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Abstract: This work presents a detailed analysis of building damage recognition, employing
multi-source data fusion and ensemble learning algorithms for rapid damage mapping tasks.
A damage classification framework is introduced and tested to categorize the building damage
following the recent 2018 Sulawesi earthquake and tsunami. Three robust ensemble learning
classifiers were investigated for recognizing building damage from Synthetic Aperture Radar (SAR)
and optical remote sensing datasets and their derived features. The contribution of each feature
dataset was also explored, considering different combinations of sensors as well as their temporal
information. SAR scenes acquired by the ALOS-2 PALSAR-2 and Sentinel-1 sensors were used.
The optical Sentinel-2 and PlanetScope sensors were also included in this study. A non-local filter in
the preprocessing phase was used to enhance the SAR features. Our results demonstrated that the
canonical correlation forests classifier performs better in comparison to the other classifiers. In the
data fusion analysis, Digital Elevation Model (DEM)- and SAR-derived features contributed the most
in the overall damage classification. Our proposed mapping framework successfully classifies four
levels of building damage (with overall accuracy >90%, average accuracy >67%). The proposed
framework learned the damage patterns from a limited available human-interpreted building damage
annotation and expands this information to map a larger affected area. This process including pre-
and post-processing phases were completed in about 3 h after acquiring all raw datasets.

Keywords: 2018 Sulawesi earthquake-tsunami; rapid building damage mapping; ensemble learning
classifier

1. Introduction

On 28 September 2018, a massive earthquake (Mw7.5) occurred in the Sulawesi region of Indonesia.
The epicenter was located approximately 80 km to the north of Palu city (Figure 1). The subsequent
tsunami, up to 8 m of water height [1], inundated and destroyed several houses along the coast of Palu
Bay. The ground shaking generated soil liquefaction in some areas, causing a large number of casualties
and destroying many houses. As of late October 2018, 2081 casualties were reported. The urban area
most affected was the area surrounding Palu Bay, reporting over 68,451 houses damaged [2].

Soon after the event, several international agencies and research institutes started rapid mapping
efforts to grasp the overall damage situation and provide crucial information for rescuers, thus reducing
the number of casualties. For instance, the Copernicus Programme published an initial building
damage mapping estimated through visual interpretation of very high-resolution optical imagery [3].
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The Geoinformatics Unit, RIKEN Center of Advanced Intelligence Project (AIP) also conducted a
preliminary damage mapping using advanced machine learning technologies for building damage
recognition from multi-sensor and multi-temporal remote sensing datasets [4]. These results were
published online soon after the event. These mapping efforts based on earth observation technologies
emphasize the key role of remote sensing imagery in disaster management, especially in the case of
rapid damage assessment [5–7].
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Figure 1. Data used in this study. Top left panel shows the location of the coverage of each
remote-sensing image and the epicenter. Second vertical panels show the post-event PlanetScope
image (top) and the pre-event Sentinel-2 image (bottom). The third and fourth vertical panels show
the RGB color-composited SAR data (top: post-event and bottom: pre-event) from the Sentinel-1 and
ALOS-2 PALSAR-2 sensors, respectively.

Techniques for building damage assessment using remote sensing data are traditionally based
on change detection approaches that compute relevant features from a pair of multi-temporal images
collected before and after a disaster. These methods analyze the relationship between texture, spatial,
or intensity changes and the degree of damage observed after the event. Damage mapping is generally
performed by setting appropriated thresholds, often set by following an expert’s experience or based
on already known ground truth information. These approaches show acceptable success for damage
assessment [8–10]. However, their transferability is generally restricted due to their site-specific
thresholds and the need for an appropriate set of pre- and post-event imagery data. Considering
that a suitable pair of pre- and post-event data might not be available, methodologies using only
post-event information have been proposed. These frameworks explore several features derived
from SAR and optical imagery using machine learning classifiers to recognize damaged structures.
For instance, Shi et al. [11] applied a random forest classifier to 191 features of polarimetric, texture,
and interferometric information derived from post-event very high-resolution (VHR) airborne SAR
data. Their findings suggest that texture information performs better for classifying collapsed buildings.
Similar works use high-resolution SAR data, such as ALOS-2 PALSAR-2 in the case of the 2015
Nepal earthquake and TerraSAR-X datasets for the 2008 Wenchuan earthquake, to derive geometric
and texture features, and evaluate several classic machine learning algorithms to classify damaged
buildings from post-event remote sensing data [12,13]. On the other hand, frameworks that integrate
pre-event vector information and post-event VHR remote sensing data together with advanced machine
learning technologies have been proposed [14,15]. Furthermore, evaluation of several algorithms for
extracting building damage from earth observation data is presented in [16,17].
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The conventional method for rapid building damage mapping is to analyze or visually interpret
high-resolution optical images to determine the degree of damage in the affected areas. Although this
methodology can provide reliable information on severely affected structures, such as collapsed
buildings in the case of earthquakes and washed-away buildings in the case of tsunami events [18,19],
it is still challenging to distinguish other levels of structural damage, since satellite optical imagery
only observes an aerial view of the affected area. In addition, methodologies relying on optical imagery
are always limited by the availability of cloud-free images [20,21]. Synthetic aperture radar (SAR)
data have an advantage over optical imagery, and also complement it, due to its almost all-weather
observation and side-view acquisition capabilities [22]. Layover scattering segments in SAR intensity
images provide information about site-wall conditions that can be linked to the damage level in cases
of disasters [23]. Furthermore, the different back-scattering mechanisms from multi-polarization SAR
data provide information essential to characterizing building damage [7,24,25]. Integration of both
optical and SAR data has also shown excellent results by gathering geometric building properties
from pre-event optical images and analyzing them using post-event high-resolution SAR data [26].
These techniques, however, require prior knowledge about the structures for their validation, and thus
are primarily considered in the case when a post-event field survey has been conducted in the
affected areas.

