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Abstract: Forests in Southeast Asia are experiencing some of the highest rates of deforestation and
degradation in the world, with natural forest species being replaced by cropland and plantation
monoculture. In this work, we have developed an innovative method to accurately map rubber
and palm oil plantations using fusion of Landsat-8, Sentinel 1 and 2. We applied cloud and
shadow masking, bidirectional reflectance distribution function (BRDF), atmospheric and topographic
corrections to the optical imagery and a speckle filter and harmonics for Synthetic Aperture Radar
(SAR) data. In this workflow, we created yearly composites for all sensors and combined the data
into a single composite. A series of covariates were calculated from optical bands and sampled using
reference data of the land cover classes including surface water, forest, urban and built-up, cropland,
rubber, palm oil and mangrove. This training dataset was used to create biophysical probability
layers (primitives) for each class. These primitives were then used to create land cover and probability
maps in a decision tree logic and Monte-Carlo simulations. Validation showed good overall accuracy
(84%) for the years 2017 and 2018. Filtering for validation points with high error estimates improved
the accuracy up to 91%. We demonstrated and concluded that error quantification is an essential
step in land cover classification and land cover change detection. Our overall analysis supports
and presents a path for improving present assessments for sustainable supply chain analyses and
associated recommendations.

Keywords: landsat; sentinel; SAR; plantations; myanmar; rubber; palm oil; land cover mapping;
uncertainty; error quantification; Google Earth Engine

1. Introduction

Globally, up to 27% of forest loss has been attributed to permanent land use change for commodity
production, and is currently estimated at 61% in southeast Asia [1]. Forests in the Greater Mekong
region (Thailand, Vietnam, Lao PDR, Myanmar and Cambodia) are experiencing some of the
highest rates of deforestation and degradation in the world [2–4]. The main drivers of land cover
change include expansion of agriculture and plantation estates, extraction of natural resources [5],
infrastructure development, and small and large-scale logging. The underlying drivers of land cover
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change include population and economic dynamics, often intensified by weak governance [6,7].
As a consequence, wildlife, hydrological and ecological functions, and local communities that rely on
forest resources are experiencing significant negative impacts.

Natural rubber trees are the main source of hevea latex, used in a number of industrial products,
most importantly automobile tires. Commercial rubber tree plantations are tapped from 5 years after
planting until 25 or 30 years, after which their production declines and the plantation is no longer
economically viable and the trees are removed and replaced with new seedlings, or converted to more
profitable palm oil [8,9]. Mature rubber plantations are thus regarded as waste, although the wood has
good properties for use in furniture manufacturing [10]. In Myanmar, there is potentially a vast amount
of mature rubber wood which could thus be available for alternative use as a source of timber. However,
efforts should be made to reduce the environmental and social impacts of this exploitation. While some
capacity exists with regards to accessing these resources, land tenure, market access, policies and
knowledge gaps are considered main obstacles for market entry and sustainable rubber wood use [11].
To act on opportunities and challenges for nature conservation, business operations, land tenure/rights,
resource management and related policies within the country in relation to rubber wood, bamboo,
rattan and potential other natural fiber products it is important to first understand the current resource
availability. The inventory of available mature plantation wood, particularly relative to biodiversity
assets, protected areas, and the extent, size, and stand age of rubber plantations is supporting improved
characterization of the available rubber wood supply for sustainable management of these resources.
This information is key for the development of responsible natural fiber and timber supply chains for
these commodities which benefit local stakeholders. This information can help to identify high and
low risk business opportunities for alternative timber sources in Myanmar in order to have reduced
impacts on biodiversity and livelihoods.

