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Abstract: Velocity updates have been proven to be important for constraining motion-sensor-based
dead-reckoning (DR) solutions in indoor unmanned aerial vehicle (UAV) applications. The forward
velocity from a mass flow sensor and the lateral and vertical non-holonomic constraints (NHC)
can be utilized for three-dimensional (3D) velocity updates. However, it is observed that (a) the
quadrotor UAV may have a vertical velocity trend when it is controlled to move horizontally; (b) the
quadrotor may have a pitch angle when moving horizontally; and (c) the mass flow sensor may suffer
from sensor errors, especially the scale factor error. Such phenomenons degrade the performance of
velocity updates. Thus, this paper presents a multi-sensor integrated localization system that has
more effective sensor interactions. Specifically, (a) the barometer data are utilized to detect height
changes and thus determine the weight of vertical velocity update; (b) the pitch angle from the
inertial measurement unit (IMU) and magnetometer data fusion is used to set the weight of forward
velocity update; and (c) an extra mass flow sensor calibration module is introduced. Indoor flight
tests have indicated the effectiveness of the proposed sensor interaction strategies in enhancing
indoor quadrotor DR solutions, which can also be used for detecting outliers in external localization
technologies such as ultrasonics.

Keywords: indoor localization; quadrotor UAV; air flow; inertial sensor; magnetometer; barometer;
ultrasonic; Kalman filter

1. Introduction

Unmanned aerial vehicles (UAV) have shown great potential in civilian applications such as
indoor/outdoor mapping [1], target tracking [2], victim searching [3], and industrial inspection [4].
For these applications, a key is the real-time estimation of UAV navigation states (i.e., position, velocity,
and attitude). Although the integration of data from global navigation satellite systems (GNSS),
real-time kinematics (RTK), or precise point positioning (PPP) and inertial measurement units (IMU)
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have been successfully commercialized to provide accurate (i.e., decimeter and centimeter level location
accuracy for dynamic and static applications, respectively) location solutions in outdoor areas [5],
reliable indoor UAV localization is a challenge due to the degradation of GNSS signals.

To alleviate this issue, researchers have presented various systems and approaches. Table 1 lists
part of the existing works from the years 2016 to 2018. The used sensors and algorithms are shown as
well as their test areas and location accuracies.

Table 1. Selected systems and methods for indoor unmanned aerial vehicles (UAV) localization from
the years 2016 to 2018.

Method Sensors Algorithm Test Area Accuracy

[6] Stereo camera SLAM 200 m * 300 m Meter level
[7] Stereo camera, IMU SLAM 16 m * 16 m Meter level
[8] Monocular camera, IMU Kernel adaptive filtering N/A Decimeter level
[9] Monocular camera, optical flow

sensor, IMU, barometer
Indirect EKF 50 m * 20 m Meter level

[10] Monocular camera, fiducial markers Relative pose identification 5 m * 5 m Decimeter level
[11] RGB-D camera, IMU, ultrasonic,

optical flow sensor
Decentralized information
filter

3 m * 2 m Decimeter level

[12] Optical flow sensor, IMU EKF 6 m * 6 m 0.3 m in mean
[13] Ultraviolet LED makers Mutual relative localization 10 m distance Meter level
[14] 3D lidar, UWB, IMU EKF Simulation Decimeter level
[15] 2D lidar CNN 4 m * 4 m Decimeter level
[16] 2D lidar, IMU SLAM 8 m * 8 m 1.0 m for 26 s, 0.5 m for

10 s
[17] 2D lidar, IMU Tightly coupled SLAM 60 m corridor Meter level
[18] 1D laser, IMU, barometer EKF 5 m * 9 m 0.1 m height accuracy

in mean
[19] Radar Radar odometry 80 m * 10 m 3.3 m in mean
[20] Radar, UWB, IMU EKF 40 m * 40 m 0.8 m in RMS
[21] UWB Multilateration 20 m * 30 m, 4 AP 2.0 m in mean
[22] UWB TDoA 4 m * 2 m, 4 AP 0.1 m in 75 %
[23] UWB, IMU Tightly coupled EKF 19 m * 13 m 0.15 m in mean
[24] UWB, monocular camera SLAM 8 m * 8 m 0.23 m in 75 %
[25] UWB, RGB-D camera Monte Carlo localization 15 m * 15 m 0.2 m in RMS
[26] Ultrasonic Multilateration 4 m * 3 m, 6 AP 0.16 m in RMS
[27] Ultrasonic CNN 10 m * 4 m Decimeter level
[28] Ultrasonic, time-of-flight camera Multilateration 0.7 m * 0.7 m, 5 AP 0.17 m in median
[29] WiFi Fingerprinting 36 m * 17 m, 10 APs 1.7 m in mean
[30] WiFi Fingerprinting with RSS

interpolation
9 m * 9 m, 4 APs 2.2 m in mean

[31] BLE Multilateration 4 m * 4 m Meter level
[32] RFID, GNSS (RTK) K-nearest neighbors 30 m * 30 m, 9 tags 0.18 m in RMS
[33] Magnetometers Magnetic matching 24 m * 2 m Sub-meter level
[34] Hall-effect sensor, IMU EKF 30 m * 30 m 2.15 m in 54 s
[35] A quasi-taut tether Angle and range-based 2.5 m * 2.5 m 0.37 m in mean

* SLAM—simultaneous localization and mapping; 1D/2D/3D—one/two/three-dimensional; EKF—extended
Kalman filter; PF—particle filter; CNN—convolution neural network; RGB-D—red-green-blue-depth;
RMS—root mean squares; TDoA—time-difference-of-arrival; RFID—radio frequency identification;
LED—light-emitting diode; RSS—received signal strength; AP—access point; WiFi—wireless fidelity;
BLE—Bluetooth low energy; N/A—not provided.

