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Abstract: Knowledge about the spatiotemporal distribution of sea surface salinity (SSS) provides
valuable and important information for understanding various marine biogeochemical processes
and ecosystems, especially for those coastal waters significantly affected by human activities.
Remote-sensing techniques have been used to monitor salinity in the open ocean with their
advantages of wide-area surveys and real-time monitoring. However, potential challenges remain
when using satellite data with coarse spatiotemporal resolutions, leading to a loss of valuable
information. In the current study, based on the local dataset collected over the southern Yellow Sea
(SYS), a region-customized algorithm was developed to estimate SSS by using the remote sensing
reflectance. The model evaluations indicated that our algorithm yielded good SSS estimation, with a
root-mean-square error (RMSE) of 0.29 psu and a mean absolute percentage error (MAPE) of 0.75%.
Satellite-derived SSS results compared well with those derived from in situ observations, further
suggesting the good performance of our developed algorithm for the study regions. We applied this
algorithm to Geostationary Ocean Color Imager (GOCI) data for the month of August from 2011 to
2018 in the SYS, and produced the spatial distribution patterns of the SSS for August of each year.
The SSS values were high in offshore waters and lower in coastal waters, especially in the Yangtze
River estuary. The negative correlation between the monthly Changjiang River discharge (CRD) and
SSS (R = −0.71, p < 0.001) near the Yangtze River estuary was observed, suggesting that the SSS
distribution in the Yangtze River estuary was potentially influenced by the CRD. In offshore waters,
the correlation between SSS and CRD was weak (R < 0.2), suggesting that the riverine discharge’s
effect might be weak.

Keywords: sea surface salinity; GOCI; remote sensing; southern Yellow Sea

1. Introduction

Sea surface salinity (SSS), considered one of the primary elements characterizing the marine
environment, also plays a vital role in driving the ocean currents and further affects many phenomena
and processes in the ocean. Knowledge about the SSS distribution can thus provide valuable
information for studying marine physical and biochemical processes [1–3]. Traditional methods
of monitoring SSS are mostly based on measurements from vessels and buoys. Realistically, these
in situ measurements are often costly and time consuming; more importantly, they lead to a large
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limitation on spatiotemporal research studies on SSS [4]. Satellite remote sensing can address this
shortcoming if suitable algorithms are developed. Remote sensing can provide an alternative to SSS
observation considering its advantages of large-coverage and real-time observations. Under these
circumstances, more scientists and researchers have paid great attention to the application of satellite
data for SSS estimation from space [5–9].

In recent years, several methods have been developed for SSS estimation by using remote-sensing
data, including microwave remote sensing and optical remote sensing approaches [10–14]. For instance,
microwave remote sensing (e.g., Soil Moisture and Ocean Salinity (SMOS) and Aquarius) can provide
global ocean SSS data for researchers to document more SSS variations [13,15–20]. Yet, because of
their coarse spatial resolution (e.g., SMOS has a resolution of 40 km, with some products smoothed to
60 km, and Aquarius has a resolution of 100–150 km) and temporal resolution (SMOS provides a global
coverage within three days, whereas Aquarius does so within seven days) [21,22], the microwave data
show a certain limitation in SSS estimation in coastal and estuarine zones [23]. This is also due to
the influence from radio frequency interference (RFI) and land contamination on the quality of SSS
data in the nearshore areas [21,22]. On the other hand, satellite optical data with high resolutions
(such as Moderate Resolution Imaging Spectroradiometer (MODIS) data, with a spatial resolution of
0.5 km and a temporal resolution of one day) have been utilized to estimate SSS distribution for coastal
water areas.

