Combining MODIS and national land resource products to model land cover-dependent surface albedo for Norway

Ryan M. Bright & Rasmus Astrup

This Supporting Information file contains additional results, including the following:

- Table S1: Root mean squared errors of candidate models
- Table S2: White-sky model parameters for forests with *volume* as structural predictor
- Table S3: Black-sky model parameters for forests with *biomass* as structural predictor
- Table S4: White-sky model parameters for forests with *biomass* as structural predictor
- Table S5: White-sky model parameters for non-forest endmembers
- Figure S1: Number of MODIS retrievals used in model fitting and validation by month and land cover type
- Figure S2: White-sky model behavior for forests with *volume* as structural predictor
- Figure S3: Black-sky model behavior for forests with *biomass* as structural predictor
- Figure S4: White-sky model behavior for forests with *biomass* as structural predictor
- Figure S5: Weighting scheme applied when fitting models to the *effective* spatial resolution
- Figure S6: Distribution of Köppen-Geiger climate zones in Norway and the study domain

Figure S7: Fraction of total predictions having $\leq 10\%$ normalized absolute error (SW Black-sky) by land cover type and season. **Table S1.** Root mean squared errors (RMSE) for the models presented in Table 1 of the main text.

Model	RMSE								
	S	W	N	IR	V	VIS			
	BS	WS	BS	WS	BS	WS			
		Ν	Jominal	resolutio	'n				
ef + SC	0.07	0.068	0.064	0.063	0.087	0.084			
ef + SC + T	0.064	0.063	0.059	0.058	0.080	0.077			
ef + SC + T + V	0.059	0.059	0.056	0.055	0.074	0.072			
ef +SC +T + B	0.059	0.059	0.056	0.055	0.074	0.072			
		E	n						
ef + SC	0.069	0.067	0.063	0.062	0.086	0.083			
ef + SC + T	0.063	0.062	0.058	0.057	0.079	0.076			
ef + SC + T + V	0.058	0.058	0.055	0.054	0.073	0.071			
<i>ef</i> + <i>SC</i> + <i>T</i> + <i>B</i>	0.058	0.058	0.055	0.054	0.073	0.071			

			eta_{sc}	$ ho_{sc}$	λ_{sc}	$eta_{\scriptscriptstyle sf}$	$ ho_{\it sf}$	λ_{sf}	
			Sł	nortwave (SV	N)				
$\alpha_{0,sc}$	0.598	Spruce	0.361	1.1e-3	-0.022	0.057	-2.63e-4	-0.021	
$ ho_{\scriptscriptstyle 0,sc}$	-0.018	Pine	0.273	2.3e-3	-0.020	0.053	-4.80e-4	-0.025	
$lpha_{0,sf}$	0.138	DBF	0.228	2.6e-3	-0.007	0.037	7.46e-4	-0.004	
$ ho_{\scriptscriptstyle 0,s\!f}$	1.4e-3								
	Near-infrared (NIR)								
$\alpha_{0,sc}$	0.432	Spruce	0.241	1.4e-3	-0.017	0.093	-1.24e-4	-0.021	
$ ho_{\scriptscriptstyle 0,sc}$	-0.012	Pine	0.159	1.9e-3	-0.016	0.077	-3.17e-4	-0.019	
$lpha_{\scriptscriptstyle 0,s\!f}$	0.219	DBF	0.129	2.3e-3	-0.005	0.067	-2.88e-4	-0.002	
$ ho_{\scriptscriptstyle 0, s\!f}$	2.3e-3								
				Visible (VIS))				
$\alpha_{0,sc}$	0.761	Spruce	0.473	2.1e-3	-0.025	0.027	-7.98e-5	-0.020	
$ ho_{\scriptscriptstyle 0,sc}$	-0.024	Pine	0.384	3.0e-3	-0.024	0.023	-1.5e-4	-0.026	
$lpha_{\scriptscriptstyle 0,s\!f}$	0.039	DBF	0.317	3.1e-3	-0.010	0.004	1.11e-3	-0.007	
$ ho_{\scriptscriptstyle 0,{\it sf}}$	1.0e-3								

Table S2. White-sky albedo model parameters for forests when using stand *volume* as the structural predictor. See Table 2 of the main article for nomenclature.