From the existing indoor localization works, the following phenomenons can be found:

• The candidate sensors include vision sensors (e.g., camera, lidar, and optical flow sensor), motion
sensors (e.g., IMU, mass flow sensor, and the Hall-effect sensor), wireless sensors (e.g., UWB ,
ultrasonic, radar, WiFi, Bluetooth low energy (BLE), and radio frequency identification (RFID)),
and environmental sensors (e.g., magnetometer and barometer).

• Different types of sensors typically provide various localization accuracies and meanwhile
have different costs and coverage areas. Thus, there is a trade-off between performance
and cost/coverage.

• High-precision wireless technologies (e.g., UWB and ultrasonic) can provide high localization
accuracy (e.g., decimeter or even centimeter level). However, although the prices for low-cost
commercial UWB and ultrasonic development kits have been reduced to the hundreds of
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dollars level, such systems have limited ranges (e.g., 30 m between nodes and anchors).
Thus, other technologies are required to bridge their signal outages in wide-area applications.
Meanwhile, for wireless ranging systems, there are inherent issues such as signal obstruction and
multipath [36]. Thus, other technologies are needed to ensure localization reliability and integrity.

• Cameras and lidars can also provide high location accuracy when loop closures are correctly
detected. Furthermore, some previous issues, such as heavy computational load, are being
eliminated because of the development of modern processors and wireless data transmission
technologies. However, the performance of vision-based localization systems is highly
dependent on whether the measured features are distinct in space and stable over time.
For database matching, any inconsistency between the measured data and the database may cause
mismatches [37]. For mobile mapping, it is possible to add updates and loop closures to control
errors. However, real-world localization conditions are complex and unpredictable; thus, it is
difficult to maintain accuracy in challenging environments (e.g., areas with glass or solid-color
walls). Therefore, external technologies may be needed to bridge such task periods as well as
detect the outliers in vision sensor measurements.

• Dead-reckoning (DR) solutions from IMUs have been widely used to bridge other localization
technologies’ signal outages and integrate with them to provide smoother and more robust
solutions [38]. However, traditional navigation- or tactical-grade IMUs are heavy and costly
and thus are not suitable for consumer-level UAVs. Micro-electro-mechanical systems (MEMS)
IMUs are light and low-cost, which have made them suitable for low-cost indoor localization.
However, low-cost MEMS IMUs suffer from significant run-to-run biases and thermal drifts [39],
which are issues inherent to MEMS sensors. Therefore, standalone IMU-based DR solutions
will drift over time. Magnetometer measurements can be used to derive an absolute heading
update. However, the indoor magnetic declination angle becomes unknown, which makes the
magnetometer heading unreliable [40]. Thus, it is still important to implement periodical updates
to correct DR solutions.

• Vehicle motion model updates can be used to enhance the navigation system observability [41],
especially when there are significant vehicle dynamics (e.g., accelerating or turning). Sensors such
as the mass flow and Hall-effect sensors can measure the forward velocity. Meanwhile, it is
assumed that the lateral and vertical velocity components are zeroes plus noises when the UAV is
being controlled to move horizontally, i.e., the non-holonomic constraint (NHC) [42]. Accordingly,
3D velocity updates can be applied. Furthermore, there are other updates, such as the zero velocity
update (ZUPT) and zero angular rate update (ZARU) when the UAV is hovering in a quasi-static
mode [43]. These updates are effective when the actual UAV motion meets the assumption.
However, in contrast to land vehicles that are constrained by the road surface, UAVs may suffer
from vertical velocity passively during task periods, which degrades the NHC performance.
Meanwhile, UAVs may have a pitch angle when moving horizontally, which pollutes the forward
velocity measurements. Therefore, some updates are needed to better use the velocity updates.

This research focuses on using low-cost sensors to provide a self-contained DR solution, so as
to bridge the signal outages and resist outliers in high-precision localization solutions. Therefore,
the above high-precision wireless and vision sensors are not investigated. Since IMU-based DR
solutions drift quickly over time, the magnetometers, mass flow sensor, and barometer are also used.
Compared to the existing works, better sensor interactions are utilized to enhance the localization
solution. The main contributions of this paper are as follows:

1. Velocity updates have been proven to be effective in constraining DR errors. However, it is
observed that the quadrotor UAV may have vertical velocity even when it is controlled to
move horizontally. Therefore, the barometer data are utilized to detect height changes and thus
determine the weight for the vertical velocity update.
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2. According to the fact that the quadrotor may have a pitch angle when moving horizontally,
the pitch angle, which is obtained from IMU and magnetometer data fusion, is used to set the
weight of the forward velocity update.

3. It is observed that the mass flow sensor may suffer from significant sensor errors, especially the
scale factor error. Thus, a specific mass flow sensor calibration module is introduced.

This paper is organized as follows. Section 2 illustrates the methodology. Section 3 describes the
experimental verification, and Section 4 draws the conclusions.

2. Methodology

Figure 1 illustrates the system diagram for the proposed multi-sensor integrated localization
(MSL) method. The blue and red boxes indicate the inputs and outputs, respectively. The purple
boxes represent the algorithm modules, while the green boxes indicate the prediction and update
information for the MSL extended Kalman filter (EKF).

Figure 1. Diagram for the proposed multi-sensor integrated localization method.

The IMU data are used for predicting the navigation states through the inertial navigation system
(INS) mechanization and constructing the EKF system model. The magnetometer data are calibrated
and utilized to compute the magnetometer heading, which is further used to build a heading update
in the MSL EKF. The mass flow sensor data are calibrated and used in the velocity update in the EKF.
The barometer data are used to detect height changes, which is in turn used for quality control (QC)
on velocity updates. Meanwhile, the horizontal angles from IMU data are used for QC on velocity
updates. The ultrasonic data are used to provide absolute position updates for the MSL EKF, so as
to provide a reference location solution. The position data from the MSL EKF are also used to detect
the outliers in ultrasonic position solutions. The following subsections separately describe the inertial
navigation system (INS)-based attitude, velocity, and position prediction, the magnetometer heading
update, the velocity update, the position update, and the EKF computation.
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2.1. EKF System Model