Several algorithms have been currently proposed to estimate SSS in coastal and estuarine waters
by using several optical sensors, namely, Landsat-5\TM (Thematic Mapper), MODIS, among others.
Landsat TM data have been used to monitor lake salinity by applying the least square regression
method because of their high spatial resolution (30 m) [9,24,25]. Based on MODIS data, Wong et al. [25]
and Marghany and Hashim [26] developed multi-linear retrieval algorithms for SSS estimation.
Similarly, Marghany and Hashim [26] developed linear and nonlinear algorithms for SSS estimation in
the South China Sea, then developed the Box–Jenkins algorithm to retrieve time series of SSS products
from the MODIS data [27]. As for the Bohai Sea, Song et al. [4] established a multi-linear regression
model based on the relationship between the measured remote sensing reflectance and SSS, which had
been applied to MODIS data for mapping SSS distribution during 2004–2009. Recently, Yu et al. [28]
designed the ratio model for SSS estimation in the Bohai Sea using the measured remote sensing
reflectance. These previous studies have indicated that it is feasible to use remote sensing reflectance
signals to obtain SSS information by using the appropriate algorithms. Meanwhile, some previous
studies have reported that there is an inverse relationship between SSS and colored dissolved organic
matter (CDOM) in coastal or estuarine waters [28–30]. The CDOM concentration can be retrieved
from apparent optical properties [31–33]. These studies further prove that SSS can be expressed as a
function of the light absorption of dissolved organic matter or remote sensing reflectance [28].

Although there are many satellite optical data serving for SSS remote sensing estimation, these
currently used satellite optical sensors are almost all from the polar-orbit satellites with the limited
temporal resolution (e.g., 1–2 days for MODIS data, 16 days for Landsat data). In contrast to the
polar-orbiting satellite, the Geostationary Ocean Color Imager (GOCI), the first ocean color observation
geostationary satellite, collects images during every daylight hour (00:15 to 07:15 GMT) with a spatial
resolution of 500 m, enabling hourly monitoring of variations in ocean properties [34,35]. The GOCI
data with high spatiotemporal resolution potentially facilitate real-time observation of the dynamics
of sea surface salinity. However, few studies are devoted to SSS inversion by GOCI data. More
importantly, many published models are difficult, and even infeasible to apply to GOCI data due to
the mismatch of spectral bands.

In the present study, we proposed a region-customized model for estimating sea surface salinity by
using remote sensing reflectance data. Although previous studies have confirmed the close relationship
between CDOM and salinity, the purpose of our study was to retrieve SSS from remote sensing
reflectance rather than from CDOM. Moreover, the model’s ability and sensitivity were evaluated and
discussed by cross-validation. The model was then applied to GOCI satellite data from 2011 to 2018 for
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the month of August to preliminarily investigate the spatiotemporal patterns and interannual changes
in SSS in the southern Yellow Sea (SYS). Finally, the influence of the Changjiang River discharge (CRD)
on the SSS variation was analyzed.

2. Materials and Methods

2.1. Study Area

The current study area is the southern Yellow Sea (SYS), one of the marginal seas of the northwest
Pacific Ocean (Figure 1). The SYS in this study is bounded by 31–37.2◦N and 119–117◦E, with an
average depth of 44 m (maximum depth of 140 m) [36,37]. The Yellow Sea (YS) is typically optically
complex Case II water, and has been highly productive and polluted by terrestrial discharge [38–40]. In
summer, the YS receives a large amount of freshwater from the Yangtze River, and forms the Yangtze
River dilution water [41–43]. In addition, the Yellow Sea Cold Water, a significant low-temperature
water mass, appears in the central region of the YS in summer [44]. In winter, a strong warm current,
namely the Yellow Sea Warm Current, flows into this area from the southeastern YS and mixes with
the cold water [45]. In the eastern YS, the Korea Coastal Current flows along the west of the Korean
Peninsula [46]. The complex water environment and variable currents make it meaningful to study
SSS in the SYS.
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Figure 1. Locations of the sampling stations collected in the SYS during November 2014, August 2015,
July 2016, and July 2018.

2.2. In Situ Data Collection

The local field datasets used in this study were collected from four cruise surveys that were
carried out in the SYS during November 2014, August 2015, July 2016, and July 2018 (Figure 1).

