mapping (SADFAET), by introducing critical surface
temperature (the corresponding temperature to decide soil moisture), importing the weights of
surface ET-indicative similarity (the influencing factor of ET, which is estimated from remote sensing
data) and modifying the spectral similarity (the differences in spectral characteristics of different
spatial resolution images) for the enhanced spatial and temporal adaptive reflectance fusion model
(ESTARFM). We fused daily Moderate Resolution Imaging Spectroradiometer (MODIS) and periodic
Landsat 8 ET data in the SADFAET for the experimental area downstream of the Heihe River basin
from April to October 2015. The validation results, based on ground-based ET measurements,
indicated that the SADFAET could successfully fuse MODIS and Landsat 8 ET data (mean percent
error: −5%), with a root mean square error of 45.7 W/m2, whereas the ESTARFM performed slightly
worse, with a root mean square error of 50.6 W/m2. The more physically explainable SADFAET
could be a better alternative to the ESTARFM for producing ET at a high spatio-temporal resolution.

Keywords: evapotranspiration; fusion; multi-source satellite data; Landsat 8; MODIS; SADFAET

1. Introduction

Evapotranspiration (ET), including soil evaporation and vegetation transpiration, is defined
as the movement of water from the land surface into air and continuously acquiring ET at a high
spatio-temporal resolution at field or sub-field scales is of critical significance for agricultural and
hydrological cycle modelling, irrigation water efficiency quantification and agricultural water resource
management [1]. Satellite remote sensing has already been considered a reliable and efficient tool for
monitoring spatially distributed ET over large zones. However, a single satellite cannot provide ET at
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a high spatio-temporal resolution due to the trade-off between the spatial and temporal resolutions of
thermal bands in current satellite sensors. For instance, Landsat series imagery can be used to map ET
at a relatively high spatial resolution, while ET dynamics cannot be observed, due to the 16-day revisit
interval of a single Landsat platform. In contrast, moderate-resolution sensors, such as the Moderate
Resolution Imaging Spectroradiometer (MODIS), provide imagery for ET estimation on a daily basis
but the relatively coarse spatial resolution hinders the application of ET for the quantification of
irrigation water efficiency and water resource management at field, local or basin scales.

To overcome this limitation, previous studies have proposed several methods, mainly including
traditional downscaling methods and data fusion methods [2]. Downscaling methods comprise a
scaling process of converting coarse spatial resolution images into finer spatial resolution images;
however, these methods cannot simultaneously enhance the temporal resolution of the sensor [3]
and have rarely been used in recent years [4–6]. Data fusion methods use two or more images to
obtain fine spatial resolution images; thus, they can simultaneously improve the spatial resolution
and temporal coverage. To date, several data fusion methodologies, which were originally developed
to fuse land surface reflectance and spectral index data, have been utilized to attempt the estimation
of ET at a fine spatio-temporal resolution from ET at a high spatial resolution and high temporal
resolution [7–24]. These data fusion methods can be divided into two categories: (1) fuse intermediate
variables to estimate ET and (2) fuse ET data. For the first category, ET at a high spatio-temporal
resolution is estimated by different ET models using intermediate variables that are closely related
to ET, such as the reference ET fraction (ETrF), normalized differential vegetation index (NDVI)
and land surface temperature (LST). These intermediate variables can be fused using a regression
model [12,25] or different spatio-temporal data fusion models [23,26,27]. For the second category,
different spatio-temporal data fusion models are directly applied to fuse ET. For example, Ke et al. [26]
and Ma et al. [28] applied the spatial and temporal adaptive reflectance fusion model (STARFM) and
the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM), respectively, to fuse
multi-source ET data, while a research group at the U.S. Department of Agriculture (USDA) used the
STARFM to fuse ET at the GEOS Imager-derived 3 km–10 km, MODIS 1 km and Landsat 30 m scales
from the Atmosphere-Land Exchange Inverse (ALEXI) model and the associated flux disaggregation
model (DisALEXI) [7–11,13,18,29,30]. For either the first or second category, the most widely and
successfully used spatio-temporal data fusion models are the STARFM and ESTARFM, respectively.
However, it should be noted that existing methods also have the following limitations: most fusion
methods applied to ET are initially used to integrate the land surface reflectance, spectral index and
LST; thus, these methods cannot completely consider the influencing factor of ET including remote
sensing and atmospheric characteristics [31] (especially some critical issues, such as soil moisture [32]
and vegetation distribution) [33,34].

The objectives of this paper are twofold: (1) to develop a spatio-temporal adaptive data fusion
algorithm for evapotranspiration mapping (SADFAET) for producing ET at a fine resolution and (2) to
fuse ET using Landsat 8 and MODIS image data and validate the fused ET data with ground-based
measured data collected downstream of the Heihe River basin. The SADFAET improves on the original
ESTARFM algorithm by introducing the critical surface temperature (the corresponding temperature to
decide soil moisture) to select similar pixels, importing the weight for surface ET-indicative similarity
(the influencing factor of ET which is estimated from remote sensing data) and modifying the spectral
similarity (the differences in spectral characteristics between different spatial resolution images) by
incorporating the shortwave infrared bands. Section 2 presents the background and the methodology
on how the SADFAET was derived. Section 3 describes the study site, the ground-based meteorological
and energy flux measurements, satellite data and data preprocessing. Section 4 provides the results
and discussion. The conclusions are finally made in Section 5.
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2. Methods