Inertial navigation is a DR technique in which an IMU is tracked relative to its initial navigation
states (i.e., attitude, velocity, and position) from the IMU body frame (i.e., b-frame) to the navigation
frame (i.e., n-frame). The INS mechanization processes angular rates and specific forces (or angular and
velocity increments) from gyros and accelerometers in the IMU for navigation-state prediction. Refer to
Reference [44] for details about the INS mechanization. The predicted navigation states are also used
to construct the MSL EKF system model. The INS error model [45] is applied in the continuous system
model as

ẋms = Fmsxms + wms (1)

where xms and Fms are the state vector and the dynamics matrix, respectively. wms is the system noise
vector. The elements in the vectors and matrix are

xms =
[
δpn δvn ψ bg ba

]T
(2)

Fms =


−[ωn

en×] I3×3 03×3 03×3 03×3

03×3 −[(2ωn
ie + ωn

en)×] [fn×] 03×3 Cn
b

03×3 03×3 −[(ωn
ie + ωn

en)×] −Cn
b 03×3

03×3 03×3 03×3 − 1
τbg

I3×3 03×3

03×3 03×3 03×3 03×3 − 1
τba

I3×3

 , wms =


03×1

Cn
b wa

−Cn
b wg

wbg
wba

 (3)

where the states δpn, δvn, ψ, bg, and ba are the vectors of position errors, velocity errors, attitude
errors, gyro biases, and accelerometer biases, respectively; Cn

b is the direction cosine matrix (DCM)
from the b-frame to the n-frame. fn is the specific force vector projected to the n-frame. The sign [l×]
denotes the cross-product (skew-symmetric) form of the 3D vector l =

[
l1 l2 l3

]T
. wg and wa are

noises in gyro and accelerometer readings, respectively; τbg and τba denote the correlation time for bg

and ba, and wbg and wba are the gyro and accelerometer bias driving noises. 03×3 and I3×3 are the 3D
zero matrix and identity matrix, respectively.

2.2. Magnetometer Heading Update

In the INS mechanization, the horizontal attitude (i.e., roll and pitch) errors can be controlled
by accelerometers, while the heading error may grow as a result of the weak observability of the
heading angle and vertical gyro bias [41]. Thus, magnetometers are utilized to provide absolute
heading updates. In indoor environments, the local magnetic field may be disturbed by man-made
infrastructures. Therefore, calibration is required to use the magnetometer as a reliable source
of heading. Refer to References [46,47] for magnetometer calibration and magnetometer heading
computation, respectively. The calculated magnetometer heading are also fused with INS data in the
attitude and heading reference system (AHRS) algorithm [48] to obtain the AHRS heading updates.
The obtained heading is used to build the heading update model in the MSL EKF. The corresponding
measurement model can be written as

zψ,k = Hψ,kxms,k + vψ,k (4)

where zψ,k, Hψ,k, and vψ,k are the observation vector, design matrix, and measurement noise vector for
heading update at time tk. These vectors and matrix can be described as

zψ,k = ψin,k − ψm,k (5)

Hmc =
[
01×3 01×3

[
0 0 1

]
01×3 01×3

]
(6)
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where ψm,k is the magnetometer- or AHRS-derived heading at time tk, and ψin,k is the
INS-predicted heading.

2.3. Velocity Update

It has been revealed in previous research that using a velocity update can enhance the heading
observability when there are significant vehicle dynamics [42]. As illustrated in Section 1, this paper
uses a velocity update and presents multiple updates for QC of velocity updates.

2.3.1. Velocity Update for Multi-Sensor Localization EKF

In this research, 3D velocity updates are applied. The forward velocity is measured by the
mass flow sensor, while the lateral and vertical velocity components are set at zeroes plus noises.
The corresponding MSL EKF measurement model can be written as

zvc,k = Hvc,kxms,k + vvc,k (7)

where zvc,k, Hvc,k, and vvc,k are the observation vector, design matrix, and measurement noise vector
for velocity update at time tk. According to Reference [49], zvc and Hvc can be written as

zvc = (Cn
b )
−1 vn − ṽb (8)

Hvc =
[
03×3 (Cn

b )
−1 − (Cn

b )
−1 [vn×] 03×3 03×3

]
(9)

where ṽb =
[
v f 0 0

]T
and v f is the velocity from mass flow sensor.

2.3.2. Mass Flow Sensor Calibration

When the reference velocity form external technologies (e.g., ultrasonic) is available, the mass
flow sensor can be calibrated. The velocity error model is

ṽ =
v f − b f

s f
(10)

where ṽ is the reference velocity. b f and s f are the bias and scale factor of the mass flow
sensor, respectively.

Thus, the mass flow sensor calibration model is

z f c = H f cx f c (11)

where z f c, H f c, and x f c are the observation vector, design matrix, and state vector for mass flow sensor
calibration, and

x f c =
[
δb f δs f

]T
(12)

H f c =



1
s f

v f ,1−b f

s2
f

... ...
1
s f

v f ,i−b f

s2
f

... ...
1
s f

v f ,Nf c
−b f

s2
f


(13)

z f c =
[
v f ,1 − ṽ1 ... v f ,i − ṽi ... v f ,N f c

− ṽN f c

]T
(14)
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where N f c is the number of mass flow sensor measurements.
The least squares method can be used to estimate x f c by

x f c = (HT
f cH f c)

−1HT
f cz f c. (15)

The estimated mass flow sensor bias and scale factor errors are used to compensate for velocity
errors before using the velocity update.

2.3.3. Availability for the Velocity Update

A QC mechanism is used to improve the robustness of velocity measurements. The basic ideas for
QC include (1) the weight for the vertical velocity update is lowered when the vehicle has a significant
height change and (2) the weight for the forward velocity update is decreased when the vehicle pitch
angle is large. For (1), the barometer data are used for height change detection. With the model in
Reference [50], the barometer-measured air pressure can be converted to the barometer height as

hb,k = 44330

(
1.0−

(
100pk

p0

) 1.0
5.255
)

(16)

where hb,k is the barometer height at time tk, pk and p0 are respectively the measured air pressure and
the sea level reference pressure. The p0 value is set at 101,325 Pa for calculation.