The advances in machine learning classifiers, together with satellite remote sensing data, have
recently brought much attention to their applicability to damage recognition [27,28]. For instance, using
a supervised classification approach, Wieland et al. [29] evaluated the performance of Support Vector
Machine (SVM) for detecting damaged buildings from high-resolution multi-temporal TerraSAR-X
intensity images in the case of the 2011 Tohoku tsunami. They found that, with appropriate SVM
parameter tuning and feature selection, the SVM classifier can categorize some levels of building
damage. A follow-up study, using the same imagery and ground truth dataset, demonstrated that
SVM could adequately distinguish three levels of building damage from high-resolution X-band SAR
data [30]. Furthermore, with the same dataset, a semi-unsupervised approach utilizes the known
hazard distribution of the target area for building a training dataset and logistic regression model [31].
On the other hand, the authors of [17,32] evaluated several deep-neural-network frameworks using
satellite optical imagery from the 2010 Haiti earthquake and the 2011 Tohoku tsunami, obtaining
generally good overall accuracies (>60%) for detecting collapsed buildings, and demonstrating the
potential of combining machine learning technologies and remote sensing information for future
scenarios. However, it is important to note that none of the methodologies mentioned above has been
tested on recent events for damage mapping, which indicates that some research challenges remain:

• The appropriate selection of remote sensing data, as well as the derived features that are to be
fed into a machine-learning classifier. Optical and SAR imagery have their own advantages with
respect to damage recognition tasks. However, the question of which data contribute better to
the classification is still unknown. For instance, in the case of tsunami-induced damage where
the incoming waves may affect only the building’s side-walls, SAR features are suitable for
recognizing such damage patterns.

• Most of the previous methodologies are based on supervised or semi-unsupervised learning
algorithms that require a large number of high-quality training samples. This aspect limits their
applicability for responding to future disasters, considering that such labeled data are not available
soon after the disaster and are generally only collected several days after the event.

• Setting parameters of machine learning classifiers. Several algorithms have proven to be robust
for categorizing several degrees of damage in the case of different disasters [14–17]. Nonetheless,
previous works set optimizing parameters that work properly for their specific problem settings.
These conditions narrow the potential for their implementation in cases of future disasters. Thus,
with respect to applicability for rapid damage mapping, there are no adequate guidelines on
which algorithm performs better.
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In this work, we evaluate the performance of three robust ensemble-learning-based classifiers that
have shown great efficiency for image classification tasks in previous work, for recognizing building
damage due to earthquakes and tsunamis. The main objective of this work is to address the first and
third remaining challenges in damage recognition by fusion of remote sensing and machine learning
technologies. To this end, we consider different sets of temporal remote sensing information and
evaluate their ability for damage recognition. Moreover, analysis of the combinations of multi-sensor
(SAR and optical imagery) datasets are also presented in this study. We use reference data that are
relatively freely available for the training and testing steps. We also introduce a damage classification
framework based on a systematic pre- and post-processing chain. We conduct our analysis using the
dataset acquired as a response of the 2018 Sulawesi earthquake and tsunami. This work is a follow-up
update of the rapid building damage mapping published a few days after the disaster occurred [4].

2. Materials

Multiple earth observation data were available in the case of the 2018 Sulawesi tsunami (Figure 1).
The majority of the datasets correspond to freely accessible datasets such as Sentinel-1, Sentinel-2,
OpenStreetMap, and SRTM DEM. The Sentinel Asia Program provided the ALOS-2 PALSAR-2
(Advanced Land Observing Satellite 2, Phased Array type L-band Synthetic Aperture Radar 2)
data. The PlanetScope imagery was available from the disaster data program of Planet Labs, Inc.,
San Francisco, CA, USA.

