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Abstract: Light detection and ranging (lidar) data are nowadays a standard data source in studies
related to forest ecology and environmental mapping. Medium/high point density lidar data allow to
automatically detect individual tree crowns (ITCs), and they provide useful information to predict
stem diameter and aboveground biomass of each tree represented by a detected ITC. However,
acquisition of field data is necessary for the construction of prediction models that relate field data
to lidar data and for validation of such models. When working at ITC level, field data collection is
often expensive and time-consuming as accurate tree positions are needed. Active learning (AL) can
be very useful in this context as it helps to select the optimal field trees to be measured, reducing
the field data collection cost. In this study, we propose a new method of AL for regression based
on the minimization of the field data collection cost in terms of distance to navigate between field
sample trees, and accuracy in terms of root mean square error of the predictions. The developed
method is applied to the prediction of diameter at breast heights (DBH) and aboveground biomass
(AGB) of individual trees by using their height and crown diameter as independent variables and
support vector regression. The proposed method was tested on two boreal forest datasets, and the
obtained results show the effectiveness of the proposed selecting strategy to provide substantial
improvements over the different iterations compared to a random selection. The obtained RMSE
of DBH/AGB for the first dataset was 5.09 cm/95.5 kg with a cost equal to 8256/6173 m by using the
proposed multi-objective method of selection. However, by using a random selection, the RMSE was
5.20 cm/102.1 kg with a cost equal to 28,391/30,086 m. The proposed approach can be efficient in
order to get more accurate predictions with smaller costs, especially when a large forest area with no
previous field data is subject to inventory and analysis.

Keywords: active learning; support vector regression; aboveground biomass; diameter at breast
height; lidar; forestry

1. Introduction

Having a precise description and representation of forest ecosystems in terms of carbon stock
density and forest structure is an important key in international efforts to alleviate climate change [1,2].
Carbon density can be estimated from the aboveground biomass (AGB) of trees [3], while the knowledge
of the distribution of diameters at breast height (DBH) can be useful in understanding the forest
structure [4]. Numerous studies have been conducted in recent years on prediction modeling of such
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attributes using light detection and ranging (lidar) data [5,6] and adopting one of two main approaches,
namely the area-based (ABA) [7,8] and individual tree crown (ITC) methods [9,10].

ITC approaches require field measurements of tree characteristics (e.g., species, DBH, height)
and individual tree positions. The positioning of the trees makes the field data collection more
labor-intensive than the ABA methods, for which tree positions are not necessarily required. In some
cases, some of the trees measured in the field for ITC applications may not necessarily be used for
model construction if it turns out after field work that they are not visible in the lidar data or/and not
detected by the ITC delineation algorithm. Moreover, the field data collected in an area are usually
just used for that particular area, while they could bring useful information for prediction model
construction also in areas with similar forest characteristics. An ideal situation would be to have an
automatic method that, based on previous field data in areas with similar characteristics to the one
subject to study, could help to reduce the inventory effort and cost by selecting the minimum number
of trees needed in the subject area to construct a suitable prediction model.

Active learning (AL) could be a possible solution in order to reduce the cost of field data
collection as it gives the possibility to select the “best” field sample units while reducing the data
acquisition cost [11–13]. AL is a subfield of machine learning in which the learning algorithm iteratively
selects training sample units with a query function that aims to maximize the quality of the results.
The objective of AL is to improve the performance of the considered learning model using as few
training sample units as possible, and by consequence minimizing the cost of field data collection.
AL has been applied in different research disciplines, and especially to solve classification problems,
such as electrocardiogram signal classification (e.g., [14,15]), remote sensing images classification
(e.g., [16,17]), speech recognition (e.g., [18,19]), text classification (e.g., [20,21]), and biomedical image
classification (e.g., [22,23]). Regarding the prediction of variables, AL has been used, for example, in an
active learning framework for regression, called expected model change maximization [24], in which
the aim was to choose the sample units that lead to the largest change in the current model. Demir and
Bruzzone [25] proposed an AL method for regression problems based on selecting the most informative
and as well as representative unlabeled sample units with a small-sized initial training sample.