2.1. A Brief Overview of the ESTARFM

The ESTARFM was developed to fuse the land surface reflectance by Zhu et al. [35], which
was based on the STARFM [36] and the two methods are the most common remote sensing data
fusion methods that obtain fine spatial resolution images on a specified date from coarse spatial
resolution images on the same date and one or more additional fine-coarse resolution pair. These
methods can accurately predict fine-resolution images for heterogeneous landscapes and are the most
common remote sensing data fusion methods. In ESTARFM, unknown fine-resolution reflectance on
the predicted date tp can be fused using the known fine-resolution reflectance acquired on the reference
date tm (right before tp) and tn (right after tp) together with the corresponding coarse-resolution
reflectance on tm, tn and tp by introducing similar pixels (i.e., spectrally similar and homogeneous
neighboring pixels within the moving window), a conversion coefficient and a weighting coefficient.
Although the ESTARFM and the STARFM were originally designed to produce reflectance data, they
were also used to produce high spatial resolution NDVI, LST and ET data [7–9,13,18,26,28,37,38].
Similar to the ESTARFM, Weng et al. [3] proposed a spatio-temporal adaptive data fusion algorithm
for temperature mapping (SADFAT), corresponding to deriving the ESTARFM by nonlinear methods,
which was proven to accurately predict fine-resolution radiance products. Since both reflectance
and radiance contribute to the variation in ET and the ESTARFM was proven to accurately fuse
reflectance and radiance data, this study developed a spatio-temporal adaptive data fusion algorithm
for evapotranspiration mapping (SADFAET) by introducing ET, which has a greater influence, into
the ESTARFM.

2.2. Theoretical Basis of the SADFAET

The SADFAET, which improves on the original ESTARFM algorithm by introducing the critical
surface temperature (T*) the corresponding temperature when surface soil moisture availability in
the upper soil layer for each pixel decreases to 0 and vegetation becomes soil water-stressed, which
is defined in the work of Tang & Li [39] to decide soil moisture, importing the weight for surface
ET-indicative similarity and modifying the spectral similarity by incorporating the shortwave infrared
bands (representing soil moisture), is developed to fuse different spatial-temporal resolution ET
products to estimate fine-resolution ET data. In the SADFAET, the calculation of fine-resolution
ET is modified from that of the ESTARFM algorithm and the ET over a fine-resolution pixel at the
prediction time can be calculated by the sum of the fine-resolution ET data at the reference time and
coarse-resolution ET data at the reference and prediction times. Similar to the ESTARFM, the moving
window is used to search similar pixels within the window and information of similar pixels is then
integrated into fine-resolution ET calculation. Unknown fine-resolution ET data of the central pixel
(xw/2, yw/2) on the predicted date tp in the SADFAET can be computed using the known fine-resolution
ET data acquired on the reference date tm and tn together with the corresponding coarse-resolution ET
data on tm, tn and tp:

ETF
w/2,w/2,tp = Tm × ETF,m

w/2,w/2,tp + Tn × ETF,n
w/2,w/2,tp (1)

ETF,k
w/2,w/2,tp = ETF

w/2,w/2,tk + Γ(Wi,j,tk × Vi,j,tk × (ETC
i,j,tp − ETC

i,j,tk ), (k = m, n) (2)

Tk =
1/
∣∣∣Γ(ETC

i,j,tk − ETC
i,j,tp)

∣∣∣
∑k=m,n (1/

∣∣∣Γ(ETC
i,j,tk ETC

i,j,tp)
∣∣∣) (3)

where the subscript C represents the coarse-resolution pixel and the subscript F represents the
fine-resolution pixel. w represents the side length of the moving window, which is used to search
similar pixels and is determined by the spatial resolution of the input image. The co-ordinate location
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of the similar pixel is (i, j) and (w/2, w/2) is the coordinate location of the central pixel. Wi,j,tk represents
the weight of the similar pixel computed from the surface ET-indicative similarity, the improved
spectral similarity and the distance weight between the similar pixel and the central pixel. Vi,j,tk
represents the conversion coefficient of the similar pixel, which can be obtained by linear regression
analysis for each similar pixel on the reference date tm and tn [35]. Tk represents the temporal weight.
The operator Γ(X) represents ∑w

i=1 ∑w
j=1(X).

There are 4 major steps, including the selection of similar neighboring pixels, the calculation of
the weights of similar pixels, the calculation of the conversion coefficient and the calculation of the
temporal weight for ET fusion. The SADFAET improves the selection of similar neighboring pixels
and the calculation of the weight of similar pixels but follows the work of Zhu et al. [35] to determine
the window size, temporal weight and conversion coefficient.

2.2.1. Selection of Similar Neighboring Pixels

According to the original ESTARFM models, two methods were used to obtain similar pixels,
including the setting threshold and unsupervised classification. However, these two methods mainly
consider spectral similarity rather than the ET similarity between the central pixel and other pixels
within the search window, while the number of classes limits the automated fusion processing
and reduces the accuracy of the similar pixel selection. Note that soil moisture is an important
environmental factor that can significantly influence ET. In the SADFAET, the new method is therefore
to take into account soil moisture in order to select similar neighboring pixels more reasonably by
first introducing a critical surface temperature (T*) and then judging how T* and the remotely sensed
surface temperature vary. The T* corresponds to the surface temperature when the surface soil moisture
availability in the upper soil layer decreases to 0 and the vegetation becomes soil water-stressed [39]
and it can be estimated using the theoretical surface temperature at 2 hypothesized end-members, Tsd
with no soil water availability at the upper layer and with zero evaporation and Tvw with well-watered
vegetation with potential transpiration, from the following equations.