2.2.1. Measurement of Sea Surface Salinity

To obtain SSS data, the Seabird ABE911P conductive-temperature-depth (CTD) profiler (Seabird,
Bellevue, WA, USA) was used to measure the vertical profiles of SSS. Before and after the field
experiment, the CTD was calibrated with Milli-Q water to confirm that its performance was within
factory specifications. Temperature and salinity corrections were performed on the raw data by
following Pegau et al. [47] and Sullivan et al. [48] to obtain accurate information. In total, 139 sampling
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stations were collected during the four cruises. Our analysis focused on the salinity data at the water
surface layer (about 0–2 m depth), which is consistent with what the optical satellite can observe.

2.2.2. Measurement of Rrs(λ)

Remote sensing reflectance spectra were collected with a Satlantic Hyper-Profiler II radiometer
(Satlantic, Halifax, NS, Canada) between 349.4 and 804.0 nm. It provides non-equal spacing
measurement, and the measurement interval range is 2–5 nm with a total of 136 channels [36]. The
instrument must be preheated vertically in water before measurement to make sure of the accuracy
of the instrument. The pressure is corrected and then the instrument is put into water columns
at a constant speed for measurement. The measurement should meet the conditions of no cloud
occlusion, small wind force, stable illumination, no wave crushing, and avoiding hull shadow. Then,
the measurement results are corrected using the professional software ProSoft (7.7.16, Satlantic, Halifax,
NS, Canada). The software processes the data into Level 1–4 products, and the processed results
are imported into Excel files to extract the corresponding data. The remote sensing reflectance was
obtained from the Level 4 dataset, and the Rrs(λ) data were calculated as follows:

Rrs(λ) =
Lw(λ)

Ed(λ, 0+)′
, (1)

where Lw(λ) is the water-leaving radiance (Wm−2 nm−1 sr−1) determined from the Lu(λ, z) of the
upper layer, as described by Hirawake et al. [49] and Mitchell et al. [50].

Additionally, all Rrs(λ) data were resampled at the centers of GOCI wavebands (i.e., 412, 443, 490,
555, 660, and 680 nm) using the spectral response function of the GOCI sensor. In our study, 36 of 139
samples matching the measured SSS during the four cruises were used.

2.2.3. Measurement of Changjiang River Discharge

To analyze the influence of the riverine discharge on the salinity distribution, the monthly
Changjiang River discharge (CRD) was acquired from the Yangtze River Water Conservancy Network
(http://www.cjw.gov.cn/) for the month of August from 2011 to 2016.

2.3. Satellite Data

GOCI is the first water-color remote sensor for meteorological services and marine monitoring
research carried on the geostationary meteorological satellite. GOCI can acquire remote sensing
physics in 8 bands, ranging from visible band to near-infrared band (i.e., 412, 443, 490, 555, 660, and
680 nm) [51]. A total of 1984 GOCI satellite images used in our study during the eight-year period
from 2011 to 2018 for the month of August were provided by the Korea Ocean Satellite Center (KOSC)
(http://kosc.kiost.ac.kr/eng/p10/kosc_p11.html). By utilizing the GOCI Data Processing System
(GDPS, version 1.3), the Level-1B data images were cropped to our study area and then processed to
Level-2 Rrs(λ) data using its default parameterization and atmospheric correction [52]. Additionally,
these Rrs(λ) data were also quality-controlled by using the various flags such as stray light and cloud
coverage to avoid interference from invalid satellite signals.

The SMAP (Soil Moisture Actuve Passive) satellite uses the L-band’s combined active and passive
remote sensing instruments to observe land surfaces from space, and will provide land surface data for
a global re-entry period of about 2 or 3 days as well as ocean salinity measurements. This satellite began
to provide data from April 2015, with radiometer-only product, radar-only product, and combined
radar/radiometer product. Note that the SMAP radar failed on 7 July 2015, and was officially declared
lost thereafter. The SSS data products we used here belong to L3 products which have a spatial
resolution of 0.25◦ × 0.25◦, with observation periods of 8-day running mean.

http://www.cjw.gov.cn/
http://kosc.kiost.ac.kr/eng/p10/kosc_p11.html
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2.4. Model Accuracy Evaluation