2.1. ALOS-2 PALSAR-2

The L-band ALOS-2 PALSAR-2 SAR satellite imagery is administered by the Japan Aerospace
Agency (JAXA). Following the event, JAXA acquired several SAR scenes covering the affected area.
Here, we use two sets of post-event high-resolution SAR data that were captured on 1 and 3 October.
Additionally, two instances of pre-event data from 2 May and 8 August were available (Table 1). These
SAR scenes have the same acquisition parameter as the 3 October data. All data were acquired in
StripMap observation mode (SM2) with ground sampling distance (GSD) of approximately 5 m after
preprocessing. The single post-event SAR image (1 October) was provided in a product level 1.5,
SAR amplitude image in a GeoTIFF format. The two pre-event SAR datasets and the post-event of
3 October were provided in a product level 1.1, Single Look Complex (SLC) with amplitude and phase
information preserved using two-channel complex number data (https://www.eorc.jaxa.jp/ALOS-2/
en/doc/format.htm).

Table 1. Description of the remote sensing data used in this study.

Dataset Acquisition Date Sensor Images Bands

Pre-event

2018-05-02 ALOS-2 PALSAR-2 HH and HV
2018-05-26 Sentinel-1 VV and VH
2018-06-07 Sentinel-1 VV and VH
2018-08-08 ALOS-2 PALSAR-2 HH and HV
2018-09-17 Sentinel-2 R, G, B, and NIR

Post-event

2018-10-01 PlanetScope R, G, B, and NIR
2018-10-01 ALOS-2 PALSAR-2 HH and HV
2018-10-02 Sentinel-2 R, G, B, and NIR
2018-10-03 ALOS-2 PALSAR-2 HH and HV
2018-10-05 Sentinel-1 VV and VH
2018-10-17 Sentinel-1 VV and VH

2.2. Sentinel-1

As a part of the European Union’s Earth observation program, Copernicus, two C-band SAR
satellites were launched in 2014 and 2016. These satellites continuously provide new medium

https://www.eorc.jaxa.jp/ALOS-2/en/doc/format.htm
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resolution acquisition of the entire globe. The default acquisition modes are the interferometric
wide (IW) swath mode for land, with a resolution of 5 m by 20 m, whereas maritime regions are
acquired in the extra wide (EW) swath mode, translating to a resolution of 20 m by 40 m. In general,
new data are acquired every six days for Europe and every twelve days for the rest of the Earth. Due to
storage limitations on the satellites and limited downlink capacity, the twelve-day interval might not
be kept in practice, evident from the latest pre-event acquisition, which occurred on 7 June 2018, almost
three months before the actual disaster. Table 1 lists all other Sentinel-1 acquisitions used in this study.
All data are dual-polarized, interferometric wide swath acquisitions, processed to single look complex
images. This way, in addition to a simple amplitude-based analysis, the interferometric coherence
of two acquisitions can be computed and studied. In total, four acquisitions were obtained, the two
most recent prior to the event were acquired on 26 May and 7 June. In reaction to the disaster, data
acquisitions of Sentinel-1 in this area resumed on 5 and 17 October .

2.3. Sentinel-2

Sentinel-2 is a satellite multispectral Earth observation mission operated by the European Space
Agency (ESA) as a part of the EU Copernicus Programme. The Sentinel-2 imagery consists of 13 bands
in the visible, near-infrared, and shortwave-infrared (VNIR-SWIR) range with a field of view of 290 km
and multiple ground sampling distances (GSDs) of 10 m, 20 m, and 60 m. A revisit cycle of 5 days
is achieved by a constellation with two twin satellites. We use pre-event and post-event Sentinel-2
datasets acquired on 17 September and 2 October, respectively. Blue, green, red, and near-infrared
bands that have a 10-m GSD were used in our analysis to make the spatial resolution consistent with
the other datasets.

2.4. PlanetScope

PlanetScope is a constellation of over 130 small satellites operated by Planet Labs. The PlanetScope
imagery consists of four bands (i.e., blue, green, red, and near-infrared) at a GSD of 3 m, characterized
with a daily revisit cycle. We use post-event PlanetScope imagery acquired on 1 October. The dataset
was provided through the disaster data program (https://www.planet.com/disasterdata/). The image
was resampled at 10 m for consistency with the other data sources.