Table S3. Black-sky albedo model parameters for forests when fit using aboveground *biomass* as the structural predictor. See Table 2 of the main article for nomenclature.

				$ ho_{sc}$	λ_{sc}	$eta_{\scriptscriptstyle s\!f}$	$ ho_{\scriptscriptstyle s\!f}$	λ_{sf}	
			Sh	ortwave (SV	V)				
$\alpha_{0,sc}$	0.610	Spruce	0.340	1.2e-3	-0.037	0.068	-2.5e-4	-0.035	
$ ho_{\scriptscriptstyle 0,sc}$	-0.020	Pine	0.262	2.5e-3	-0.031	0.061	-4.4e-4	-0.034	
$lpha_{\scriptscriptstyle 0,sf}$	0.150	DBF	0.212	3.0e-3	-0.009	0.041	6.6e-4	-0.005	
$ ho_{\scriptscriptstyle 0,s\!f}$	1.0e-3								
	Near-infrared (NIR)								
$\alpha_{_{0,sc}}$	0.447	Spruce	0.214	1.7e-3	-0.033	0.097	-1.10e-4	-0.026	
$ ho_{\scriptscriptstyle 0,sc}$	-0.014	Pine	0.146	2.1e-3	-0.029	0.082	-2.6e-4	-0.028	
$lpha_{\scriptscriptstyle 0,sf}$	0.240	DBF	0.132	2.7e-3	-0.005	0.073	-2.2e-4	-0.002	
$ ho_{0,s\!f}$	1.8e-3								
			I	Visible (VIS)					
$\alpha_{0,sc}$	0.784	Spruce	0.470	2.5e-3	-0.043	0.024	-7.6e-5	-0.042	
$ ho_{\scriptscriptstyle 0,sc}$	-0.027	Pine	0.389	3.2e-3	-0.038	0.021	-1.3e-4	-0.045	
$\alpha_{0,sf}$	0.042	DBF	0.311	3.5e-3	-0.011	0.004	1.10e-3	-0.010	

$ho_{0,sf}$ 7.0e-4

_

			eta_{sc}	$ ho_{\scriptscriptstyle sc}$	λ_{sc}	$eta_{\scriptscriptstyle sf}$	$ ho_{\it sf}$	λ_{sf}	
			Sh	ortwave (SV	V)				
$\alpha_{0,sc}$	0.598	Spruce	0.361	1.1e-3	-0.033	0.058	-2.63e-4	-0.032	
$ ho_{\scriptscriptstyle 0,sc}$	-0.018	Pine	0.273	2.3e-3	-0.029	0.053	-4.80e-4	-0.034	
$lpha_{\scriptscriptstyle 0,sf}$	0.139	DBF	0.228	2.6e-3	-0.009	0.037	7.46e-4	-0.005	
$ ho_{\scriptscriptstyle 0, s\!f}$	1.4e-3								
	Near-infrared (NIR)								
$\alpha_{0,sc}$	0.432	Spruce	0.241	1.4e-3	-0.025	0.093	-1.24e-4	-0.026	
$ ho_{\scriptscriptstyle 0,sc}$	-0.012	Pine	0.159	1.9e-3	-0.023	0.077	-3.17e-4	-0.028	
$lpha_{\scriptscriptstyle 0,sf}$	0.219	DBF	0.129	2.3e-3	-0.006	0.067	-2.88e-4	-0.002	
$ ho_{\scriptscriptstyle 0,s\!f}$	2.3e-3								
				Visible (VIS)					
$\alpha_{0,sc}$	0.761	Spruce	0.473	2.1e-3	-0.038	0.027	-7.98e-5	-0.032	
$ ho_{\scriptscriptstyle 0,sc}$	-0.024	Pine	0.384	3.0e-3	-0.036	0.023	-1.5e-4	-0.047	
$lpha_{0,sf}$	0.039	DBF	0.317	3.1e-3	-0.014	0.004	1.1e-3	-0.010	
$ ho_{\scriptscriptstyle 0, s\!f}$	1.0e-3								

Table S4. White-sky albedo model parameters for forests when using aboveground *biomass* as the structural predictor. See Table 2 of the main article for nomenclature.