The height data are typically noisy. Thus, a smoother is used as

hb,k =
nbs

∑
i=1

cihb,k−i+1 (17)

where nbs is the smoother window size. c1 to cnbs are the coefficients that meet the condition ∑nbs
i=1 ci = 1

and c1 ≥ ... ≥ cnbs . This smoother causes a lag of nbs
2 data epochs. Such a lag is acceptable for indoor

UAVs because UAV sensors typically have a high data rate (e.g., over 50 Hz). A time lag of within 0.1 s
will occur if nbs is set at 10.

The smoothed barometer height is used for tracking height changes through a threshold-based
piecewise model. To use the method, a scoring value, αhc, is computed and compared with the
corresponding threshold values. Specifically, when αhc ≤ Thc,1 (i.e., the quasi-static-height mode),
the vertical velocity measurement noise covariance is set at σ2

vv. When Thc,1 < αhc ≤ Thc,2 (i.e., the

low-height-change mode), the vertical velocity measurement noise covariance is set at
(

αhc
Thc,1

σvv

)2
.

When αhc > Thc,2 (i.e., the high-height-change mode), the vertical velocity measurement noise
covariance is set at a large value σ2

vmax. In this situation, the vertical velocity update will not contribute
to the solution. To use the method, the standard deviation (STD) of the nh smoothed height data
epochs is computed as the scoring value αhc. The threshold values are set based on training data.

For (2), a similar threshold-based piecewise model is used by comparing the real-time pitch
angle to the preset threshold. Specifically, when θ ≤ Tθ,1 (i.e., the horizontal mode), the forward
velocity measurement noise covariance is set at σ2

v f . When Tθ,1 < θ ≤ Tθ,2 (i.e., the low-pitch-angle

mode), the forward velocity measurement noise covariance is set at
(

θ
Tθ,1

σv f

)2
. When θ > Tθ,2

(i.e., the high-pitch-angle mode), the forward velocity measurement noise covariance is set at a large
value σ2

vmax.

2.4. Position Update

Although the integration of data from the IMU, magnetometers, barometer, and mass flow sensor
can provide a short-term accurate DR solution, the solution will drift over time when an absolute
update is not available. The drifts of the navigation solution will occur especially when low-cost MEMS
sensors are used, since these sensors are susceptible to significant run-to-run biases and thermal drifts.
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Thus, to obtain a long-term accurate navigation solution, at least one type of the absolute updates is
required. In this research, the device-anchor ranges from ultrasonic sensors are used to integrate with
MSL EKF, so as to obtain references for the localization solution.

Ultrasonic sensors can provide accurate (i.e., centimeter-level) ranges in environments that
have clear line-of-sight between the device and anchors. However, the ranging accuracy may be
degraded by outliers that may occur as a result of obstructions between the device and anchors and the
multipath effect. This section describes the method for localization using ultrasonic ranges, the position
measurement model for the MSL EKF, and the method for removing outliers in ultrasonic ranges.

2.4.1. Ultrasonic Multilateration

For 3D localization, the model for the range between the device and the i-th anchor is

di =
√
((xi − xr)2 + (yi − yr)2 + (zi − zr)2). (18)

Therefore, the multilateration model is

zr = Hrxr (19)

where xr =
[
δx δy δz

]
represents the vector of device location errors, zr is the observation vector

for multilateration, Hr is the design matrix for multilateration, and

Hr =



xr−x1
d1

yr−y1
d1

zr−z1
d1

... ...
xr−xi

di

yr−yi
di

zr−zi
di

... ...
xr−xNr

dNr

yr−yNr
dNr

zr−zNr
dNr

 (20)

zr =
[
d̃1 − d1 ... d̃i − di ... d̃Nr − dNr

]T
. (21)

The state vector xr is estimated by

x̂r =
(

HT
r Hr

)−1
HT

r zr (22)

where xr =
[

xr yr zr

]T
and xr, yr, and zr are the device coordinates along east, north,

and up directions.

2.4.2. Position Update for Multi-Sensor Localization EKF

The ultrasound-derived position solutions are used to build the MSL EKF position update
model as

zpc,k = Hpc,kxms,k + vpc,k (23)

where zpc,k, Hpc,k, and vpc,k are the observation vector, design matrix, and measurement noise vector
for position update at time tk, and

zpc,k =
[
(Rm + h)(χk − χre f )− x̃k (Rn + h)(βk − βre f ) cos χk − ỹk hk − hre f − z̃k

]T
(24)

Hpc,k =
[
Λ
([

(Rm + h) (Rn + h) cos χk 1
])

03×3 03×3 03×3 03×3

]
(25)
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where
[

x̃k ỹk z̃k

]T
is the multilateration solution using ultrasonic ranges at time tk.

[
χk βk hk

]T

are the elements in pn.
[
χre f βre f hre f

]T
is the global position (i.e., latitude, longitude, and

ellipsoidal height) of the original point for the local coordinate frame (i.e., x, y, and z).

2.4.3. Ultrasonic Position Outlier Detection

To detect outliers in ultrasonic positioning solutions, statistical testing is implemented on the
innovations of the MSL EKF. The innovation sequence and its covariance matrix can be calculated
by [51]

ξk = zpc,k −Hpc,kxms,k (26)

Cξk = Hpc,kPms,kHT
pc,k + Rpc,k (27)

where Pms,k is the state covariance matrix in the MSL EKF and Rpc,k is the position measurement
covariance matrix. The assumption for outlier detection is

H0 :
ξk,i√

Cξk [i][i]
∼ N(0, 1) (28)

where Cξk [i][i] is the element at row i column i of Cξk . N(c1, c2) represents the normal distribution
with mean of c1 and covariance of c2. If the hypothesis is rejected, the measurements corresponding to
the outliers are removed.

With the system model and measurement models, the EKF predicts the states and then obtains
updates from noisy measurements. Refer to Reference [45] for details of EKF computation.