A number of studies have presented various methods for discerning planted rubber from other
natural and plantation forests such as palm oil in Asia, notably in China and Thailand [12–17]. It has
been determined that an essential factor for accurate mapping of rubber plantations in SE Asian
ecosystems is the availability of data at two crucial phenological periods: defoliation (leaf off) and
new leaf emergence (leaf on), which distinguishes deciduous rubber trees from other vegetation.
Many approaches consist of using optical satellite data [6,17–21] to detect rubber plantations. However,
due to the persistent cloud cover in tropical regions, it is difficult to acquire sufficient high resolution
satellite imagery which in turn compromises spatial resolution, as coarser satellites such as MODIS
are frequently used. A combination of Synthetic Aperture Radar (SAR) [22–24] has shown promising
results since SAR can penetrate clouds, haze, and dust. As such, satellites such as Sentinel-1 and
Sentinel-2 are a new data rich source for land cover mapping purposes and enable land cover mapping
on a higher spatial resolution.

The new generation of satellites such as the Sentinel constellation offer exciting opportunities
to monitor land cover (changes) on a high spatial resolution. Fusion products typically include
more observations within a given period [25]. However, different sensors vary in spectral, spatial
and temporal resolution [26]. With earth observations available from a variety of satellite sensors,
data fusion techniques are being increasingly developed and utilized for various applications.
The merging of data achieved by such data fusion approaches overcomes limitations from a single
sensor, which is focused on either passive or active remote sensing. Hence, both single sensor spatial
and temporal drawbacks can be overcome or partially overcome by data fusion techniques. With the
development and testing of data fusion techniques, this is a rapidly developing area in remote sensing
theory with applications ranging from water quality management [27] to forest mapping [28].

There is a large variety of data fusion techniques in which different types of sensors are combined.
The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [29] and the Enhanced
Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) [30] are classic examples.
These techniques involve combining lower spatial resolution optical imagery such as MODIS with
higher spatial imagery such as Landsat in order to overcome the coarser temporal resolution in the
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latter sensor. This is achieved via the assumption that MODIS and Landsat observations are correlated
with each other. Data fusion techniques involving optical and SAR data are also gaining acceptance
with recent applications to better forest mapping [31] and surface water detection [32].

We present the following assessment in the context of the Regional Land Cover Monitoring
System (RLCMS) developed by SERVIR-Mekong, which is a joint USAID and NASA collaborative
project. It is aimed at providing support to dedicated development and sustainable landscape projects
in the Mekong region. The RLCMS leverages state-of-the-art cloud computing technologies and
includes an explicit quantification of accuracy and uncertainty. We describe these methods in detail
in the following sections. Innovations of this study include the data fusion of different sensors and
systematic error quantification to reduce errors. All calculations are done using a cloud-based remote
sensing approach.

2. Materials and Methods

2.1. Study Region

The region of study is the Dawna Tenasserim Landscape (DTL) (Figure 1) which straddles the
border between Myanmar and Thailand and covers the Kayin, Mon, and Tanintharyi states along the
southeast coast of Myanamar. The area stretches from 8.82 to 19.5 degrees northern latitude. It has
a tropical climate with significant rainfall most months and a short dry season. The area includes
the Tenasserim Hills, where the Myinmoletkat Taung is the highest point with 2072 m. The area
harbours one of the last large intact forest landscapes in the region, which hosts a large number of
ethnic groups, and a wide variety of endangered wildlife such as elephants and tigers [33]. The region
is experiencing numerous threats including rapid increase in agricultural land use and associated
deforestation, notably for rubber and palm oil, road and infrastructure development, and logging
resulting in habitat degradation and fragmentation [34].

Figure 1. The study area is the Dawna Tenasserim Landscape (DTL), which covers Kayin and Mon
States, and Tanintharyi Region in Myanmar.
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2.2. Typology

This study focuses on mapping rubber and palm oil plantations, but also includes other existing
dominant land cover types in the area. Classification thus requires the definition of class boundaries,
which is clear, precise, possibly quantitative, and based on objective criteria (FAO; [35]). The land
cover typologies used in this study are described below and visualized in Figure 2:

• Cropland: land covered by crops and then followed by harvest and a bare soil period [36].
Examples include cereals, oils seeds, rice, vegetables, root crops and forages. This excludes
orchards, forest croplands, and forest plantations.