2.5. The Shuttle Radar Topography Mission (SRTM)

During the SRTM [33,34] two antennas, one mounted on the shuttle directly, the other on a
60 m long mast attached to the space shuttle, acquired bistatic X- and C-Band SAR interferograms.
Acquisition took place in an 11-day window in the year 2000, producing an almost globally available
(between −58◦ and 60◦ latitude) digital elevation model (DEM). The resulting DEM has 16 m absolute
and 6 m relative vertical accuracy, initially made publicly available with a 90 m pixel spacing. In 2015,
all data of the full 30 m resolution were released to the public.

2.6. OpenStreetMap

The OpenStreetMap (OSM) Initiative creates and provides free map information of the world
that is collected through the collaborative contribution of volunteers. In this work, to access the
building damage, we constructed a mask of the built-up area using the OSM buildings layer [35]. This
layer is composed of all human-made structures such as houses, schools, and commercial buildings.
We implemented an application to automatically download and convert from OSM layer to rasterized
GeoTIFF images. For our initial rapid damage mapping, we utilized the OSM data created until
29 September, one day after the earthquake. The OSM database, however, was continually updated
for the affected areas. For instance, on 29 September, there were about 250,878 buildings in the area
covered by the Sentinel-2 image, and, by 3 October, it increased to 261,490. Finally, one week after the
earthquake, the number of buildings were about 267,735. Figure 2 shows the building layer (west of
the Palu river) in the days following the event. For our damage mapping analysis, we use the built-up

https://www.planet.com/disasterdata/
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area layer from 15 October (270,258 buildings). The total samples correspond to the building layer
in polygon-format were rasterized into 308,649 pixels using as a reference the Sentinel-2 images. It
is important to mention that, in the absence of a building layer from OSM, there are techniques that
can be used for extracting built-up areas from earth observation data [36,37]. This process, however,
is beyond the scope of this work.
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Figure 2. Examples of the OSM building layer in the days after the event. In the reference map,
lower-left corner, the background corresponds to the pre-event Sentinel-2 image.

2.7. Copernicus Emergency Management Services

Copernicus is the European Union’s (EU) Earth observation project managed by the European
Commission with the contribution of the European Space Agency (ESA), the EU Member States and
EU Agencies. Emergency Management Service (EMS) is one of Copernicus subtopic. The objective
of EMS is to provide a rapid mapping, risk, and recovery service for natural disasters (e.g., flood,
earthquake, and tsunami).

In this work, we utilize the preliminary report of building damage labels (e.g., Destroyed,
Damaged, Possibly Damaged, and No Damage) published on 2 October [3]. Table 2 lists the number of
buildings from each damage class used in this study. The original building damage inventory, provided
in point vector format, was rasterized to 10 m of GSD, using as a reference the Sentinel-2 images.
This raster image is used as a reference for training and testing for the pixel-based classification analysis.

Table 2. Number of train and test samples.

Class Train Test

Destroyed 2996 1284
Damaged 3147 1348

Possibly damaged 3625 1553
No damage 43,056 18,453

3. Methods

We propose a building damage recognition framework using multisensor, multitemporal Earth
information. Our workflow is divided into three main phases (Figure 3). In the preprocessing step,
the raw remote sensing data are calibrated and converted to geocoded images. In the classification
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phase, we perform pixel-based damage recognition using three ensemble classifiers from the input
remote sensing data and derived features. In the last step, postprocessing, the building damage map is
produced from the outputs of the previous phase.
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Figure 3. Research workflow for building damage mapping using multi-source and multi-temporal
remote sensing data.

3.1. Preprocessing and Feature Extraction

3.1.1. SAR Datasets

The processing procedure for the Sentinel-1 and ALOS-2 PALSAR-2 datasets was almost identical
and was performed using ESA’s SNAP software [38]. Slave images were coregistered to a single master
image, with the additional steps of debursting and merging of subswaths for Sentinel-1. Each dual-pol
acquisition was then despeckled individually using NL-SAR [39]. In addition, pairs of subsequent
acquisitions were used to compute coherence estimates, again using NL-SAR for the estimation.
The benefit of nonlocal methods is twofold: despeckling improves the robustness for subsequent
classification, and they provide a less biased coherence estimate [40] compared to estimators with a
smaller window. Finally, all products were geocoded using the 3 s SRTM DEM.

3.1.2. Optical Datasets

We performed atmospheric and terrain correction on the two Sentinel-2 Level 1C datasets using
Sen2Cor, which is a freely available processor for generating Sentinel-2 Level 2A products (http:
//step.esa.int/main/third-party-plugins-2/sen2cor/). Image-based atmospheric normalization [41]
was applied to the PlanetScope image using the pre-event Sentinel-2 Level 2A data as the reference
to reduce atmospheric effects in the PlanetScope image and align the manifolds of the multi-sensor
datasets. The spectral angle distance (SAD) was calculated in the study area using the pre-event
Sentinel-2 and post-event PlanetScope.

http://step.esa.int/main/third-party-plugins-2/sen2cor/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
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3.2. Classification

For building damage mapping, we should consider the following issues before selecting the
machine learning classifier:

• lower computational complexity;
• tuning parameters;
• classification capability.