3. Tests and Results

3.1. Test Description

To verify the proposed MSL method, indoor flight tests were conducted with a 3DR Solo
quadrotor [52]. Figure 2a illustrates the test environment (20 m × 20 m) and Figure 2b shows the
quadrotor and sensors. Five Marvelmind ultrasonic (abbreviated as US) beacons [53] were used,
including one fixed on the quadrotor and four installed on four static leveling pillars. The height of the
four static beacons was 4 m.

Figure 2. (a) Test environment and (b) devices.

The quadrotor was equipped with an InvenSense MPU6000 MEMS-based IMU [54], a Honeywell
HMC 5983 magnetometer (abbreviated as Mag) triad [55], a TE MS5611 barometer (abbreviated as
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Baro) [56], a Sensirion SFM3000 mass flow sensor (abbreviated as Flow) [57], and a Marvelmind US
beacon. The data rates for IMU, Mag, Baro, Flow, and US were 50, 100, 100, 100, and 100 Hz, respectively.
A LattePanda 4 GB/64 GB Windows 10 single board computer was used for data collection and sensor
fusion computation [58].

Four flying tests with various quadrotor trajectories were conducted. The trajectories are shown
by blue lines in Figure 3. Each trajectory lasted for five to ten minutes. The locations of four US anchors
are shown by red pins in Figure 3. The reference trajectories were obtained by post-processing of
fusing US with INS, Mag, Baro, and Flow data. The used US system can provide a centimeter-level
ranging accuracy in line-of-sight environments [53].

Figure 3. Test trajectories: (a) Trajectory 1; (b) Trajectory 2; (c) Trajectory 3; (d) Trajectory 4.

3.2. Impact of Velocity Solutions

In this subsection, the impact of the velocity update is tested. Meanwhile, other factors, such as
the detection of height changes and the pitch angle, are investigated. Finally, the AHRS/INS/Velocity
integrated solutions that use various velocity strategies are evaluated.

3.2.1. Velocity Solutions (Mass Flow-Based)

To investigate the effect of mass flow sensor calibration, Figure 4a illustrates the raw and low-pass
filtered mass flow data, as well as the reference 1D velocity from ultrasonic solutions. There was a
difference between the filtered and reference data, which indicated the existence of mass flow sensor
errors. Such data were used as training data for mass flow sensor calibration.

The estimated mass flow sensor bias and scale factor values were further used to compensate
the mass flow data in the tests. The corresponding 1D velocity time series are shown in Figure 4b.
Compared to the filtered velocity, the calibrated velocity was closer to the reference. This phenomenon
indicates the effectiveness of mass flow sensor calibration.
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Figure 4. (a) Raw, filtered, and calibrated mass flow training and (b) testing data.

3.2.2. Height-Change Detection (Barometer-Based)

The barometer height was utilized to detect the time periods that did not have a significant height
change. These time periods were important for using the vertical velocity update. Figure 5 illustrates
the raw and smoothed barometer heights, as well as the indicator for the time periods that did not have
a significant height change. The time periods indicated by the cyan dots that had a legend of Flag-H.

The data in Figure 5 indicate that even when the quadrotor is controlled to move horizontally,
it may have height changes. With the height-change detection technique, it is possible to process the
barometer data to obtain the time periods during which the quadrotor had only horizontal movements.

According to training data, the nh value was set at 50 (i.e., barometer data epochs in half a
second), the height-change threshold values Thc,1 and Thc,2 were set at 0.02 m and 0.06 m, respectively.
The vertical velocity covariance values σ2

vv and σ2
vmax were set at (0.1 m/s)2 and (100 m/s)2, respectively.

Figure 5. Barometer data and height-change detection solution.

3.2.3. Impact of Pitch Angle on Velocity

In contrast to land vehicles, quadrotors may have significant horizontal angles, especially the
pitch angle, during the flying process. Figure 6a illustrates the roll and pitch angle during a test.
The pitch angle reached 15 deg. Figure 6b shows the theoretical relationship between the pitch angle
and the forward velocity scale factor error. A scale factor error of around 4 % may be introduced by a
pitch angle of 15 deg.

According to the training data, the pitch-angle threshold values Tθ,1 and Tθ,2 were set at 10 deg
and 30 deg, respectively. The forward velocity covariance value σ2

v f was set at (0.3 m/s)2.
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Figure 6. (a) Horizontal angles and (b) theoretical relation between pitch and forward velocity scale
factor error.

3.2.4. AHRS/INS/Velocity Integrated Solutions with Various Velocity Strategies

Figure 7 shows the position solutions from the following strategies:

• AHRS/INS: integration of AHRS heading and INS mechanization, without using any
velocity update.

• AHRS/INS/Flow(Raw): using raw mass flow sensor data (i.e., 1D velocity) as the update in the
MSL EKF.

• AHRS/INS/Vel(Raw): using raw mass flow sensor data and NHC for 3D velocity updates in the
MSL EKF.

• AHRS/INS/Vel(Cali): using calibrated mass flow sensor data and NHC (i.e., 3D velocity) in the
MSL EKF.

• AHRS/INS/Vel(Cali,QC): using mass flow sensor data that were calibrated and had QC based on
height-change and pitch-angle detection, as well as NHC (i.e., 3D velocity) in the MSL EKF.

Figure 7. Attitude and heading reference system (AHRS)/inertial navigation system (INS)/Velocity
integrated location solutions with various velocity strategies. (a) AHRS/INS solution; (b) AHRS/
INS/Flow(Raw) solution; (c) AHRS/INS/Vel(Raw) solution; (d) AHRS/INS/Vel(Cali) solution;
(e) AHRS/INS/Vel(Cali,QC) solution.
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Figure 7 indicates the importance of using proper velocity updates on motion-sensor-based
quadrotor localization. Figure 8a,b shows the location error time series of the strategies that had
velocity updates in one test, and the cumulative distribution function (CDF) of location errors in all
four tests. Table 2 illustrates the location error statistics, including the mean, root mean squares (RMS),
80% and 95% quantile errors, and the maximum value.