• Forest: Land spanning more than 0.5 hectares with trees higher than 5 m and a canopy cover of
more than 10 percent, or trees able to reach these thresholds in situ. It does not include land that
is predominantly under agricultural or urban land use [37].

• Mangrove: coastal sediment habitats with more than 10% woody vegetation canopy cover and
the majority of cover is higher than 2 m [36].

• Palm oil: The land area designated primarily for production of palm oil. Palm oil grows in
tropical climates within 10 degrees of the equator and high rainfall (minimum 1600 mm/year) [38].
Palm oil is a productive crop, it is planted as mono-culture and its expansion comes at the expense
of tropical forests [39].

• Rubber plantation: Forest area with rubber tree plantations. Rubber plantation can be inter-crops
with other plants, and has about 30–40 years of rotation.

• Surface water: Open water larger than 10 m by 10 m and open to the sky, including fresh
and saltwater

• Urban & built up: Cultural lands covered by buildings, roads, and other built structures.

Figure 2. Typology was divided into primary vegetated and primary non vegetated classes.
The primary vegetated classes include 4 different forest types.

2.3. Methods Overview

Optical imagery from Landsat 8, Sentinel 2, and SAR images from Sentinel-1 were combined
into a single stack of images. This image stack was used as predictors in the classification process.
The training sample was created by assigning the available reference data the coincident image values.
A random forest algorithm was applied to the training sample and then used to calculate biophysical
probability layers (called primitives from hereafter). Primitives were used in a decision tree to create
the final assemblage with plantations. During this process we used a Monte-Carlo simulation to
create associated uncertainty layers. We discuss the specifics in more detail in the following sections.
The general methodology is outlined in Figure 3. The links to the source code can be found in
the Appendix A.

This study was conducted in Google Earth Engine (GEE), a cloud-based computing environment
that includes access to the full archive of Landsat and Sentinel imagery [40]. GEE combines a large
data archive of satellite imagery with a computational platform. The platform enables scientists to
conduct research on environmental issues on a variety of spatial and temporal scales [41–44]).
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Figure 3. Overall workflow used in this study divided in pre-processing, processing, and result sections.

For this study, we used the USGS Landsat 8 surface reflectance product. This product
contains atmospherically corrected, orthorectified surface reflectance data. The images have been
atmospherically corrected using the Landsat Surface Reflectance Code (LaSRC) [45–47] and also
contains the data produced by CFMASK [48]. Landat 8 has a spatial resolution of 30 m. Images with
more than 40% cloud cover were excluded from the analysis due to issues with haze.

The Copernicus Sentinel-2 mission provides high spatial resolution images. We used the
Sentinel-2 image collection in Google Earth Engine which contains spectral bands representing Top
Of Atmosphere (TOA) reflectance from the Sentinel 2a and 2b satellites. The spatial resolution for
Sentinel-2 varies for the different bands. The blue, green, red and near-infrared bands have a resolution
of 10 m, the red-edge and shortwave-infrared bands 20 m, and all others 60 m.

The Copernicus Sentinel-1 mission provides synthetic aperture radar images with high temporal
and spatial resolution. We also used the Sentinel-1 data from the GEE archive. Google Earth Engine
makes scenes available after their ingestion team has applied thermal noise removal, radiometric
calibration, and terrain correction using the Sentinel-1 Toolbox processing algorithms. Pre-processing
includes thermal noise removal, radiometric calibration, and terrain correction. We used the available
polarization bands, which were the VV and VH dual bands. A filter was applied to de-speckle the
image [49]. Sentinel-1 has a spatial resolution of 10 m.

For the optical imagery, composites were created for the rainy and dry season. Seasons were
defined based on timing of rubber tree leaf senescence and emergence. The rainy season was defined
as the period from May until December, the other months were used in the composites of the dry
season. A yearly composite was used for the SAR imagery. Composites included a medoid, 20th and
80th percentile from the annual image collection.
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Processing steps for Sentinel-2 included shadow and cloud removal and atmospheric correction.
BRDF correction and topographic correction were applied to Landsat 8. The atmospheric correction
was done by applying the 6S radiative transfer model. The original Second Simulation of the Satellite
Signal in the Solar Spectrum (6S) model was developed by [50] and translated into Python by [51].
We used the Sentinel-2 6S implementation for the Google Earth Engine to atmospherically correct
the images.