Tsd =
ras(Rn,s − Gs)

ρCp
+ Ta (4)

Tvw =
ravRn,v

ρCp

γ(1 + rvw/rav)

∆ + γ(1 + rvw/rav)
− VPD

∆ + γ(1 + rvw/rav)
+ Ta (5)

Fv = (
NDVI − NDVIMIN

NDVIMAX − NDVIMIN
)

2
(6)

T∗ = [T4
sd(1 − Fv) + T4

vwFv]
1/4

(7)

where Tsd and the Tvw represent the theoretical surface temperature of the dry soil and well-watered
vegetation, respectively. Cp represents the specific heat capacity at constant pressure (J/(m·K)).
ρ represents the density of air (kg/m3). ∆ represents the slope of saturated vapor pressure versus air
temperature (kPa/◦C). VPD represents the vapor pressure deficit of the air (kPa). Ta represents the
near-surface air temperature (K). γ represents the psychrometric (kPa/◦C). rvw represents the canopy
resistances at the well-watered vegetation (s/m). ras represents the aerodynamic resistance at dry
soil (s/m).

When the actual LST (retrieved by remote sensing) for the pixel is lower than or equal to T*,
the vegetation component is considered to be potentially transpiring and the soil component is
considered to be evaporating at a rate between zero and its maximum value (i.e., the potential rate);
otherwise, no water is available to be evaporated for the soil component and the vegetation component
transpires with a certain degree of soil water stress. Below are the procedures of the proposed method
for selecting similar pixels.
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(1). For each fine-resolution pixel at tm and tn, record T* and the LST retrieved from remote sensing
data (TR).

(2). For a given pixel, if the remotely sensed TR at a fine resolution at tm is equal to or greater
than T* and TR at tn is equal to or greater than T* as well, this pixel is considered to fall into
CLASS 1, where no water is available to be evaporated for the soil component and the vegetation
component transpires with a certain degree of soil water stress between tm and tn.

(3). If TR at tm is greater than T* but TR at tn is less than T* at the same time, this pixel is considered to
fall into CLASS 2, where the surface soil moisture is increasing, and the vegetation transpiration
is increasing to the potential transpiration amount between tm and tn.

(4). If TR at tm is less than T* but TR at tn is greater than T* at the same time, the pixel is considered
to fall into CLASS 3, where the surface soil moisture decreases to zero while the vegetation
component transpires from a maximum value (i.e., the potential transpiration) to a certain degree
of soil water stress between tm and tn.

(5). If TR at tm is less than T* and TR at tn is less than T* as well, this pixel is considered to fall into
CLASS 4, where the vegetation component transpires potentially, and the surface soil moisture is
between zero and a maximum value between tm and tn.

(6). Finally, compare the class (CLASS 1 through CLASS 4) of the central pixel with the given
neighboring pixel. If the two pixels fall into the same class, the given neighboring pixel is
considered to be a similar neighboring pixel.

2.2.2. Calculation of the Weight of the Similar Pixel

After finishing the selection of a similar pixel, its weight (W) is calculated. However, the original
W cannot completely represent the ET; thus, Wi is modified in this paper and the improved weight is
computed from the spectral similarity, the surface ET-indicative similarity and the distance between
the similar pixel and the central pixel in the SADFAET.

Calculations of the spectral similarity need to consider the effects of surface soil
moisture and several indices derived from optical remote sensing observations have been
proposed for measuring soil moisture [40], such as the Shortwave Infrared Water Stress Index
(SIWSI) [41], the Shortwave-infrared Perpendicular Drought Index (SPDI) [42] and the Visible and
Shortwave-infrared Drought Index (VSDI) [43]. We can see that all of these indices use shortwave
infrared bands. However, in the ESTARFM and SADFAT, the spectral similarity is calculated using only
shortwave and thermal infrared bands; thus, we make an improvement to introduce the shortwave
infrared bands into the calculation of spectral similarity to indicate the changes in soil moisture and ET.
Here, the spectral similarity (Si,j,tk) is determined by the correlation coefficient of the spectral vector,
including shortwave bands (representing vegetation cover), shortwave infrared bands (representing
soil moisture) and thermal infrared bands (representing LST), between each similar pixel and its
corresponding coarse-resolution pixel with the following equations:

Si,j,tk =
E[Fijk − E(Fijk))(Cijk − E(Cijk))]√

D(Fijk) ·
√

D(Cijk)
(8)

Fijk =
{

BS,F
i,j,tm , BS,F

i,j,tm , BTIR,F
i,j,tm , BS,F

i,j,tn , BSWIR,F
i,j,tn , BTIR,F

i,j,tn
}

(9)

Cijk =
{

BS,C
i,j,tm , BS,C

i,j,tm , BTIR,C
i,j,tm , BS,C

i,j,tn , BSWIR,C
i,j,tn , BTIR,C

i,j,tn
}

(10)

where Fijk and Cijk represent the coarse and fine spatial resolution image spectral vectors respectively
at tk, including the reflectance of shortwave infrared bands (BSWIR), shortwave bands (BS) and the
radiance of thermal infrared bands (BNIR). For example, with the Landsat 8 data in this study, the BS
covers bands 2–5 (blue, green, red and NIR, respectively), BSWIR covers bands 6 and 7 (SWIR 1 and 2,
respectively) and the BNIR covers bands 10 and 11 (TIRS 1 and 2, respectively). E() represents the
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expected value and D() represents the variance value. Combining SWIR information can introduce soil
moisture into the fusion model and improve the accuracy of fused ET data.