Figure 8. (a) AHRS/INS/Velocity integrated location errors with various velocity strategies and
(b) their cumulative distribution function (CDF).

Table 2. Statistics of AHRS/INS/Velocity integrated location errors, with various velocity strategies.

Strategy Mean RMS 80% 95% Max

AHRS/INS (m) 415.6 475.7 632.6 792.9 966.0
AHRS/INS/Flow(Raw) (m) 20.2 22.4 27.6 38.4 58.4
AHRS/INS/Vel(Raw) (m) 15.9 18.1 21.6 32.9 44.3
AHRS/INS/Vel(Cali) (m) 10.6 12.1 15.5 23.8 28.9

AHRS/INS/Vel(Cali,QC) (m) 9.4 11.0 14.8 22.4 26.8
∇AHRS/INS/Flow(Raw)

AHRS/INS 95.1% 95.3% 95.6% 95.2% 94.0%

∇AHRS/INS/Vel(Raw)
AHRS/INS/Flow(Raw)

21.3% 19.2% 21.7% 14.3% 24.1%

∇AHRS/INS/Vel(Cali)
AHRS/INS/Vel(Raw)

33.3% 33.1% 28.2% 27.7% 34.7%

∇AHRS/INS/Vel(Cali,QC)
AHRS/INS/Vel(Cali) 11.3% 9.1% 4.5% 5.9% 7.3%

∇a
b: improvement of solution a over solution b.

Compared to AHRS/INS/Flow(Raw), the mean AHRS/INS/Vel(Raw) location error was reduced
from 20.2 m to 15.9 m, with an accuracy improvement of 21.3%. This phenomenon indicates the benefits
of using 3D velocity instead of 1D.

When using the calibrated mass flow data, the location error mean value in AHRS/INS/Vel(Cali)
was reduced to 10.6 m, which was 33.3% lower than that in AHRS/INS/Vel(Raw). Such accuracy
improvement is significant, which suggest calibration for the mass flow sensor. The AHRS/INS/
Vel(Cali,QC) strategy further reduced the mean location error from 10.6 m to 9.4 m, with an accuracy
improvement of around 10%.

3.3. Integrated Localization Solutions during Ultrasonic Positioning Signal Outages

3.3.1. Use of Ultrasonic Positioning

The solutions in Section 3.2 indicate the effectiveness of using more reliable velocity solutions
in enhancing AHRS/INS/Velocity integrated navigation. On the other hand, it is shown that it was
challenging to obtain a long-term DR solution with such an AHRS/INS/Velocity integrated system on
a quadrotor. Thus, external updates are still needed. Figure 9 shows the US position solution that was
obtained through the method in Section 2.4.1. Figure 9a demonstrates the time series of the ranges
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from the quadrotor to four anchors. Figure 9b,c shows the 2D location solution and the east and north
positions, and Figure 9d illustrates the height solution.

The US system can provide a centimeter-level ranging accuracy [53]; thus, the multilateration
solution was expect to be generally at a centimeter to decimeter level, which was at least one level more
accurate than the DR position accuracy (sub-meter to meter level). One issue for the US positioning
system is that there were outliers in range measurements, which caused outliers in the US position
solution in Figure 9a.

Figure 9. (a) Raw ultrasonic measurements and (b) position, (c) velocity, and (d) height solution.

3.3.2. AHRS/INS/Velocity/Ultrasonic Integrated Solution

To mitigate the effect of outliers, the US positioning solution was utilized as the position update
for the MSL EKF by following the method in Section 2.4.2. The outliers were detected and removed
by using the approach in Section 2.4.3. Figure 10a–d demonstrate the 2D locations, east and north
positions, 1D velocity magnitude, and the east and north velocity components from the MSL EKF,
respectively. Compared to the solution in Figure 9, the position solutions became smoother, with all
position outliers removed. The MSL EKF position solutions were used as the reference trajectories to
evaluate the MSL solution during US signal outages in the next subsection.
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Figure 10. (a) AHRS/INS/Velocity/Ultrasound integrated 2D location, (b) east and north positions,
(c) 1D velocity, and (d) east and north velocities.

3.3.3. AHRS/INS/Velocity Integrated Solution during US Outages

To focus on AHRS/INS/Velocity localization, the US positions were cut off to generate US outages.
The US outage time length was set at various values (e.g., 5, 10, 15, 20, 30, and 60 s), so as to investigate
the AHRS/INS/Velocity solution for different time periods. The AHRS/INS/Velocity system will be
valuable in engineering practices if it can provide a reliable solution during US position outages.

Figure 11a–d shows the 2D position results by processing four sets of test data with US outages of
5, 10, 30, and 60 s, respectively. The red dots indicates the solutions during US outage time periods.
Figure 12a illustrates the east and north positions with and without US outages, and Figure 12b shows
the corresponding location errors, which were the differences between the results with and without US
outages. Thus, in Figure 12b, the location errors during the time periods that had US position updates
were not used when computing the location error statistics in this subsection.

Figures 11 and 12 indicate that the location errors drifted over time during US outage periods.
The maximum drifts reached 1.3, 3.0, 7.2, and 17.7 m in the selected test data that had US outages of 5,
10, 30, and 60 s, respectively.
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Figure 11. 2D position results by processing four test data with US outages of (a) 5 s, (b) 10 s, (c) 30 s,
and (d) 60 s, respectively.

Figure 13a illustrates the CDF of 2D location errors when using US outage time periods of 5, 10,
15, 20, 30, and 60 s on all test trajectories. Only the location errors during US outage periods were used
for calculation. Figure 13b shows the corresponding statistics.