2.4. Cloud Shadow Masking

Cloud shadow removal is an essential step because of the negative influence cloud shadow
can have on data analysis [52]. We used the Temporal Dark Outlier Mask (TDOM) algorithm [53].
This algorithm identifies pixels that are dark in the infrared bands but are found to not always be dark
in past and/or future observations. It detects statistical outliers with respect to the sum of the infrared
bands. Next, dark pixels are identified by the sum of the infrared bands (NIR, SWIR1, and SWIR2).
The pixel quality attributes generated from the CFMASK algorithm (pixel-qa band) was also used for
Landsat-8 shadow masking [48].

Cloud removal is another essential step in optical remote sensing. Clouds were removed using
the quality bands for Landsat-8 and Sentinel-2. Furthermore, the Google Earth Engine cloudScore
algorithm was used. The algorithm uses the spectral and thermal properties of clouds to identify and
remove pixels with cloud cover from the imagery. The algorithm finds bright and cold pixels and
compares them to the spectral properties of snow. The Normalized Difference Snow Index (NDSI)
is calculated to prevent snow from being masked. The algorithm uses the visible, near-infrared,
and shortwave infrared for a scaled cloud-score and then takes the minimum.

2.5. BRDF Correction

In the case of anisotropic surfaces, surface luminance depends on the properties of the surface,
the location and type of light and the conditions of observation [54–56]. Nicodemus [57] described the
characteristics of the light reflection for a specific surface by the BRDF (sr−1). The nadir view angles
cause directional reflection on the surface which were described by [58–60]. We applied the BRDF
correction to all images in the image collection to account for these effects.

2.6. Topographic Correction

The slope, aspect and elevation can cause variations in reflectance for similar features with
different terrain positions [61–63]. Topographic correction is the process to account for these effects.
The Modified Sun-Canopy-Sensor Topographic Correction method as described by Soenen et al. [64]
was applied to account for these effects. The method uses the sun-canopy-sensor (SCS) [65] with
a semi-empirical moderator (C) to account for diffuse radiation [66–68]. The ALOS Global Digital
Surface Model was used [69,70].

2.7. Representing Vegetation Phenology Using Sentinel-1

The harmonic model represents the characterization of the temporal variability in a data-series
using harmonic components [71]. Harmonic trend analysis [72] was applied to the Sentinel-1 time
series as Sentinel-1 offers a complete time-series which is not affected by clouds. We applied one
harmonic term (shown in Equation (1)), which represents one seasonal cycle per year [73]. Equation (1)
has a linear component (β0 and β1) and two harmonic coefficients (with β2 and β3). The phase and
amplitude estimates at the pixel level were added as bands to the image stack.

SAR = β0 + β1t + β2cos(2πt) + β3sin(2πt) (1)
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2.8. Processing

The seasonal Landsat-8, Sentinel-1 and Sentinel-2 composites were combined into a single image,
where the different images are represented as bands. A series of indices were calculated from the
optical satellites. We applied a random forest classifier using the probability mode on these images to
create probability maps for each land cover class. These maps were then assembled into a final land
cover map using a decision tree logic and Monte-Carlo simulations to estimate uncertainty.

Covariates

We refer to covariates as the composite band values and derived indices that are used as predictors
in the random forest algorithm. Table 1 provides an overview of the band combinations used
in the normalized difference (Equation (2)) calculations. For some combinations there are more
common names such as Normalized Difference Water Index (NDWI) [74]), Normalized Burn Ratio
(NBR) [75]), Normalized Difference Snow Index (NDSI) [76]) and Normalized Difference Vegetation
Index (NDVI) [77].