The surface ET indicators include NDVI, LST, soil moisture and ET [44,45]. We can calculate
the changes in surface ET indicators for both the central pixel and the selected similar pixel between
tm and tn and determine the weights of different similar pixels to avoid the influence of the selected
useless pixel. The weight for the surface ET-indicative similarity of the ith similar pixel (WSCi,j,tk) can
be calculated from the correlation coefficient of the surface ET indicator vector as follows:

WSCi,j,tk =
E[SCijk − E(SCijk))(SCcentral − E(SCcentral))]√

D(SCijk) ·
√

D(SCcentral)
(11)

SCijk = (NDVIF
i,j,tk , LSTF

i,j,tk , SMF
i,j,tk , ETF

i,j,tk ) (12)

SCcenter = (NDVIF
w/2,w/2,tk , LSTF

w/2,w/2,tk , SMF
w/2,w/2,tk , ETF

w/2,w/2,tk ) (13)

where the subscripts “central” represent central pixels, respectively. SM represents the soil moisture.
The weight of a similar pixel (Wi,j,tk) is calculated can be given as follows:

Wi,j,tk = (1/Di,j,tk )/Γ(1/Di,j,tk ) (14)

Di,j,tk = (1 − Si,j,tk )(1 − WSCi,j,tk )× di,j,tk (15)

di,j,tk = 1 +
√
(w/2 − i)2 + (w/2 − j)2/(w/2) (16)

where Si,j,tk represents the spectral similarity between fine- and coarse-resolution pixels for the similar
pixels (i, j). WSCi,j,tk represents the weight of the surface ET-indicative similarity between the similar
pixels (i, j) and central pixel (w/2, w/2). di,j,tk represents the geographic distance between the ith similar
pixel and central pixel.

Figure 1 presents a schematic diagram of the SADFAET. This algorithm requires two pairs of fine-
and coarse-resolution images on the same date and a set of coarse-resolution images for the prediction
dates. Before implementing the SADFAET, the fine-resolution LST, NDVI, soil moisture and ET data at
the reference time must be retrieved. There are 6 major steps in the SADFAET implementation. First,
fine-resolution LST and T* data are used to select similar neighboring pixels. Second, the fine- and
coarse-resolution shortwave infrared bands, the shortwave bands and the radiance in the thermal
infrared bands are used to calculate the spectral similarity. Third, surface ET-indicative similarity is
estimated by fine-resolution LST, NDVI, soil moisture and ET data. Fourth, the geographic distance
and temporal weight are calculated. Fifth, the conversion coefficient is determined by linear regression.
Finally, the above weight, similarity and coefficient are used to calculate the ET at a fine resolution at
the predicted time.
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Figure 1. Schematic diagram of the spatio-temporal adaptive data fusion algorithm for
evapotranspiration mapping (SADFAET).

2.3. End-Member-Based Soil and Vegetation Energy Partitioning Model

The end-member-based soil and vegetation energy partitioning (ESVEP) model [39] was
developed for estimating soil and vegetation ET from remote sensing data by considering the differing
responses of the soil water content in the upper surface layer to soil evaporation and those in the deeper
root zone layer to vegetation transpiration. This model defines four hypothesized end-members,
including dry soil (i.e., no soil water availability in the upper layer and zero evaporation), dry
vegetation (i.e., no soil water availability and zero transpiration), wet soil (i.e., potential evaporation)
and well-watered vegetation (i.e., potential transpiration). Based on the difference in vegetation
height in different partially vegetated pixels, four end-member temperatures can be estimated
pixel-by-pixel. The actual surface temperature for the partially vegetated pixel consequentially falls
between the maximum and minimum of its hypothesized end-member temperature. When the
vegetation temperature and energy are separated from their soil components, the ESVEP abides by
two principles: (1) when soil evaporation is greater than zero, the vegetation transpiration equals the
maximum (potential transpiration) and (2) when vegetation is soil-water stressed, the soil evaporation
equals zero.

There are three major steps in the ESVEP model implementation. First, a physical algorithm [46]
is used to estimate the divergence in the surface net radiation and soil heat flux. Second, the
theoretical surface temperature at each of the four hypothesized end-members is calculated by the
surface energy balance equation and the Penman–Monteith equation. Finally, when the actual LST
(retrieved by remote sensing) for the pixel is lower than or equal to the critical surface temperature,
as presented in Equation (7), the vegetation component is considered to be potentially transpiring and
the soil component is considered to be evaporating at a rate between zero and the maximum value
(i.e., the potential rate). The vegetation and soil component latent heat flux (LEv and LEs, respectively)
under this condition are estimated as:

LEv = LEvw (17)

LEs =
Tsd − Ts

Tsd − Tsw
LEsw (18)

where Ts and Tsw represent the soil component temperature and theoretical surface temperature of the
saturated soil, respectively. LEvw and LEsw represent the theoretical latent heat flux in the well-watered
vegetation and saturated soil, respectively.
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Otherwise, when no water is available to be evaporated in the soil component and the vegetation
component transpires with a certain degree of soil water stress, the LEv and LEs are estimated as:

LEv =
Tvd − Tv

Tvd − Tvw
LEvw (19)

LEs = LEsd = 0 (20)

where Tv and Tvd represent the vegetation component temperature and the theoretical surface
temperature of dry vegetation, respectively. LEsd represents the theoretical LE of the dry soil.