MATLAB software (MathWorks Inc., Natick, MA, USA) was used for the statistical analysis and
modeling in this study. Statistical analyses included minimum, maximum, mean, standard deviation
(SD), and coefficient of variation (CV) values (the ratio of standard deviation to mean). To evaluate the
models’ performances, the root-mean-square error (RMSE), mean absolute percentage error (MAPE),
and determination coefficient (R2) were used in this study, and these indicators can be calculated
as follows:

R2 =
n

∑
i=1

(xi − x)(yi − y)/

√
n

∑
i=1

(xi − x)2
n

∑
i=1

(yi − y)2, (2)

SMAPE =
1
n

n

∑
i=1

∣∣∣∣ xi − yi
xi

∣∣∣∣× 100%, (3)

SRMSE =

√
1
n

n

∑
i=1

(xi − yi)
2, (4)

where xi and yi are the measured and estimated values for the i-th sample, respectively; n represents
the total number of samples.

3. Results

3.1. In Situ Data Distribution

The histogram of the measured SSS used in this study (summer and winter) is shown in Figure 2a
with the normal distribution curve marked as a black line. As shown in Figure 2a, the maximum and
minimum of SSS were 32.74 and 28.78 psu, respectively, with a mean value of 31.42 psu (SD = 0.72),
indicating that the change of measured SSS was steady. In general, similar normal distribution of SSS
was observed, with a CV value of 2.3%. Figure 2b shows the spectral distribution of Rrs(λ) (N = 36)
collected in the study from the SYS in July 2018, July 2016, August 2015, and November 2014. The
spectral peaks of most Rrs(λ) samples fell around the green bands (bands 3 and 4), whereas some
samples had local peaks at the longer wavelength (band 7). The large variation of Rrs(λ) magnitude
was observed at band 5, with the value of CV approaching 90% approximately (green line in Figure 2b).
Band 3 had the lowest variability with the coefficient of variation of 30% (Figure 2b). For the most cases,
the collected Rrs(λ) usually had high values located in bands 3 and 4 due to the different concentrations
of various water constituents.
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3.2. Development of SSS Model 

Figure 2. (a) Histogram of sea surface salinity (SSS) collected from the SYS. The black line represents
a normal distribution curve; (b) Spectral shapes of the measured Rrs(λ) overlaid by the locations
of 6 Geostationary Ocean Color Imager (GOCI) channels (blue bars). The green line represents the
coefficient of variation of Rrs(λ). The solid black line represents the mean of Rrs(λ) spectra and the
black dotted line is the mean plus or minus the standard deviation.
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3.2. Development of SSS Model

As previous studies have shown, Rrs(λ) is sensitive to SSS for some coastal waters, for instance, the
Bohai sea [4,28] and Lake Pontchartrain, which is the largest estuary on the Gulf of Mexico coast [53].
In order to verify whether there exists a close relationship between SSS and Rrs(λ) in the SYS, the
multiple linear regression was applied with the single band, band ratios, and different combinations
as independent variables (see Table 1), to explore an efficient method of deriving SSS from Rrs(λ). First,
the statistical analysis was performed by using the in situ Rrs(λ) at all visible bands between 400 and
700 nm, along with corresponding SSS data. Then, for the consistency between satellite and in situ
datasets, the in situ Rrs(λ) at 6 GOCI bands in the visible domain (412, 443, 490, 555, 660, and 680 nm)
were chosen to develop the model. After taking the logarithm of SSS according to several previous
experiments [18,29,54], the optimal band forms included Rrs(λi) (X1), log10(Rrs(λi)) (X2), Rrs(λi) −
Rrs(λj) (X3), Rrs(λi)/Rrs(λj) (X4), log10(Rrs(λi))/log10(Rrs(λj)) (X5), [Rrs(λi) – Rrs(λj)]/[Rrs(λi)/Rrs(λj)]
(X6), [Rrs(λi) + Rrs(λj)]/[Rrs(λi)/Rrs(λj)] (X7), and [Rrs(λi) − Rrs(λj)]/[Rrs(λi)+Rrs(λj)] (X8), and the
multivariate linear model (X9). Note that each form with specific input bands was tested to be optimal
by comparison with those using other bands.