ND(band1, band2) =
band1 − band2
band1 + band2

(2)

Table 1. Normalized difference metrics (ND; Equation (2)) were calculated for every Landsat-8 and
Sentinel-2 image. This table provides an overview of the band combinations.

Blue Green Red nir swir1

green red swir1 red swir2
red nir swir2 swir1
nir swir1 swir2
swir1 swir2
swir2

Two ratio (R) bands were included, calculated by dividing one band by another. This was
done for the SWIR1 and NIR bands and the red and SWIR1. The Enhanced Vegetation Index (EVI,
Equation (3)) [78] was also included, as well as the soil-adjusted vegetation index (SAVI, Equation (4)
using L = 0.5) [79]. The Index-based Built-Up Index (IBI) [80] was calculated from Equation (5).

EVI = 2.5 ∗ NIR − red
NIR + 6 ∗ red − 7.5 ∗ blue + 1

(3)

SAVI =
(1 + L)(NIR − red

NIR + red + L
(4)

IBI =
NIR

(NIR + red)
+

green
(green + swir1)

(5)

The total number of bands in the final image stack was 234. We sampled the complete stack
of covariates for each land cover class and evaluated the importance of the covariates in R [81–83].
A smaller number of covariates reduces the computational expense and eliminates noise. Whereas the
bands have different spatial resolutions, sampling was done on a 10 m spatial resolution, the smallest
spatial resolution of all bands.

2.9. Reference Data

Reference data was collected from both field data and through photo-interpretation of satellite
imagery. High resolution data from RapidEye and PlanetScope have a spatial resolution of 5 and 3 m
respectively and were ingested into the GEE platform. Opportunistic sampling was done using the
high resolution data and Landsat-8 and Sentinel-2 composites. Reference data for forest and cropland
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were obtained by applying a stratified sample on the SERVIR-Mekong regional land cover product [84].
Table 2 provides an overview of the total number of points that were collected in each class.

Table 2. Tally of the number of reference data points collected for each class.

Land Cover Class No. Training Points

Cropland 1758
Forest 1422

Mangroves 873
Palm oil 1467
Rubber 1802
Water 499

Urban and built up 993

2.9.1. Training Data

The reference data was used to create a training data set for the random forest classifier. The data
of each class was combined with a random sample of all classes to create a sample representing both
class presence and absence (other land covers).

2.9.2. Primitives

The table with training data was used in a random forest model in R [81–83] to select the most
important covariates. Metrics with a correlation in excess of 0.90 with other variables were removed to
reduce problems associated with highly collinear predictor variables. Various methods are available to
select a parsimonious set of metrics to use as predictors in a model, including dimensional reduction
of the data, such as a principle component analysis or canonical correlation analysis. We used the
information on the variable importance measures to select the covariate list. The random forest
classifier was then applied in GEE using the selected most important covariates and the training data.
The classifier was trained with 100 trees in probability mode. The classifier was then applied to each
class (class versus other), resulting in the probability map for the class.

2.9.3. Assembly Logic and Monte-Carlo Simulations

A decision tree and Monte-Carlo simulation were used to create the final land cover assemblage.
The decision tree was used to set the order and thresholds used to combine each of the primitives
together into one final land cover map. The decision tree was run 100 times with a Monte-Carlo
simulation process [85]. The Monte-Carlo process entailed adding a grid with random numbers to
each of the primitives. It produces a final land cover map, which is the mode of the 100 simulations
and a probability map which is the count of the mode divided by the total number of model runs.

2.10. Validation

We placed a stratified random sample in the final land cover product. The strata used were pixels
classified as rubber plantation, palm oil, and an aggregate other class. 1500 plots were located in each
of the three strata. The land cover at each plot was analyzed in Collect Earth Online using available
imagery from Digital Globe, Planet, and Bing maps [86]. From the 1500 plots, 47 were flagged as bad
for various reasons such as no or bad imagery. We then calculated a confusion matrix, overall accuracy,
and disagreement [87–89]. We also plotted how overall accuracy changes when pixels with a low level
of uncertainty are iteratively filtered out. We also plot the distribution of the probabilities as boxplots
by class type.