Among all the machine learning classifiers, decision forest was considered the best choice based
on the following advantages: fast out-of-sample prediction, minimal parameter tuning, its handling of
missing data, and its ability to rank feature importance. In particular, three decision forest classifiers,
including random forests (RFs) [42], rotation forests (RoFs) [43], and canonical correlation forests
(CCFs) [44], were adopted

RFs, RoFs, and CCFs are the ensemble of decision trees (DTs), where each tree contributes a
vote to the final assignment label of the most frequent class. In RFs, each DT is construed on the
bootstrapped training set, and randomly selected features are used to split a leaf in a DT. When
Bagging is undertaken in the training process, we left about 1/3 training samples, namely Out-of-Bag
(OOB) data, which are used to measure the importance of features [42]. For each tree (t) in the forest,
the importance (VI) of the input features (Xi) is calculated using Equation (1):

VI(Xi) =
1

ntree

ntree

∑
t=1

(errOOBi
t − errOOBt), (1)

where errOOBi
t is the error that is computed by using randomly values selected from Xi in OOBt,

and errOOBt is the error computed on the OOBt samples.
RoFs first randomly divide the features into several subsets and then apply data transformation

(e.g., principal component analysis, PCA) on each subset to rotate the feature axes to create diverse
DTs [43]. The utilization of random selection and data transformation has the effect of increasing the
diversity and accuracy of the individual DTs, which is benefical to the ensemble.

CCFs performed supervised canonical correlation analysis (CCA) on the features and labels of the
bootstrapped training set to find the projections. The projections were used to create the new features
of each DT [44]. Finally, the results produced by each DT were combined to generate the final result.
The diversity and accuracy of the individual DTs are promoted by using CCA and Bagging techniques.
All the decision forest classifiers, two parameters, including the number of DTs (ntree) and the number
of features in a subset (mtry), need to be empirically set.

These ensemble classifiers have been proven effective with various applications using
hyperspectral [45], high-spatial resolution [46], LiDAR [47], and multi-source datasets [48]. However,
far too little attention has been paid to building damage mapping using multi-source datasets and
decision forests (especially for RoFs and CCFs). Thus, we examine the performance of three decision
forest classifiers in the application of building damage mapping.

The raster reference data was divided into training and testing. For each damage class, 70% of
the reference data were randomly selected for the training phase, and the remaining 30% were used
for the testing phase. The overall accuracies (OAs), average accuracies (AAs), producer’s accuracies
(PAs), and user’s accuracies (UAs) were used to evaluate classification performance. The OAs are the
percentage of correctly classified points. The AAs are the mean value of individual class accuracies.
PAs and UAs gave the omission and commission errors of different classes, respectively. The averaged
accuracy of 20 random trials is reported to avoid a biased evaluation.

3.3. Postprocessing

In this step, we transferred the pixel-based classification to the building footprint dataset. Using
the OSM building polygons, we extracted the pixels inside each building footprint. Then, the label
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class was assigned by a majority-voting operation. The point-based building damage inventory,
downloaded from the Copernicus Project, was also converted to a building footprints dataset.

4. Experimental Results

Since different source datasets contributed to the classification result in a variety of ways, we
presented different feature combination schemes in order to better understand the benefit of the
multi-source datasets and to see what level of classification results could be achieved by different
scenarios (seen in Table 3).

Post-event datasets and a combination of pre- and post-event datasets were used in Scenarios 1–4
and Scenarios 5–8, respectively. From Scenario 1 to Scenario 4, we respectively adopted SAR only,
optical only, SAR+optical, and SAR+optical+DEM obtained from post-events. From Scenario 5 to
Scenario 8, the SAR, optical, SAR+optical, and SAR+optical+DEM of pre- and post-events were
respectively combined. More details can be found in Table 3. It should be noted that we also included
the coherence information computed from pre- and post-event PALSAR-2 and Sentinel-1 datasets,
and the SAD between post-event PlanetScope and pre-event Sentinel-2 images in the scenarios that
used SAR and optical datasets, respectively. The number of DTs (ntree) and the number of features in a
subset (mtry) are the key parameters of the three classifiers. In [49], the above two parameters were
well investigated. Moderate ensemble size could achieve very high accuracies. Additional size could
not improve the classification results, but increase the computation time. Moreover, three ensemble
classifiers are not sensitive to the parameter (mtry) in this work. Thus, the number of DTs (ntree) and the
number of features in a subset (mtry) were empirically set to be 40 and the square root of the number
of input features, respectively.