Table 1. Band combinations used in this study; X1 to X9 indicate the nine forms of X.

X General form 6 GOCI channels

X1 Rrs(λi)

i, j = 412, 443, 490, 555, 660, and 680 nm

X2 log10Rrs(λi)
X3 Rrs(λi) − Rrs(λj)
X4 Rrs(λi)/Rrs(λj)
X5 log10Rrs(λi)/log10Rrs(λj)
X6 [Rrs(λi) − Rrs(λj)]/[Rrs(λi)/Rrs(λj)]
X7 [Rrs(λi) + Rrs(λj)]/[Rrs(λi)/Rrs(λj)]
X8 [Rrs(λi) − Rrs(λj)]/[Rrs(λi) + Rrs(λj)]
X9 k1 × Rrs(λ1) + k2 × Rrs(λ2) + . . . + ki × Rrs(λi)

During this experiment, we analyzed the correlation between Rrs(λ) and SSS, together with
log10SSS, at each chosen band (Figure 3a). These results clearly show that the relationship between
Rrs(λ) and SSS is weak for all bands, with the maximum R value of only −0.18 at band 4 (555 nm). A
similar result was shown in Figure 3a, where the red line is for the relationship between Rrs(λ) and
log10SSS. For each form of X with GOCI bands, all possible combinations of Rrs(λ) were examined, and
the best band combination with the highest correlation coefficient R was determined, with the input
bands at 490 and 555 nm (Figure 3b). After comparing the R values of these forms, we tested two band
forms which were highly related with SSS, namely, X5 and X8 in our model, and then chose the better
one to derive the SSS estimation. According to the comparison on the obtained R values for X5 and
X8 (Figure 4a,b), we finally decided to use X8 in our model and recommended it as the best choice to
derive SSS estimations in the SYS. Although X5 had a lower R value with log10SSS, its R2 still reached
0.58 (p < 0.001). Therefore, we also utilized X5 to unveil its ability of estimating SSS in the SYS in the
following sections. These two algorithms can be expressed as follows:

SSS = 10(aXi+b),
where X5 = log[Rrs(490)]/ log[Rrs(555)], X8 = [Rrs(490)− Rrs(555)]/[Rrs(490) + Rrs(555)] (5)
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Figure 3. (a) Spectral distribution of the correlation coefficients between Rrs(λ) and SSS (black line)
and log10SSS (red line) in the range of 400–700 nm; (b) Correlation coefficients between nine band
combination forms derived from the 6 GOCI bands and log10SSS. The expressions of different band
forms are listed in Table 1.
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Figure 4. Scatter plots of (a) X5 and (b) X8 versus the log10SSS. The solid red lines are the fitted
function curves.

3.3. Model Validation

3.3.1. Cross-Validation

To further assess the ability of the two models (X5-based model and X8-based model), the
leave-one-out cross-validation (LOOCV) [55] was conducted (Figure 5). Here, we briefly introduce
the LOOCV procedure. Generally, we randomly selected one sample out of all samples (n) for model
validation, and the remaining subset of n − 1 samples was used for model calibration. This step was
continued until each sample was taken as the validation one. For each fold, the calibration samples
were used to obtain the regression coefficients of the model. The final parameterization of our model
was confirmed by averaging the n sets of the model coefficients, which can effectively avoid the
selection bias.
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The scatter plots comparing measured and estimated SSS are shown in Figure 5a,b for X5 and
X8, respectively. Figure 5a shows that most of the estimated values generally followed the 1:1 line
well, with 100% data points distributing within the ±3% range. Figure 5b shows similar results for the
X8-based model. Comparing the Figure 5a,b, it was observed that the X8-based model was slightly
better than the X5-based one. The form showed a satisfying result with good agreement between
the estimated and in situ SSS, yielding significantly low errors and high coefficient of determination
values. At the same time, Figure 5a,b also displays the values of R, RMSE, and MAPE for X5 and X8.
The values of R, RMSE, and MAPE are 0.76 (p < 0.01), 0.31, and 0.79% for the X5-based model, and
0.79 (p < 0.01), 0.29, and 0.75% for the X8-based model, respectively. Based on the above facts, the two
algorithms were set as follows:

SSS = 10(0.037X′8+1.494)

X′8 = [Rrs(490)− Rrs(555)]/[Rrs(490) + Rrs(555)]
(6)

SSS = 10(−0.893X′5+1.585)

X′5 = log[Rrs(490)]/ log[Rrs(555)]
(7)

3.3.2. Validation of Satellite-Derived SSS

The match-up dataset only consisted of satellite Rrs with an overpass time window within 5 h
before and after the corresponding field data. To avoid the effects of outliers, the median Rrs values
for a 3 × 3 pixel window (with a spatial resolution of 500 m × 500 m for each pixel) centered on
the locations of the sampling stations were calculated and used as the matched satellite Rrs values.
Equations (5,6) were applied to the satellite data to estimate SSS, respectively, and then the SSS
estimations were compared with the field measurements to further verify the model’s performance.
As shown in Figure 6a,b, satellite-derived SSS is roughly comparable with the measured SSS with a
high accuracy (MAPE = 1.64% for X5 and MAPE = 1.78% for X8). Although the correlations are not
significant (R = 0.26 for X5, p = 0.42; R = 0.24 for X8, p = 0.25), the sample points are still within the
±3% error lines. The low correlation may be due to the concentrated distribution of few sample points.
These results indicate that the SSS estimating models described here have a great potential to generate
an accurate SSS product of the SYS based on GOCI Rrs data.
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3.3.3. Comparison with Other Published Models

To further examine the performance of the refined SSS model in this study, our model was
compared with two published SSS models designed by Song et al. [4] and Yu et al. [28]. Here, we
regionally tuned these published models based on our field dataset collected in the SYS. It should be
noted that the two retuned models were used to better assess the performance of our SSS model only,
although these models may not be originally developed for the application in the SYS. In this study,
the recalibrated Song et al. model [4] for the SYS was expressed as follows:

SSS = 10(2.87×Rrs(490)−2.53×Rrs(560)+0.20×Rrs(665)+1.49), (8)

and the recalibrated Yu et al. model [28] for the SYS was expressed as follows:

SSS = 3.662 + 27.389× (Rrs(531)/Rrs(551)). (9)

The scatter diagram obtained by the SYS data, combined with the algorithm proposed by Song
et al. [4], Yu et al. [28], and this study, is shown in Figure 7a–c, respectively. According to the statistical
indicators, our refined SSS model showed the best performance, with the highest R value and the
lowest MAPE value (Figure 7a–c). For the recalibrated Song et al. [4] model, the R value of 0.59
(p < 0.01), MAPE value of 1.05%, and RMSE value of 0.38 were observed. For the recalibrated Yu
et al. [28] model, the R value is 0.76 (p < 0.01), with 7.66% and 3.02 for MAPE and RMSE, respectively
(Figure 7a–c). The performance of the recalibrated Song et al. [4] and Yu et al. [28] models was relatively
poor in the SYS. These comparison results indicated that the performance of our refined SSS model
was better than those two retuned models, mentioned here in our study region. Overall, these results
suggested that the use of satellite Rrs(λ) could significantly improve the performance of the refined
SSS model on satellite observations and yield reasonable satellite-derived SSS results. Therefore, we
further investigated the spatiotemporal variability of the SSS in the SYS based on satellite-derived
products from GOCI data.
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Figure 7. Comparison of the measured SSS versus the derived SSS between (a) the retuned model of
Song et al., (b) the retuned model of Yu, and (c) the proposed model in this paper. The solid red line
refers to the 1:1 line. Note that the R values are significant with p < 0.01.