According to Figure 13b, the mean 2D location errors were 0.2, 0.6, 1.0, 1.3, 1.8, and 4.3 m when
there were US outages of 5, 10, 15, 20, 30, and 60 s, respectively. This solution indicated that the
AHRS/INS/Velocity integrated system generally provided a localization accuracy (in mean value) of
approximately 1.0 m and 2.0 m when localizing using AHRS/INS/Velocity integration for 15 and 30 s,
respectively. Such location accuracy is acceptable because one-meter accuracy for 15 s is enough for
resisting many signal interference and outages for a commercial US system. Particularly, the location
accuracy reached 0.2 and 0.6 m when localizing using AHRS/INS/Velocity integration for 5 and 10 s,
respectively. Such accuracy was promising for self-contained quadrotor localization without using
high-precision wireless or vision localization technologies.
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Figure 12. 2D location solutions during ultrasonic outage periods of (a,c,e,g) 5, 10, 30, and 60 s and
(b,d,f,h) their location errors.



Remote Sens. 2019, 11, 838 18 of 22

Figure 13. (a) CDF and (b) statistics of 2D location errors during ultrasonic outage periods.

4. Conclusions

This paper has investigated the integration of low-cost IMU, magnetometer, barometer, and mass
flow sensors for quadrotor UAV localization. Multiple indoor flying tests were conducted using
ultrasonic ranging measurements to compute the reference trajectories. The introduction of forward
velocity from the mass flow sensor improved the AHRS/INS-based DR location accuracy (in mean
value) by 95.0%, and the use of 3D velocity updates further enhanced the location accuracy by 21.3%.
Furthermore, the calibration of mass flow sensor improved the location accuracy by 33.3%, and
the sensor interaction strategies further enhanced the location accuracy by 11.3%. The proposed
AHRS/INS/Velocity integrated approach generally provided a localization accuracy of 0.2, 0.6, 1.0,
1.3, 1.8, and 4.3 m when localizing for 5, 10, 15, 20, 30 and 60 s, respectively. Such DR accuracy (1.0 m
for 15 s and 1.8 m for 30 s) was promising to bridge the signal outages from high-precision localization
technologies and to resist outliers in the high-precision localization data.
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Abbreviations

The following abbreviations are used in this manuscript:

AoA angle-of-arrival
AP access point
BLE Bluetooth low energy
CDF cumulative distribution function
CNN convolution neural network
CPN counter propagation neural network
DCM direction cosine matrix
DR dead-reckoning
EKF extended Kalman filter
GNSS global navigation satellite systems
IGRF international geomagnetic reference field
IMU inertial measurement unit
INS inertial navigation system
KF Kalman filter
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LED light-emitting diode
MEMS micro-electro-mechanical systems
MSL multi-sensor integrated localization
M/A not provided
NHC non-holonomic constraint
NLoS non-line-of-sight
PF particle filter
PPP precise point positioning
QC quality control
RFID radio frequency identification
RGB-D red-green-blue-depth
RMS root mean squares
RSS received signal strength
RTK real-time kinematic
SLAM simultaneous localization and mapping
STD standard deviation
TDoA time-difference-of-arrival
ToA time-of-arrival
UAV unmanned aerial vehicle
US ultrasonic
UWB ultra-wide-band
WiFi wireless fidelity
ZARU zero angular rate update
ZUPT zero velocity update
1D/2D/3D one/two/three-dimensional
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33. Brzozowski, B.; Kaźmierczak, K.; Rochala, Z.; Wojda, M.; Wojtowicz, K. A concept of UAV indoor navigation
system based on magnetic field measurements. In Proceedngs of the IEEE Metrology for Aerospace
(MetroAeroSpace), Florence, Italy, 22–23 June 2016; pp. 636–640.

34. Zahran, S.; Moussa, A.; Sesay, A.; El-Sheimy, A. A New Velocity Meter based on Hall Effect Sensors for UAV
Indoor Navigation. IEEE Sens. J. 2018. [CrossRef]

35. Xiao, X.; Fan, Y.; Dufek, J.; Murphy, R. Indoor UAV Localization Using a Tether. In Proceedings of the
IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Philadelphia, PA, USA,
6–8 August 2018; pp. 1–6.

36. He, Z.; Renaudin, V.; Petovello, M.G.; Lachapelle, G. Use of High Sensitivity GNSS Receiver Doppler
Measurements for Indoor Pedestrian Dead Reckoning. Sensors 2013, 13, 4303–4326. [CrossRef]

37. Li, Y.; He, Z.; Gao, Z.; Zhuang, Y.; Shi, C.; El-Sheimy, N. Towards Robust Crowdsourcing-Based
Localization: A Fingerprinting Accuracy Indicator Enhanced Wireless/Magnetic/Inertial Integration
Approach. IEEE Internet Things J. 2018. [CrossRef]

38. Li, Y.; Zhuang, Y.; Zhang, P., Lan, H.; Niu, X.; El-Sheimy, N. An improved inertial/wifi/magnetic fusion
structure for indoor navigation. Inf. Fusion 2017, 34, 101–119. [CrossRef]

39. Li, Y.; Georgy, J.; Niu, X.; Li, Q.; El-Sheimy, N. Autonomous Calibration of MEMS Gyros in Consumer
Portable Devices. IEEE Sens. J. 2015, 15, 4062–4072. [CrossRef]

40. Li, Y.; Zhuang, Y.; Lan, H.; Zhang, P.; Niu, X.; El-Sheimy, N. Self-Contained Indoor Pedestrian Navigation
Using Smartphone Sensors and Magnetic Features. IEEE Sens. J. 2016, 16, 7173–7182. [CrossRef]

41. Li, Y., Niu, X., Cheng, Y., Shi, C.; El-Sheimy, N. The Impact of Vehicle Maneuvers on the Attitude Estimation
of GNSS/INS for Mobile Mapping. J. Appl. Geod. 2015, 9, 183–197. [CrossRef]

42. Li, Y.; Niu, X.; Zhang, Q.; Cheng, Y.; Shi, C. Observability Analysis of Non-Holonomic Constraints for
Land-Vehicle Navigation Systems. In Proceedings of the 25th International Technical Meeting of The Satellite
Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, USA, 17–21 September 2012;
pp. 1521–1529.