3. Results

We created seven primitive maps, including cropland, forest, mangrove, palm oil, rubber
plantation, urban, and water. It is important to have a clear separation in the probability distribution
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between the presence and absence of each class primitive layer. The boxplots of probability values by
land cover type for each of the seven primitive presence/absence maps is shown in Figure 4. There is
distinct separation for most class primitive layers. However, there is notable overlap between urban,
water, cropland and forest. There is also overlap between mangrove and water.

To specify the probability distribution for the Monte Carlo simulation we aggregated all absence
classes into one sample and calculated the 2.5 and 97.5 percentiles. The same process was repeated for
the presence sample. These are represented in Figure 4 as dashed lines. We chose these thresholds
rather than the minimum and maximum to exclude noisy data points. These thresholds are far apart
for the cropland, forest, palm oil and rubber plantation primitives. They are much closer for the
mangrove, urban, and water primitives. In the Monte-Carlo simulation step, we used the mean of the
two percentiles as the threshold for the decision tree while the distance from the mean was used as the
maximum variation in the simulations.

Figure 4. In the decision tree we used 2.5 and 97.5 percentiles of the primitive and all other classes
respectively, indicated with a dashed line. The mean of the two was used as a threshold in the decision
tree. The distance of the percentiles to the threshold was used in the Monte-Carlo simulation.

The data from Figure 4 were used in a decision tree classifier. Mangrove was placed on top
followed by cropland, palm oil, forest, rubber, water and urban. The resulting land cover and
uncertainty map from the Monte-Carlo simulation are shown in Figure 5. It can be seen that the
hilly inland areas are classified as forests with extensive cropland areas in the north. Mangroves
are mainly found in the Tanintharyi Region. Palm oil plantations are found throughout the region,
but more concentrated along the coastal areas. The uncertainty map shows the spatial distribution of
uncertainties throughout the region.



Remote Sens. 2019, 11, 831 10 of 19

Esri, DeLorme, GEBCO, NOAA NGDC, and other
contributors, Sources: Esri, GEBCO, NOAA,
National Geographic, DeLorme, HERE,
Geonames.org, and other contributors

100°0'0"E

100°0'0"E

98°0'0"E

98°0'0"E

96°0'0"E

96°0'0"E

20
°0

'0"
N

18
°0

'0"
N

18
°0

'0"
N

16
°0

'0"
N

16
°0

'0"
N

14
°0

'0"
N

14
°0

'0"
N

12
°0

'0"
N

12
°0

'0"
N

10
°0

'0"
N

10
°0

'0"
N

Legend
Other
Surface water
Forest
Urban and Built up
Cropland
Rubber
Palm oil
Mangrove

0 30 60 90 12015
Kilometers

±
Scale 1: 4,500,000

(a)

Esri, DeLorme, GEBCO, NOAA NGDC, and other
contributors, Sources: Esri, GEBCO, NOAA,
National Geographic, DeLorme, HERE,
Geonames.org, and other contributors

100°0'0"E

100°0'0"E

98°0'0"E

98°0'0"E

96°0'0"E

96°0'0"E

20
°0

'0"
N

18
°0

'0"
N

18
°0

'0"
N

16
°0

'0"
N

16
°0

'0"
N

14
°0

'0"
N

14
°0

'0"
N

12
°0

'0"
N

12
°0

'0"
N

10
°0

'0"
N

10
°0

'0"
N

Legend
Certainty percentage
Value

High : 100
Low : 0

0 30 60 90 12015
Kilometers

±
Scale 1: 4,500,000

(b)

Figure 5. Landcover map for 2018 (a) and probability map for 2018 (b).