Table S5. White-sky albedo model parameters for the non-forested land covers. Values presented in boldface italics are considered insignificant at the 95% confidence level (i.e., p > 0.05). See Table 2 of the main article for nomenclature.

	CRO	PAS	O-v	O-pv	O-sv	O-nv	PB-f	PB-nf	U&T	FW	
	Shortwave (SW)										
$\alpha_{\scriptscriptstyle 0,sc}$	0.552	0.558	0.684	0.623	0.564	0.579	0.764	0.674	0.448	0.547	
$lpha_{0,sf}$	0.109	0.132	0.153	0.128	0.134	0.145	0.160	0.133	0.099	0.035	
$ ho_{\scriptscriptstyle sc}$	-0.044	-0.036	-0.024	-0.034	-0.028	-0.006	-0.056	-0.039	-0.033	-0.051	
$ ho_{\scriptscriptstyle s\!f}$	0.004	0.002	-2.7 e-8	3.7 е-б	-0.002	-0.003	7.5 e-5	0.002	0.002	0.003	
	Near-infrared (NIR)										
$\alpha_{0,sc}$	0.473	0.454	0.515	0.481	0.430	0.408	0.588	0.521	0.388	0.425	
$lpha_{0,sf}$	0.153	0.223	0.205	0.166	0.175	0.167	0.180	0.189	0.131	0.067	
$ ho_{\scriptscriptstyle sc}$	-0.037	-0.026	-0.018	-0.026	-0.021	-0.001	-0.046	-0.032	-0.029	-0.045	
$ ho_{\scriptscriptstyle s\!f}$	0.008	0.003	0.004	0.003	2.2 e-4	4.3 e-5	0.007	0.005	0.005	0.004	
				V	visible (Vl	S)					
$\alpha_{_{0,sc}}$	0.648	0.688	0.844	0.762	0.683	0.749	0.952	0.833	0.531	0.672	

$\alpha_{0,sf}$	0.051	0.018	0.093	0.070	0.087	0.113	0.083	0.045	0.060	0.011
ρ_{sc}	-0.055	-0.049	-0.029	-0.046	-0.038	-6.0 c-4	-0.067	-0.048	-0.038	-0.060
$ ho_{sf}$	2.8 e-4	0.002	-0.004	-0.003	-0.004	-0.005	-0.003	-2.2 e-5	-4.7 e-4	1.2 e-4

Figure S1. Distribution of the temporally synchronized and quality filtered MODIS datasets (MCD43A3 v6 BRDF/Albedo and MOD10A1 NDSI Snow Cover, 2006-2010) by month, region, and land cover (endmember) type. Note that values are multi-year (2006-2010) means. "*Num. Obs.*" = Number of pixels at the *effective* spatial resolution. Pixels are allocated to individual land cover types according to the largest relative fraction within the *effective* spatial resolution.

Figure S2. White-sky albedo model behavior for forest endmembers using mean stand aboveground *volume* as the structural predictor: A) with maximum snow cover, and B) with zero snow cover. Note the differences in y-axes scaling.

Figure S3. Black-sky albedo model behavior for forest endmembers using mean stand aboveground *biomass* as the structural predictor: A) with maximum snow cover, and B) with zero snow cover. Note the differences in y-axes scaling.

Figure S4. White-sky albedo model behavior for forest endmembers using mean stand aboveground *biomass* as the structural predictor: A) with maximum snow cover, and B) with zero snow cover. Note the differences in y-axes scaling.

Figure S5. *Effective* vs. *nominal* spatial resolution of the MCD43A3 and MOD10A1 products shown with the *effective* resolution weights applied to the $16 \text{ m} \times 16 \text{ m}$ endmember grid.

Figure S6. Distribution of Köppen-Geiger climate zones (1981-2010) amongst model training and validation regions. For zone descriptions, please refer to ref. [1].

Figure S7. Fraction of total predictions having $\leq 10\%$ normalized absolute error (SW Black-sky) by land cover (endmember) type and season. Pixels are allocated to individual land cover types according to the largest relative fraction within the MCD43A3 v6 *effective* spatial resolution.

References

1. Peel, M.C., B.L. Finlayson, and T.A. McMahon, *Updated world map of the Köppen-Geiger climate classification*. Hydrology and Earth System Sciences, 2007. **11**: p. 1633-1644.