43. Lin, C.; Chiang, K.; Kuo, C. Development of INS/GNSS UAV-Borne Vector Gravimetry System. IEEE Geosci.
Remote Sens. Lett. 2017, 14, 759–763. [CrossRef]

44. Titterton, D.; Weston, J. Strapdown Inertial Navigation Technology; Institution of Electrical Engineers: London,
UK, 1997.

45. Shin, E.H. Estimation Techniques for Low-Cost Inertial Navigation; UCGE Reports Number 20219; The University
of Calgary: Calgary, AB, Canada, 2005.

46. Gebre-Egziabher, D.; Elkaim, G.; Powell, D.; Parkinson, B. Calibration of Strapdown Magnetometers in
Magnetic Field Domain. J. Aerosp. Eng. 2006, 19, 1–45. [CrossRef]

47. Li, Y. Integration of MEMS Sensors, WiFi, and Magnetic Features for Indoor Pedestrian Navigation with Consumer
Portable Devices; UCGE Reports Number 22455; The University of Calgary: Calgary, AB, Canada, 2015.

48. Han, S.; Wang J. A Novel Method to Integrate IMU and Magnetometers in Attitude and Heading Reference
Systems. J. Navig. 2011, 64, 727–738. [CrossRef]

http://dx.doi.org/10.1111/mice.12375
http://dx.doi.org/10.3390/s18010089
http://dx.doi.org/10.1109/TWC.2017.2757472
http://dx.doi.org/10.1109/TMC.2016.2636823
http://dx.doi.org/10.1109/ieem.2018.8607668
http://dx.doi.org/10.1109/JSEN.2018.2890094
http://dx.doi.org/10.3390/s130404303
http://dx.doi.org/10.1109/JIOT.2018.2889303
http://dx.doi.org/10.1016/j.inffus.2016.06.004
http://dx.doi.org/10.1109/JSEN.2015.2410756
http://dx.doi.org/10.1109/JSEN.2016.2591824
http://dx.doi.org/10.1515/jag-2015-0002
http://dx.doi.org/10.1109/LGRS.2017.2679120
http://dx.doi.org/10.1061/(ASCE)0893-1321(2006)19:2(87)
http://dx.doi.org/10.1017/S0373463311000233


Remote Sens. 2019, 11, 838 22 of 22

49. Syed, Z.; Aggarwal, P.; Niu, X.; El-Sheimy, N. Civilian Vehicle Navigation: Required Alignment of the Inertial
Sensors for Acceptable Navigation Accuracies. IEEE Trans. Veh. Technol. 2008, 57, 3402–3412. [CrossRef]

50. YLi, Y.; Gao, Z.; He, Z.; Zhang, P.; Chen, R.; El-Sheimy, N. Multi-Sensor Multi-Floor 3D Localization with
Robust Floor Detection. IEEE Access 2018, 6, 76689–76699,

51. Teunissen, P. J. The 1990’s—A Decade of Excellence in the Navigation Sciences. In Proceedings of the IEEE
Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences,
Las Vegas, NV, USA, 20–23 March 1990; doi:10.1109/PLANS.1990.66242. [CrossRef]

52. 3DR. SOLO User Manual. Available online: https://3dr.com/wp-content/uploads/2017/03/v9_02_25_16.
pdf (accessed on 1 Februay 2019).

53. Marvelmind. Marvelmind Indoor Navigation System Operating Manual. Available online: https://marvelmind.
com/pics/marvelmind_navigation_system_manual.pdf (accessed on 1 Februay 2019).

54. InvenSense. MPU-6000 and MPU-6050 Product Specification. Available online: https://www.invensense.
com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf (accessed on 1 Februay 2019).

55. Honeywell. 3-Axis Digital Compass IC HMC5983. Available online: https://www.sparkfun.com/
datasheets/Sensors/Magneto/HMC5843.pdf (accessed on 1 Februay 2019).

56. TE. MS5611-01BA03 Barometric Pressure Sensor. Available online: https://www.te.com/usa-en/product-
CAT-BLPS0036.html (accessed on 1 Februay 2019).

57. Sensirion. Mass Flow Meter SFM3000. Available online: https://www.sensirion.com/en/flow-sensors/
(accessed on 1 Februay 2019).

58. LattePanda. LattePanda Single Board Computer. Available online: https://www.lattepanda.com
(accessed on 1 Februay 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TVT.2008.921616
http://dx.doi.org/10.1109/PLANS.1990.66242
https://3dr.com/wp-content/uploads/2017/03/v9_02_25_16.pdf
https://3dr.com/wp-content/uploads/2017/03/v9_02_25_16.pdf
https://marvelmind.com/pics/marvelmind_navigation_system_manual.pdf
https://marvelmind.com/pics/marvelmind_navigation_system_manual.pdf
https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://www.sparkfun.com/datasheets/Sensors/Magneto/HMC5843.pdf
https://www.sparkfun.com/datasheets/Sensors/Magneto/HMC5843.pdf
https://www.te.com/usa-en/product-CAT-BLPS0036.html
https://www.te.com/usa-en/product-CAT-BLPS0036.html
https://www.sensirion.com/en/flow-sensors/
https://www.lattepanda.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	EKF System Model
	Magnetometer Heading Update
	Velocity Update
	Velocity Update for Multi-Sensor Localization EKF
	Mass Flow Sensor Calibration
	Availability for the Velocity Update

	Position Update
	Ultrasonic Multilateration
	Position Update for Multi-Sensor Localization EKF
	Ultrasonic Position Outlier Detection


	Tests and Results
	Test Description
	Impact of Velocity Solutions
	Velocity Solutions (Mass Flow-Based)
	Height-Change Detection (Barometer-Based)
	Impact of Pitch Angle on Velocity
	AHRS/INS/Velocity Integrated Solutions with Various Velocity Strategies

	Integrated Localization Solutions during Ultrasonic Positioning Signal Outages
	Use of Ultrasonic Positioning
	AHRS/INS/Velocity/Ultrasonic Integrated Solution
	AHRS/INS/Velocity Integrated Solution during US Outages


	Conclusions
	References