3.4. Distribution Patterns of SSS in August in the SYS

According to the previous studies of Bai et al. [29] and Bai et al. [56], this study selected the month
of August as the representative of summer. The proposed SSS model was applied to the hourly GOCI
Rrs(λ) data (2011–2018) to generate hourly SSS products, then were synthesized into monthly products
(Figure 8a–h). Using the monthly SSS data for August from 2011 to 2018, the spatial distribution patterns
of SSS in summer were obtained by the temporal mean values (Figure 8i). These images reveal that SSS
generally increases from the nearshore coast to offshore regions. The low SSS values generally dominate
nearshore waters and the estuary (approximately < 31 psu), whereas higher values are mainly distributed
in the central SYS (approximately 32 psu). Around the Yangtze River estuary, relatively low SSS values
were observed. In contrast, relatively high salinity areas gradually emerged in the central YS, which
may have been affected by the Yellow Sea Cold Water mass during August for 2011–2018. The pattern
of eight-year SSS averages in Figure 8i was similar to those of the eight years. In detail, several specific
water regions, including the Subei (northern Jiangsu) shoal and very nearshore areas, show almost no
time-dependent variations, and always have low values (<31 psu) throughout the entire year.
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In order to compare the results with the existing satellite products, we utilized the SMAP products
as an example. As shown in Figure 9, the monthly averaged SSS spatial distributions for August 2015
and August 2016 were produced. By comparison, their spatial trends were roughly similar with our
optical products (Figure 8e,f), with relatively high values in the north and low in the south. The SMAP
products show somewhat coarse spatial distribution, probably with a certain limitation in the detection
of fine characteristics. Moreover, there are scarce spatial coverages in the nearshore regions. In this
respect, the optically generated SSS products are advantageous to a certain extent.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 17 
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Figure 9. Spatial distributions of sea surface salinity produced by SMAP satellite products for
(a) August 2015 and (b) August 2016.

3.5. Regional Difference of SSS in August in the SYS

Three specific subareas were selected for further investigation in this study, including the
central YS (CYS; 35.69–36.31◦N and 123.05–123.94◦E), the sea area near the Yangtze River estuary
(YRE; 31.29–31.71◦N and 122.22–122.78◦E), and the sea area near Jeju Island (JI; 32.60–32.81◦N and
126.36–126.64◦E), as shown in Figure 10a. These subareas were selected based on geographical
locations and driving forces. Within each subarea, the averages of all valid values were calculated for
further analysis.
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Yangtze River estuary (YRE), and the region near Jeju Island (JI); (b) Monthly mean time series of SSS
for the three subareas.

Time-specific variations of SSS in the three regions were drawn as shown in Figure 10b by the
model in this study. As displayed in Figure 10b, the SSS of CYS and JI for the far shore areas is
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higher than that of YRE for the near shore area. Meanwhile, the patterns of CYS and JI revealed
relatively higher SSS values and larger fluctuations of the temporal changes. Conversely, SSS of the
YRE remained at a low and stable level nearly throughout the eight years.

4. Discussion

4.1. Rationality and Limitations of the Proposed SSS Model

The SSS model developed in the current study is an empirical method using an in situ dataset in the
study area. The variety of field measurements from the four cruises was a prominent advantage of this
study and provided a steady basis for developing the SSS empirical models. The two SSS algorithms
used in previous studies, but not in this study, were multiple linear regression and the band ratio, and
they both showed poor accuracy for the SSS estimate in this study. This is because the water conditions
in those study areas may have been different from our study area [4,28]. Therefore, the SSS model used
in this study not only tests the previous algorithms, but also serves as an adjustment specific to the
SYS. Most previous studies focused on relationships between SSS and CDOM. For example, Wang
and Xu [53] successfully proposed a remote sensing model of salinity in Lake Pontchartrain based on
the relationships of salinity with CDOM and total suspended solids (TSS). Yu et al. [28] developed a
band-ratio algorithm, which was generally adopted in CDOM retrievals under the reverse relationship
between SSS and CDOM in the Bohai Sea. In other words, a linear inverse correlation between SSS
and light absorption of CDOM was reported by many studies in coastal waters [53,57–61]. Therefore,
the study here may serve as a proof of concept for establishing SSS in the case of regional studies,
because the SYS is characterized by high inorganic matter content and optically complex waters [62,63].
Briefly, for the complex and highly turbid SYS, the effects of the components (such as CDOM and
TSS, etc.) on the changes of SSS are particularly important. It was found that, even for such a region,
previously established models may still work, as long as local data are used to develop the algorithm
to some degree. Similar to previous studies [57,64], Rrs(490) and Rrs(555) were taken as independent
model variables in this study, which are sensitive to pigments and suspended sediments (Table 1), to
assure more adequate valid remote sensing information that could potentially derive better outputs.
Another concern are the exact conditions in which to use our developed model, an issue which is truly
difficult to define quantitatively to a large degree. However, we believe that more datasets covering
various periods of the year would generate more applicable models. Our model was formed based on
the dataset covering three months (i.e., July, August, and November, see Figure 1), and is certainly
applicable during these months of the year. Meanwhile, it may be also adequate for other periods of
the year, an aspect which, strictly speaking, requires further validation using datasets for other periods.