The ESVEP model is demonstrated to be no more sensitive to meteorological, vegetation and
remote sensing inputs than other ET models and has great potential for producing reasonably good
surface energy fluxes. In our study, the fine- and coarse-resolution ET data at the reference time and
the fine-resolution ET data at the prediction time were estimated by the ESVEP model [39].

2.4. Validation of the SADFAET

The SADFAET algorithm was applied to the actual Landsat 8 and MODIS images, which aided in
understanding its accuracy and reliability. To avoid the impact of ET retrieval, the accuracy of the ET
estimates from the ESVEP was first evaluated. The performance of the SADFAET was then assessed
through retrieved ET from Landsat 8 data and ground-based measurements. The mean, maximum
and minimum ET, standard deviation and histogram of differences of SADFAET and Landsat 8 ET
were also used to validate the spatial patterns of fused ET. The fused ET was further compared with
the ground-based eddy covariance (EC) measurement to validate the accuracy of the SADFAET based
on the mean bias (MB), mean percent error (MPE) and root mean square error (RMSE). The MPE can
be calculated as:

MPE =
1
N

×
N

∑
i=1

Bi/Oi × 100% (21)

where Bi represents the bias of the ith datum. Oi represents the observation of the ith data. N represents
the number of data.

3. Materials

3.1. Test Sites and Ground-Based Data

The study area is downstream of the Heihe River basin (LU: 42.0333◦N, 101.1◦E, RL: 41.9667◦N,
101.1667◦E), which is an endorheic basin located in the arid and semiarid regions of Northwest
China. The annual mean temperature, relative humidity and wind speed are 9.4 ◦C, 33.7% and
3.2 m/s, respectively and the annual precipitation is approximately 50 mm. There are five ground
sites, namely, Sidaoqiao, Populus euphratica, Mixed Forest, Barren land and Cropland, in the study
area and the landscapes are comprised of Tamarix, populus euphratica, Populus euphratica and
Tamarix, bare land and melon, respectively (Table 1 & Figure 2). Ground-based half-hourly average
atmospheric variables (air temperature, wind speed, atmospheric pressure and relative humidity)
and downward solar radiation, which were collected from April 2015 to October 2015 at the five
ground sites, are used for this study and can be obtained from the Heihe Integrated Observatory
Network (http://www.heihedata.org/) [47,48]. The EC system and a large aperture scintillometer
(LAS) provided the measurements of turbulent fluxes downstream of the Heihe River basin, while
the sample frequencies are 10 Hz (for EC) and 1 min (for LAS) and the heights are 3.5 m (for EC at
the Cropland and Barren Land sites), 22 m (for EC at the Mixed Forest and Populus euphratica sites),
8 m (for EC at the Sidaoqiao site) and 22.5 m (for LAS). The LAS and EC flux data were processed and
screened according to the criteria suggested in Liu et al. [47]. The instantaneous ET was validated by
using 10-min flux measurements as ground-truth data.

http://www.heihedata.org/
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Table 1. Attributes of the test sites in the study area (Sidaoqiao).

Ground Sites Landscape Longitude Latitude Elevation (m) Observation
Instrument

Sidaoqiao tamarix 101.1374 E 42.0012 N 873 LAS/EC
Populus euphratica populus euphratica 101.1239 E 41.9932 N 876 EC

Mixed Forest populus euphratica
and tamarix 101.1335 E 41.9903 N 874 EC

Barren Land bare land 101.1326 E 41.9993 N 878 EC
Cropland melon 101.1338 E 42.0048 N 875 EC

3.2. Satellite Data

Multi-source remote sensing data at different spatial and temporal resolutions were obtained
from Landsat 8 and Terra MODIS (Table 2). The spatial resolutions of Landsat 8 and MODIS are 30 m
and 500–1000 m, respectively, while the temporal resolutions are 8–16 days and 1 day, respectively.
Fifteen predominantly clear scenes (day of year [doy]: 96, 103, 135, 144, 160, 176, 199, 215, 231, 240,
247, 256, 288, 295 and 304) of Landsat 8 data from Path 133, Row 31 and Path 134, Row 31 acquired for
the period of April to October 2015 were collected from the United States Geological Survey (USGS)
(https://landsat.usgs.gov/). The shortwave reflectance band and the thermal band of the 15 scenes
were atmospherically corrected using the ENVI. The corresponding MODIS (Terra) datasets, including
the 1 km calibrated radiance product (MOD021KM), geolocation product (MOD03), precipitable water
product (MOD05_L2), surface reflectance product (MOD09GA), land surface temperature/emissivity
product (MOD11A1) and vegetation index product (MOD13A2), were obtained from the Land
Processes Distributed Active Archive Center (LP DAAC) (http://glovis.usgs.gov/).
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Table 2. Terra, Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 8 data (April to
October 2015) used in this study.

Data Type MODIS (Horizontal 25, Vertical 04) Landsat 8 (Path 133/134, Row 031)

MOD09GA MOD021KM etc. OLI TIRS

Resolution 500 m 1000 m 30 m 30 m (resample)

Day of year (DOY) 096–304
096, 103, 135, 144, 160,
176, 199, 215, 231, 240,
247, 256, 288, 295, 304,

Before the implementation of the SADFAET, both Landsat 8 (OLI/TIRS) and MODIS data need
to be calibrated over the same coordinate system (Universal Transverse Mercator projection, UTM)
and resampled at the same spatial resolution (30 m). MODIS Reprojection Tools (MRTs) were used
to resample and re-project the MODIS data to the Landsat resolution and extent. Landsat 8 data
were calibrated and atmospherically corrected for the shortwave reflectance band using the ENVI.
Considering the landscape and land cover types of this area, the size of the search window was set as
30 Landsat 8 pixels.