Table 3. Different combinations of datasets used in this work.

Pre-Event Post-Event Others

S1 S2 ALOS-2 S1 S2 ALOS-2 Planet DEM

Scenario 1
√ √

Scenario 2
√ √

Scenario 3
√ √ √ √

Scenario 4
√ √ √ √ √

Scenario 5
√ √ √ √

Scenario 6
√ √ √

Scenario 7
√ √ √ √ √ √ √

Scenario 8
√ √ √ √ √ √ √ √

Note: S1: Sentinel-1 datasets; S2: Sentinel-2 datasets.

4.1. Classification Using the Post-Event Dataset

First, we present the classification results using only post-event datasets. Figure 4 shows the
OAs and AAs achieved by different feature combinations. It can be seen that the use of only SAR
(Scenario 1) or optical-derived (Scenario 2) features led to lower OAs and AAs. The combination of
SAR and optical (Scenario 3) increased the OAs and AAs to higher values than those of Scenarios 1
and 2. The inclusion of DEM (Scenario 4) significantly enhanced classification performance.

Table 4 lists the class-specific accuracies using post-event datasets. It is apparent that using all the
features derived from optical, SAR and DEM (Scenario 4) generated better or comparable PAs and UAs
compared to those of Scenarios 1–3. The class No damage has more than ten times the training samples
than other classes, leading to very high accuracies (>99%) in all scenarios. The SAR (Scenario 1) and
optical (Scenario 2) generated the better results of class Destroyed and class Possibly damaged than those
of other classes. By integrating all the features together (Scenario 4), we can get the comparable results
of class Damaged, and much better results of class Destroyed (about +20%) and class Possibly damaged
(about +22%).
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Figure 4. (a) OAs and (b) AAs with different scenarios using RFs, RoFs and CCFs.

Table 4. Classification accuracies achieved from 20 random trials by using RFs, RoFs and CCFs
classifiers. The input feature combinations derived from post-event datasets covers Scenarios 1–4.

Class RFs RoFs CCFs

PA% UA% PA% UA% PA% UA%

Scenario 1

DE 35.77 70.82 35.70 68.02 40.18 71.44
DA 4.71 37.65 7.08 31.24 5.55 41.18
PD 21.61 47.25 22.97 45.25 20.25 48.01
ND 98.36 85.98 97.68 86.37 98.35 86.10

OA: 83.97 ± 0.14 OA: 83.65 ± 0.10 OA: 84.17 ± 0.13
AA: 40.11 ± 0.52 AA: 40.86 ± 0.41 AA: 41.08 ± 0.53

Scenario 2

DE 30.80 77.98 35.95 77.70 40.93 78.00
DA 4.09 32.19 6.28 32.02 4.94 34.94
PD 0.89 19.85 1.04 22.37 1.29 24.15
ND 99.11 83.55 98.84 84.02 98.92 84.16

OA: 82.84 ± 0.11 OA: 83.05 ± 0.09 OA: 83.34 ± 0.09
AA: 33.72 ± 0.37 AA: 35.52 ± 0.34 AA: 36.52 ± 0.33

Scenario 3

DE 45.20 83.62 44.85 81.89 59.00 85.91
DA 8.86 46.99 14.37 41.00 8.98 49.07
PD 22.24 50.57 25.39 47.46 19.58 51.53
ND 98.66 86.67 97.89 87.55 98.78 87.13

OA: 85.04 ± 0.14 OA: 84.93 ± 0.16 OA: 85.74 ± 0.14
AA: 43.74 ± 0.49 AA: 45.62 ± 0.53 AA: 46.58 ± 0.49

Scenario 4

DE 55.78 84.69 55.25 85.66 66.02 86.74
DA 65.08 60.54 64.44 60.33 60.88 62.82
PD 43.21 62.04 43.07 61.43 41.15 62.12
ND 98.92 94.77 98.91 94.66 99.17 94.70

OA: 90.64 ± 0.15 OA: 90.55 ± 0.18 OA: 91.03 ± 0.14
AA: 65.75 ± 0.55 AA: 65.42 ± 0.88 AA: 66.81 ± 0.55

Note: DE = Destroyed; DA = Damaged; PD = Possibly Damaged; ND = No Damage.