4.2. Response of SSS to CRD

It has previously been suggested that SSS tendency was influenced by estuarine ecosystems [35,41].
The monthly average CRD from 2011 to 2016 in August is marked by a red solid line in Figure 11a.
Meanwhile, the time series diagram of monthly average SSS data obtained by the algorithm proposed
in this study is marked by a black line in Figure 11a. Although it is difficult to assess the effects of CRD
on the SSS tendencies in different sub-regions based only on a six-year time series data, we believe
it is still useful to discuss their relationships. For the YRE, the correlation between the monthly SSS
and monthly CRD was negative, with high negative correlation coefficients (R = −0.71, p < 0.001)
(Figure 11b), indicating that the decreasing tendencies of SSS in the YRE might be influenced by river
discharge. The riverine supplies large amounts of freshwater to the SYS, reducing the SSS [38,40].
Beardsley et al. [38] has reported that in summer during high runoff, low salinity plume-like structures
extend offshore on average towards the northeast. It offers an explanation to help us understand the
correlation between the low SSS in YRE and the trend of CRD. Here, we reveal similar results, shown
in Figures 7 and 11b, where the SSS in the YRE is likely affected by CRD. Far from the Yangtze River
estuary, the JI and CYS regions are almost unaffected by the Yangtze River’s water transport volume
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(R = 0.04, p < 0.05 and R = −0.11, p < 0.001, respectively). Overall, the correlations between SSS and
CRD (Figure 10b) indicated that CRD is an important factor influencing the tendency of SSS in the YRE.
However, the interannual variations of SSS in the SYS could not be fully explained by the individual
factor. Further investigations therefore are required to understand the interannual variability of the SSS
in the YRE and its response to environmental factors (e.g., evaporation, precipitation and hurricane),
when more data become available.
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Figure 11. (a) Monthly Changjiang River discharge (CRD) and the satellite-derived SSS of three
subareas of interest in August during 2011 to 2016. Relationship between CRD and the satellite-derived
SSS (b) in the YRE and (c) in the CYS (red points) and the JI (blue points). The solid lines are the
fitted lines.

5. Conclusions

In this study, a region-customized model to estimate SSS in the SYS from GOCI satellite
measurements was developed based on a large synchronous dataset of in situ SSS and Rrs(λ)
measurements collected in the SYS. The evaluation of the model used in situ observations using
the leave-one-out cross-validation method showed good performance, with R2, MAPE, and RMSE
values of 0.62 (p < 0.001), 0.75%, and 0.29 psu, respectively. This model was tested to be stable, and
did not show error enlargement after validation of satellite-derived SSS. The findings of this study
indicate that the established model has great potential for mapping SSS in the SYS. We applied it to
GOCI images in the SYS, and documented clear spatial and temporal variations in the SYS during
the month of August. Although the proposed SSS model in this study is possibly region-specific,
and may need further validation when applied to other water regions, the approach presented here
provides a proof of concept for SSS estimation in other coastal turbid water bodies. In addition, the
high temporal and spatial resolutions by our model should be able to reveal the finer changes of SSS,
than that provided by SMAP, SMOS, and Aquarius data. It will be significant to know what resolutions
are needed to capture all the variability of SSS in time and space, which should be undertaken in future
research work.
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