Based on the 15 original Landsat-MODIS images, the dates with missing remote sensing or
meteorological data were excluded and the fusion strategy is shown in Table 3.

Table 3. Fusion strategy: day of year (DOY) of the input data and results.

DOY of MODIS ET (1 km) DOY of Landsat 8 ET (30 m) DOY of Fusion Results and Validation (30 m)

96/103/135 96/135 103
103/135/144 103/144 135
135/144/176 135/176 144
144/176/199 144/199 176
176/199/231 176/231 199
199/231/240 199/240 231
231/240/247 231/247 240
240/247/256 240/256 247
247/256/288 247/288 256
256/288/295 256/295 288

The input parameters at a spatial resolution of 30 m for the ESVEP model and the SADFAET were
derived from the Landsat 8 shortwave reflectance and thermal bands, while the input parameters at
a spatial resolution of 1 km were derived from MODIS products. Specifically, for the 1 km spatial
resolution data, MOD021KM was used to calculate the spectral similarity, MOD03, MOD09GA,
MOD11A1 and MOD13A2 were used to estimate the coarse-resolution ET data and MOD05_L2
provided the atmospheric water vapor content. For 30 m spatial resolution data, the 30 m resolution
NDVI was calculated using corrected OLI Band 4 and Band 5 reflectance data of Landsat 8. Soil
moisture at a 30 m resolution was retrieved from OLI Band 7 of Landsat 8 and the NDVI using the
OPtical TRApezoid Model (OPTRAM) [50]:

W =
id + sdNDVI − STR

id − iw + (sd − sw)NDVI
(22)

where STR can be estimated by SWIR reflectance; id and sd represent the intercept and slope of the
dry edge in the STR−NDVI space, respectively; and iw and sw represent the intercept and slope of
the wet edge in the STR−NDVI space, respectively. In this research, the dry edge and wet edge were
determined by the method in Sadeghi et al. [50].
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The LST at a 30 m resolution was retrieved from TIRS Band 10 of Landsat 8 using the widely
applied mono-window algorithm [51]:

LST =
[
K2(ϕ1 + ϕ2)T10 + (1 − ϕ1 − ϕ2)T2

10 − K2 ϕ2Ta

]
/K2 ϕ1 (23)

ϕ1 = ε10τ10, ϕ2 = (1 − τ10)[1 + (1 − ε10)τ10] (24)

where T10 represents the brightness temperature at Landsat 8 band 10. The surface emissivity (ε) is
estimated following an NDVI threshold method [52]. τ represents the atmospheric transmittance.
Ta represents the average atmospheric operating temperature, K. K2 is a constant (1321.08).

The main input data sources used in the SADFAET are outlined in Table 4.

Table 4. Summary of the primary inputs into the SADFAET (Landsat and MODIS).

Variable MODIS Landsat 8

NDVI MOD13A2 OLI Band 4, Band 5
LST MOD11A1 TIRS Band 10, mono-window algorithm [51]
SM - OLI Band 7, OPTRAM [50]

Landsat 8 OLI bands 4 and 5 were used to estimate the NDVI, band 7 was used to estimate the soil
moisture and band 10 was used to estimate the LST, while ET at a fine resolution, surface ET-indicative
similarity and spectral similarity can be estimated by these parameters.

4. Results and Discussion

4.1. Validation of ET Estimated by the ESVEP Model

Accurate estimates of ET from fine- and coarse-resolution satellite data are a prerequisite for
producing reliable fusion results. The accuracy of the ET estimates from the ESVEP was evaluated by
validating the LE (latent heat flux) retrievals against the EC/LAS observations at the five test sites.
At the Sidaoqiao site, the LAS measurement was used to validate the MODIS-based retrievals, while at
the other sites, the EC measurement was used to validate the Landsat-based retrievals. Figure 3 and
Table 5 show that the retrieved LEs agreed well with local measurements, with an overall low root
mean square error (RMSE) of 40.9 W/m2 at all sites and the average retrieved LEs were slightly lower
than the average observations; thus, the retrieved instantaneous ET is reliable as the input parameter
for data fusion.
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Table 5. Error metrics of instantaneous LE estimates from MODIS and Landsat 8 data. Mean O: mean
observation; Mean P: mean prediction; MB: mean bias; MPE: mean percent error; RMSE: root mean
square error.

Ground Sites Mean O
(W/m2)

Mean P
(W/m2)

MB
(W/m2)

MPE
(%)

RMSE
(W/m2)

Sidaoqiao 217.5 189.7 −27.8 −16 42.7
Populus euphratica 160.7 144.7 −16.0 −12 40.4

Mixed Forest 155.4 154.2 −1.2 −3 44.8
Barren Land 70.5 86.7 16.2 22 24.6

Cropland 135.1 120.3 −14.8 −14 31.8
Average 147.8 139.1 −8.7 −5 40.9

Statistics are also provided in Table 5 for different land cover types. The MPEs of the Sidaoqiao,
Populus euphratica, Mixed Forest, Barren Land, Cropland sites are −16%, −12%, −3%, 22% and −14%,
respectively. Only the LE at the Bareland site was overestimated, while the LEs at the other sites were
underestimated. The largest MPE (22%) appeared for the estimations of LE at the Barren Land site,
which was likely because the fractional vegetation cover of the bare land was too low, resulting in
large errors for the four end-members in the ESVEP.