Validation was done using a confusion matrix. The confusion matrix of the 2017 and 2018
land cover maps can be found in Table 3. The overall accuracy was 0.84, with an overall quantity
disagreement of 0.07 and an overall allocation disagreement of 0.09, following the definitions
of Pontius Jr and Millones [88]. Highest accuracy values were found for mangroves, rubber, and forest
types. Lower accuracy values for water and Cropland. Surface water was mostly confused with
mangroves; cropland was confused with rubber. An uncertainty map was used to filter the validation
data. Validation points with lower accuracy values were masked out by varying the threshold.
The results are shown in Figure 6. With this filtering, it can be seen that the accuracy increases from
0.84 up to 0.91. The increase in accuracy starts at around 50%.

Table 3. Confusion matrix for 2017 and 2018

Surface Water Forest Urban and Built Up Cropland Rubber Palm Oil Mangrove

Surface water 40 0 6 0 0 0 1
Forest 2 1531 14 18 66 17 0

Urban and Built up 0 0 17 1 0 0 0
Cropland 9 16 2 476 14 6 0
Rubber 4 68 2 84 749 26 0
Palm oil 2 89 0 2 27 262 1

Mangrove 11 79 0 22 6 4 163

The probabilities of the land cover map are shown in Figure 7a. It can be seen that the overall
confidence of the map is generally high (above 75%). Figure 7b shows the probabilities for the different
land cover classes. It was found that other, palm oil and rubber plantations have the largest variability.
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The probabilities of classes that change from 2017 to 2018 were also calculated. The probability
distribution of the combined classes is shown in Figure 7c and specified according to class in Figure 7d.
It can be seen that the variability increases dramatically when zooming in on those classes. Also, it is
noted that cropland and urban have high probabilities in both situations.

0 20 40 60 80 100

0.80

0.85

0.90

0.95

1.00

Certainty (%)

A
cc

ur
ac

y

Figure 6. The accuracy was calculated by masking out pixels with lower accuracy values.

Figure 7. The distribution of the probabilities (a). The distributions of probabilities according to
class (b). The distribution of probabilities for classes that change between 2017 and 2018 for all (c) and
sorted by class (d).

Figure 8 illustrates a close up example of the land cover class transitions from 2017–2018. For each
transition, we selected all points that undergo change and map to which class they change (as a
percentage) and the probability distribution of that specific class change. For example, cropland
sees most changes to rubber plantations, forest and other. It was found that changes to other
land-use is generally a large portion of the changes, whereas probabilities are variable. For mangroves,
most transitions are to forest.
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(a) Cropland (b) Forest

(c) Mangrove (d) Other

(e) Palmoil (f) Rubber

(g) Urban (h) Water

Figure 8. Changes between categories: plots on the left show the change from the main class as a
percentage, the plots on the right the probabilities associated with those changes. The numbers indicate
the amount of data points that were included.

4. Discussion

We have presented a method to fuse optical and SAR imagery in the context of nature conservation
in Myanmar. We have demonstrated that a combination of Sentinel-2, Landsat-8 and Sentinel-1
provides a sufficiently dense spatio-temporal data series, even in regions with persistent cloud
cover, to separate between different land cover and plantations types. Due to the nascence of best
pre-processing workflow and algorithms for Sentinel 2 data, the processing steps of the two optical
satellites–sentinel 2 and Landat 8–differed. BRDF and topographic corrections were applied to the
Landsat 8 time series, but were not available for the sentinel 2 images. Work of Roy et al. [90] and
Roy et al. [91] present a method to apply the BRDF correction to Sentinel 2, but they used a different
model for atmospheric correction. As such, values presented in their work could not be applied to our
study. Similarly, we used a conservative approach with regards to applying topographic correction.
Initiatives such as the Harmonized Landsat and Sentinel 2 surface reflectance data set [92] are very
exciting in this regard, as they provide a consistent integration of Landsat and Sentinel 2 images which
has been extensively tested and include consistent methods to account for BRDF effects [93].
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Error quantification is a key quality check that provides accountability to all stakeholders. We have
demonstrated that the use of a Monte-Carlo simulation with a decision tree logic is a very useful
tool to map uncertainty. The accuracy values reported in this study range from 84% up to 91% when
taking error quantification into account. These numbers are in the same range as e.g., Dibs et al. [94]
and Dong et al. [95]. Information on the potential error of a pixel can be used for additional reference
data collection or might provide valuable information on the spatial distribution of land cover classes
that overlap. Land cover type specific information on uncertainty and overlap between classes is also
useful in the decision tree logic, where classes with higher uncertainty or classes with notable overlap
can be re-arranged according the purpose and priority of the final land cover map.