As for the comparisons of three ensemble classifiers, CCFs outperformed RoFs and RFs in
scenarios 1–4,

4.2. Classification Using Post- and Pre-Event Datasets

The potential of features derived from pre- and post-event imagery for classifying damage levels
was explored. We define Scenarios 5–8 to evaluate the impact of combining the features derived from
multi-temporal data. It can be easily seen from Figure 4, with the help of pre-event datasets, that
Scenarios 5–8 provided better results than Scenarios 1–4. In particular, when multi-temporal features
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of the SAR and optical, and DEM information (Scenario 8) are considered, the RFs, RoFs, and CCFs
classifiers obtained OAs of 92.12%, 92.39%, and 91.83%, respectively. The AAs for the RFs, RoFs,
and CCFs classifiers are 70.12%, 71.97%, and 67.92%, respectively. These results are significantly better
than those obtained by Scenario 4.

Table 5 shows the averaged PAs and UAs achieved by the combination of pre- and post-event
datasets. When the features derived from pre-event were introduced, the PAs and UAs tended
to have a significant improvement on all the damage types except well-classified class No damage,
and class Damaged using CCFs. Concerning the PAs achieved by RoFs, class Possibly damaged had the
most noticeable improvement (about +23%) in Scenario 8 in comparison with Scenario 4. The most
significant observation about this table is that using all the features derived from pre- and post-event
datasets offered the maximum discriminative ability to separate different damage types, leading to the
highest PAs and UAs.

Table 5. Classification accuracies achieved from 20 random trials by using RFs, RoFs and CCFs classifiers.
The input feature combinations derived from post- and pre-event datasets covers Scenarios 5–8.

Class RFs RoFs CCFs

PA% UA% PA% UA% PA% UA%

Scenario 5

DE 39.51 82.70 40.08 78.69 47.62 83.43
DA 5.41 53.23 9.01 46.17 6.66 57.23
PD 37.02 60.72 32.06 58.00 36.70 62.82
ND 99.28 87.49 98.78 87.37 99.28 87.91

OA: 86.03 ± 0.12 OA: 85.53 ± 0.19 OA: 86.54 ± 0.14
AA: 45.30 ± 0.50 AA: 44.98 ± 0.67 AA: 47.57 ± 0.46

Scenario 6

DE 50.28 83.11 56.45 85.36 62.34 85.25
DA 8.40 43.02 12.40 43.62 10.88 47.20
PD 2.29 33.01 2.78 32.96 3.26 38.54
ND 99.17 85.16 98.95 85.83 99.11 86.04

OA: 84.35 ± 0.11 OA: 84.79 ± 0.13 OA: 85.20 ± 0.11
AA: 40.03 ± 0.44 AA: 42.64 ± 0.49 AA: 43.90 ± 0.41

Scenario 7

DE 53.64 86.53 54.80 86.64 64.40 89.21
DA 11.54 62.90 19.88 53.47 12.53 66.29
PD 38.62 62.37 32.35 56.94 36.80 64.60
ND 99.25 88.77 98.61 89.02 99.46 89.22

OA: 87.28 ± 0.19 OA: 86.90 ± 0.16 OA: 88.00 ± 0.16
AA: 50.76 ± 0.74 AA: 51.41 ± 0.61 AA: 53.30 ± 0.59

Scenario 8

DE 60.74 87.18 63.47 86.03 67.97 89.25
DA 66.29 63.11 68.86 62.49 53.06 66.32
PD 54.06 70.66 56.42 71.09 50.89 69.61
ND 99.40 95.84 99.14 96.43 99.77 94.68

OA: 92.12 ± 0.16 OA: 92.39 ± 0.16 OA: 91.83 ± 0.23
AA: 70.12 ± 0.68 AA: 71.97 ± 0.68 AA: 67.92 ± 0.99

Note: DE = Destroyed; DA = Damaged; PD = Possibly Damaged; ND = No Damage.

CCFs yielded the best classification results in Scenarios 5–7, and RoFs acquired the highest
accuracies in Scenario 8. These results also indicate that the CCF algorithm generally performs better
than other models for damage classification tasks.

4.3. Feature Importance Analysis

To determine the contribution of each feature to the accuracy, the mean decrease in accuracy
is calculated during the our-of-bag-error calculation in the decision forest scheme. This coefficient
indicates that features with higher values are more important for the classification. We investigated the
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importance of all 37 input features in Figure 5. We conclude that the DEM data play the most crucial
role in damage classification. On the other hand, SAR-derived features were found to be slightly
more important than optical-derived features. For instance, the multi-temporal coherence information
computed from SAR data acquired before (pre-coherence) and after the event (co-coherence) showed
the second highest contribution to the classification.