4.2. Evaluation of the Spatial Pattern of ET Fused with the SADFAET Model

The performance of the SADFAET was first evaluated through the comparison of fused ET data
with the retrieved ET data by the ESVEP model using the Landsat 8 data on the 10 selected fusion
dates. Three typical pairs of the spatial pattern of fused ET and retrieved ET data over the study area
on May 15, July 18 and August 28, together with a histogram of the ET difference, are illustrated in
Figure 4. Table 6 illustrates the statistical measures of ET fused by the SADFAET and that retrieved
using the Landsat 8 data over the typical days. It could be found that over the study area, the fused
ET data were close to the retrieved ET data, with a smaller absolute value of the percent difference
varying between 1.0% and 5.6%. The fused ET data also had a standard deviation (SD) magnitude
similar to that of compared to the retrieved ET on each of the three typical days. The SD value over the
study area varied between 16.2 W/m2 and 48.2 W/m2 for the fused ET and between 17.6 W/m2 and
48.8 W/m2 for the retrieved ET. The mean values over the study area varied between 30.1 W/m2 and
74.6 W/m2 for the fused ET and between 28.5 W/m2 and 76.7 W/m2 for the retrieved ET.

It is clear that the image fused by the SADFAET was similar to that predicted directly using the
Landsat 8 image in terms of the overall spatial patterns of ET. The difference between SADFAET ET
and Landsat 8 ET is mostly ±10 W/m2. The fused ET images contained most of the spatial details
found in the Landsat 8 ET images, including surface features, such as buildings, barren lands (with
low ET values) and croplands (with high values).
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Figure 4. Histogram (top panel) of the difference between fine-resolution LE data fused by the
SADFAET (right panel) and the estimates directly retrieved by the ESVEP model using Landsat 8 data
(left panel) on (a) May 15, (b) July 18 and (c) August 28.

Table 6. Comparison between instantaneous ET fused by the SADFAET and that directly retrieved by
the ESVEP model from Landsat 8 data on typical days (in spring, summer and autumn) over the study
area. Max: maximum ET; Min: minimum ET; SD: standard deviation; R: correlation coefficient.

DOY Item Mean
(W/m2)

Max
(W/m2)

Min
(W/m2)

SD
(W/m2) R

May 15 Fused ET 30.06 45.09 10.49 16.17
0.47Retrieved ET 28.48 40.84 12.76 17.58

July 18 Fused ET 74.61 99.26 38.29 38.85
0.49Retrieved ET 76.69 108.05 34.32 40.55

August 28 Fused ET 69.58 67.21 32.61 48.21
0.46Retrieved ET 68.90 83.09 29.21 48.78

4.3. Validation of ET Data Fused by the SADFAET Model Using Ground-Based Measurements

The instantaneous LE data fused by the SADFAET were further compared with the ground-based
EC measurement collected at the 5 test sites over the 10 selected days (see Figure 5). Table 7 illustrates
the statistical parameters between the fused LEs and measured LEs on the selected days for different
land cover types. The results show an overall reasonably good agreement between the instantaneously
fused LEs and measured LEs, with a slight underestimation of 13.1 W/m2 and a RMSE of 45.7 W/m2.
An overestimation of 18.0 W/m2 was found at the Barren Land site, with a RMSE of 25.1 W/m2, while
underestimations were shown at the other four sites, with mean errors varying from −27.5 W/m2 to
−18.3 W/m2 and RMSE varying from 41.4 W/m2 to 60.6 W/m2. The verification results at the site
scale show that the SADFAET can accurately fuse ET data over most surfaces, while the relatively
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larger error at the Barren Land site was possibly due to the poor accuracy of the instantaneously
retrieved LE.
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Table 7. Error metrics of the LE fused by the SADFAET with the ground-based EC measurement.

Ground Sites Mean O (W/m2) MB (W/m2) MPE (%) RMSE (W/m2)

Sidaoqiao 250.0 −27.5 −11 60.6
Populus euphratica 174.2 −18.3 −11 50.7

Mixed Forest 179.6 −19.5 −11 50.5
Barren Land 81.9 18.0 22 25.1

Cropland 155.1 −18.6 −12 41.4
Average 168.2 −13.1 −5 45.7

4.4. Comparison of ET Data Fused by the SADFAET and ESTARFM

We compared the SADFAET with the original ESTARFM to verify the improvement in the
SADFAET. The scatter plots in Figure 5 also show the measured LE and ESTARFM LE at the 5 sites.
According to Figure 5, we can see that both the SADFAET and ESTARFM can accurately predict ET
at a high resolution, while the SADFAET LE data in the scatter plots fall closer to the 1:1 line. For all
the sites, the prediction precision of the SADFAET is higher than that of the original ESTARFM (MPE:
−5% vs. −8%; MB: −13.1 W/m2 vs. −18.6 W/m2; RMSE: 45.7 W/m2 vs. 50.6 W/m2). Statistics are
provided in Figure 6 for different sites for the ESTARFM and SADFAET. Similar to the SADFAET, only
fused ET data by the ESTARFM at the Barren Land site were overestimated, while fused ET data at
the other sites were underestimated. The greatest improvement in the SADFAET, in comparison to
the ESTARFM, appeared at the Cropland site (MPE: −12% vs. −17%), while at the Barren Land site,
there was almost no improvement (MPE: 22% vs. 22%). This may be because the SADFAET considers
the variation in soil moisture, while the soil moisture of the Bareland site has a low value and the soil
moisture of the Cropland site has significant variation during the crop growth season.
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4.5. Discussion