Time-series analysis along with error quantification and stand age estimation [96] might provide
other valuable information. An example is give in Figure 8 where land cover change is mapped with
the associated uncertainty of the change. However, the presented method uses a single composite for
every year whereas more dedicated time-series analysis methods such as Landtrendr [97] and Breaks
For Additive Season and Trend (BFAST) [98] use complete time-series to detect changes. Other methods
such as intensity analysis can be powerful to analyze changes in land categories over time [89,99].
Future work can cross-walk these different methods and improve future land cover and land cover
change products.

The greatest amount of rubber plantations was found in Tanintharyi state (approximately
468,000 ha), followed Kayin state (approximately 344,000 ha) and then Mon (approximately 246,000 ha)
for 2018. These estimates differ from the numbers reported by the Land Management and Statistics
Department (MOALI) for the years 2015–2016. They reported 138,828 ha, 107,978 ha, and 198,741 ha
respectively. Similarly, the numbers vary from a study by Connette et al. [4] who estimated rubber
occupied 127,500 ha in the Tanintharyi state in 2016. The same study reported 136,500 ha of palm
oil, where we found 125,253 ha for the year 2018. In contrast, another study from Torbick et al. [100]
reported an area of 750,822 ha for palm oil and rubber plantations combined in Tanintharyi state,
where we found 594,000 ha. However, more importantly, nearly half of the plantations in Dawei and
Myeik districts in Tanintharyi state are located within key biodiversity areas, protected areas or wildlife
corridors, highlighting the risk associated with extraction of rubber wood in these areas. This analysis
provides improved assessments for sustainable supply chain analyses and recommendations.

In this study, we have demonstrated how sensor fusion and explicit error quantification can
be beneficial for earth science applications using a cloud-based platform. Additional sensors or
imagery from higher resolution resources might improve the results by better spatial and/or temporal
representation to discern forest types [101]. Including additional statistical information such as
elevation, slope, aspect, and orientation of slope. We also found ancillary remote sensing products such
as the Joint Research Center (JRC) Global Surface Water product [102], global forest cover products [103]
and data products on cropland extent [104] can be used to further improve results. Combining various
classifiers based on a priori knowledge could further enhance the method [105]. Machine learning
algorithms using neural network approaches are also evolving and are promising for integration into
the methods presented here to potentially improve the results by mapping canopy species [106,107].

5. Conclusions

The study provides valuable insights into discriminating between natural and anthropogenic
forest types. This is particularly applicable in regions where natural forest is quickly being replaced
with plantations, and these conversions may not be detected with traditional remote sensing methods.
Given this situation, we fused data from Landsat 8, Sentinel 2, and Sentinel 1 data to overcome
the various limitations present in each individual sensor. In such land cover classification efforts,
systematic error quantification is a key quality check and provides accountability to all stakeholders.
Starting with fused data and primitives as biophysical probability layers, we achieved both final
classification and system error quantification in the RLCMS workflow. This process resulted in an
overall good accuracy which can be further improved if validation data with higher error estimates
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are used. We finally contend that these results are essential inputs to guide sustainable management of
wood resources in Myanmar.
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Appendix A

The sourcecode for brdf correction (https://code.earthengine.google.com/
b1ed29a648150344e7971b156abc1f6c), cloud masking (https://code.earthengine.google.com/
c6bc1a1bffd59145e06713beb9037233), shadow masking (https://code.earthengine.google.com/
36232db1a3a0bd1634a7f58145a3bfb9) and terrain correction (https://code.earthengine.google.com/
ea5cbb0841b03105d278011dd316dde2).
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