Furthermore, we also analyzed the influence of each feature on the performance of different
damage types. The importance of all input features for each class is illustrated in Figure 6. DEM
appears the most discriminative feature for all the classes. Regarding the class Destroyed (Figure 6a),
SAD and the coherence information of post-event also shows great importance in addition to DEM.
In the case of the class Possibly damaged, the coherence information computed from pre-event SAR data
and post-event SAR intensity share the second highest position of importance. Considering that optical
features, due to their multispectral characteristics, generally provide more information in comparison
with SAR features, our results indicate that the NL-SAR processing enhanced the ability of SAR data
for deriving features correlated to building damage.
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Figure 5. Importance of the 37 input features provided by different sources.
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Figure 6. Feature importance of each damage type by using mean decrease in accuracy.

4.4. Building Damage Mapping

Figure 7 shows the comparison between the reference map obtained from Copernicus’s EMS [3]
and the two most detailed building damage mappings, after post-processing, obtained from the
CCFs classifier. As mentioned above, the CCF algorithm showed the best performance in most of the
classification tasks considering each multi-temporal and multi-source data scenario. In general, both
scenarios (4 and 8) are consistent with the reference map (left panel in Figure 7) in areas along the
coastline, where most of the houses were washed away by the tsunami (Destroyed class). The center
panels in Figure 7, however, shows some misclassifications, especially for buildings with larger
footprints. These particular errors might be due to the fact that only the pixels corresponding to the
part of the building that was destroyed by the incoming tsunami wave were classified as Destroyed class;
thus, the remaining pixels—the majority of them—were categorized as Damaged class. The bottom
panels show the color-coded correctly classified and misclassified buildings distribution. It can be
seen that buildings corresponding to the Possibly Damage category are also misclassified. Taking
into account that this damage class was defined by EMS using very high resolution optical imagery
(Pleiades sensor), as small changes of the building’s rooftop, these errors are due to the limitations of
adequately capturing small structures using 10 m of GSD remote sensing data.

On the other hand, both of our best scenarios overestimate the building damage along the Palu
river, particularly for Scenario 4 (multi-source post-event data). These results are explained by the
feature importance analysis, where it was shown that, among all input features, DEM has a more
significant contribution to the classification because of the damage pattern observed in tsunami-affected
areas. In such scenarios, structures located closer to the coastline, with low land elevation, will generally
experience significant damage in contrast to buildings settled at higher elevations [50]. However, it is
important to note that both scenarios successfully detected the destroyed buildings in the liquefaction
areas (top panel in Figure 7). Considering that, in these areas, the land elevation has no significant
variations, our results demonstrate that the CCF classifier together with multi-source and multi-sensor
datasets can accurately detect multiple levels of damage due to different types of disaster mechanisms.
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Destroyed
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No	damage

Building	damage	invetory Scenario	4 Scenraio	8

Correctly	classified
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OA	=	90.98%	
AA	=	66.45%

OA	=	91.67%	
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Figure 7. Comparison of building damage mapping from Scenario 4 (only multi-source post-event
dataset) and Scenario 8 (multi-source pre- and post-event dataset) obtained from the CCF classifier.
Left panels show the rasterized building damage inventory after post-processing using point-data from
the Copernicus project and building polygons from OSM. Bottom panels show color-coded maps of
the correctly classified and mis-classified.

5. Conclusions

In this paper, a systematical analysis of ensemble learning classifiers, using multi-temporal and
multi-sensor data, for building damage recognition was presented. We utilized multiple features
derived from SAR and Optical datasets and evaluated three ensemble learning classifiers that have
shown excellent performance for image classification in previous work. The remote sensing data was
composed of four ALOS-2 PALSAR-2 scenes, four Sentinel-1 scenes, two Sentinel-2 scenes, and one
PlanetScope image. Quantitative analysis was carried out to determine the best classifier algorithm.
Furthermore, the combination of multi-temporal and multi-sensor features for damage recognition
was analyzed. A systematic processing chain to create a building damage map was also presented.
We applied our classification frameworks in a real-case scenario to categorize the damage observed
in Palu, Indonesia following the recent 2018 Sulawesi tsunami. Our results demonstrated that
the CCF classifier outperformed other ensemble learning models for detecting different levels of
structural damage. The results also showed that building damage classification particularly benefits
from SAR-derived features with NL-SAR processing, such as coherence and intensity information.
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Furthermore, our results indicated that damage mapping using only post-event data give acceptable
accuracy. More reliable damage mapping can be achieved using multitemporal remote sensing data.

Our proposed framework learned the damage patterns from a limited available human-interpreted
building damage annotation (Copernicus EMS) and expands this information to map four damage classes
in the larger affected area. Future work will involve an ensemble of under- and over-sampling schemes
for achieving higher accuracies in minor classes (Destroyed, Damaged, and Possibly damaged) without
compromising the overall accuracy. Finally, a pre-defined database of building damage is required to
address the remaining challenge of gathering initial reference data soon after disasters.
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