4.5.1. Uncertainties in the SADFAET

Our results indicate that the SADFAET can accurately estimate ET at a high spatio-temporal
resolution by fusing ET at a high spatial resolution with that at a high temporal resolution. However,
there are some uncertainties are associated with the use of the algorithm and the uncertainty in the
fused ET method primarily results from (1) the retrieval of surface ET-indicative variables, (2) the fine-
and coarse-resolution ET data at the reference and prediction times and (3) the fusion algorithm itself,
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including the selection of similar neighbouring pixels, the calculation of the weights of these pixels and
the determination of the conversion coefficient and the temporal weight. For example, the uncertainties
in the remotely sensed and meteorological data could affect the calculation of instantaneous ET from
the ESVEP model. Validation results indicated that LE was underestimated at the Sidaoqiao site
(16%), Mixed Forest site (3%), Populus euphratica site (12%) and Cropland site (14%), while LE was
overestimated at the Barren Land site (22%). The uncertainty in the calculation of the critical surface
temperature could cause the inaccurate classification of similar pixels and the computation of the
weight of the similar pixel. In addition, the inherent uncertainties in the EC and LAS validation data
and the mismatch in the spatial scales between the predicted and fused ET and EC measurements
could also impact the fusion accuracy.

4.5.2. Improvements and Limitations of the SADFAET

The SADFAET has made several improvements to the original ESTARFM when it is used for
ET fusion. The most significant improvement is the introduction of the critical surface temperature
(T*) to consider the impact of soil moisture for the selection of similar pixels, which can solve the
problem that determining the number of classes limits automated processing and reduces the accuracy
of similar pixel selection in the ESTARFM. In the original ESTARFM, shortwave bands are used to
select similar pixels by setting a threshold and unsupervised classification without considering the
soil moisture. However, our SADFAET introduced T* to calculate the soil moisture variation between
the predicted time (tp) and reference times (tm and tn) of different pixels, which can ensure that the
correct similar pixels with similar ET variations are selected. Second, for the weight calculation of
each similar pixel, the SADFAET introduces surface ET-indicative similarity to consider the influences
of NDVI, LST, soil moisture and ET at tm and tn. Finally, ET may change rapidly with time and
using more bands will contribute to accurately computing the weight of the similar pixel; thus,
we introduced the shortwave bands (representing vegetation cover), shortwave infrared bands
(representing soil moisture) and thermal infrared bands (representing LST) between each similar
pixel and its corresponding coarse-resolution pixel for the calculation of spectral similarity. The ET
fusion estimates in the present study yielded an MPE of −11% to 22%, which was slightly better than
that from previous studies. For example, Ma et al. [28] reported MPE values of −14% to 29% in the
midstream region of the Heihe River basin when the ESTARFM was used to fuse ET retrieved from
Landsat 7 ETM+ and MODIS data. Semmens et al. [13] and Yang et al. [16] employed the original
STARFM combined with a multi-scale ET retrieval algorithm to compute 30 m resolution ET over a
mixed forested/agricultural landscape in North Carolina, USA and the mean absolute percent errors
of the fused ET were 20% to 23% and 19% to 30% respectively. For the same study area, the prediction
precision of the SADFAET is higher than that of the original ESTARFM (−14% to 22%) and the fused
ET images contained most of the spatial details found in the Landsat 8 ET images.

There are several limitations and constraints when using the SADFAET. First, similar to the
ESTARFM and STARFM [35,36], the SADFAET cannot accurately predict shape changes and may
cause boundary blurring. Second, when the soil moisture maintains a low value or exhibits slight
variation, the accuracy of the SADFAET may decrease. Finally, although the SADFAET solves the
problem whereby determining the number of classes limits automated processing in the ESTARFM,
the size of the moving window remains a restriction.

5. Conclusions

This research proposed a spatio-temporal adaptive data fusion algorithm for evapotranspiration
mapping (SADFAET) to estimate evapotranspiration (ET) at high spatial resolutions (30 m) and at
a high temporal frequency (daily). An experiment that predicted ET at a 30 m spatial resolution
on 10 dates in 2015 from April to October downstream of the Heihe River basin was performed
using Landsat 8 and MODIS datasets. The main advantage of SADFAET is the consideration of soil
moisture by introducing the critical surface temperature (T*) during the selection of similar pixels.
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The other improvement is the use of multiple spectral bands, including shortwave bands (representing
vegetation cover), shortwave infrared bands (representing soil moisture) and thermal infrared bands
(representing LST) and the introduction of the surface ET-indicative similarity to calculate the weights
of similar pixels.

The results showed an overall reasonably good agreement between the fused ET and measured
ET with a slight underestimation of 13.1 W/m2 and a RMSE of 45.7 W/ m2. The difference between
SADFAET ET and Landsat 8 ET was mostly ±10 W/m2 and the SADFAET ET images preserved most
of the original spatial details. The prediction precision of the SADFAET was higher than that of the
original ESTARFM (MPE: −5% vs. −8%; MB: −13.1 W/m2 vs. −18.6 W/m2; RMSE: 45.7 W/m2 vs.
50.6 W/m2). Therefore, our proposed SADFAET could effectively fuse ET at high and low spatial
resolutions and the method was better than that from previous studies and other common fusion
algorithms. Future work will be performed on the evaluation of the SADFAET on other regions that
are covered by different vegetation types and characterized by different climates.
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