However, almost all AL methods have been developed for improving the performance and
increasing the classification/prediction accuracies without taking into consideration the cost of the field
data acquisition. Indeed, the large majority of previous studies related to forest data acquisition just
considered the addition of new sample units where the marginal cost would be very small, for example
by adopting photo interpretation in the office, while in many forestry/ecology applications the marginal
cost for acquisition of additional sample units would be substantial because field work would be
required. The work by Persello et al. [26] is among the few that accommodated field data collection and
associated cost. They dealt with a remote sensing data classification problem where the optimization
of the new sample unit selection was done not just with respect to the number of sample units to be
added, but also by taking into consideration the total cost of the field data collection. The criterion of
selection was based on using a multi-optimization method which aims to select the best candidates by
calculating a tradeoff between uncertainty and diversity measures with respect to the different existing
classes and using a framework of a Markov decision process in order to reduce the cost.

In the current study, we propose a new method of active learning for regression based on the
selection of the best candidates while reducing the field data collection cost as much as possible.
The assumption is that the cost for the selection of the new sample units is a function of those selected
previously. Such a method is relevant when an expert must collect information for sample units in
different positions, and the field data collection cost, therefore, will depend on the distance between
the current and the next sample. Regarding the selection criterion, we introduce the term “diversity”
related to regression problems (see details below) since the common term “uncertainty”, which is
frequently used for classification problems, cannot be used here. The proposed method is applied
to the prediction of DBH and AGB using the height of the trees (H) and their crown diameter (CD)
as independent variables. Those two last variables (H and CD) are a direct result of the automatic
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ITC delineation on lidar data, while DBH is measured in the field. AGB is calculated using allometric
models based on DBH, H, and tree species. The assumption is that there are enough field sample
units from one site in order to construct the initial prediction model in a second site subject to analysis,
for which there is no prior knowledge. Support vector regression (SVR) is used to create a prediction
model. The obtained results are compared with results obtained by using three other simpler methods
of selection based only on: i) cost, ii) diversity, and iii) on random selection.

2. Materials

In this study, two datasets located in boreal forests in Hadeland and Våler municipalities,
southeastern Norway, were used (Figure 1). The main tree species in the two areas are Norway spruce
(Picea abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.), and deciduous tree species, such as birch
(Betula spp. L.) and aspen (Populus tremula L.). A summary of the field data is presented in Table 1.

Table 1. Statistics of the field data divided by species for the two datasets.

Hadeland Våler

Mean SD Range Mean SD Range

Tree height (m)

Norway
spruce 15.8 3.8 5.8–25.4 18.6 5 3.5–33.3

Scots pine 16 2.9 4.7–23.1 15.1 3.9 4.4–26
Broadleaves 13.8 4 5.1–22.9 15.3 3.8 5.8–26.3

DBH (cm)

Norway
spruce 19.3 5.8 5.1–44.1 21.1 7.5 4.3–50.3

Scots pine 25.6 7.4 4.7–51.1 20.2 8 4–47.9
Broadleaves 14.8 7 4–49.5 16.2 6.7 4.7–38.9

Tree AGB (kg)

Norway
spruce 155.1 108.4 6.1–681.4 216.3 180.2 4.2–1232.9

Scots pine 214.3 128.4 3.1–691 146.3 127.5 2.4–728.5
Broadleaves 103.2 113.1 2.4–738.2 125.5 115 4.1–680.4

2.1. Hadeland Dataset

The field data were collected in 2016 on 13 circular sample plots of size 500 m2 and 21 circular
sample plots of size 1000 m2 spread across a total area of about 1300 km2. Within each sample plot,
tree species, DBH, and tree coordinates were recorded for all trees with DBH > 4 cm. All plots were
positioned using static measurements and subsequent post-processing with data from a local base
station. Two survey grade dual-frequency receivers, observing pseudo-range and carrier phase of
both the Global Positioning System (GPS) and the Global Navigation Satellite System were used as
rover and base units. The positions of the trees were measured in polar coordinates (distance and
azimuth from the plot center). Height was measured for sample trees selected in each plot, and the
heights of the non-sampled trees were predicted with a model constructed from the trees measured
for height. A total of 3970 trees were recorded. AGB of each tree was calculated using the allometric
models of Marklund [27].

Lidar data were acquired on 21st and 22nd of August 2015 using a Leica ALS70 laser scanner
operated at a pulse repetition frequency of 270 kHz. The flying altitude was 1100 m above ground
level. Up to four echoes per pulse were recorded, and the resulting density of single and first echoes
was 5 m−2.

2.2. Våler Dataset

The field data were collected in 2010 on 152 circular sample plots of size 400 m2. Within each
sample plot, tree species, DBH, and tree coordinates were recorded for all trees with DBH > 5 cm.
All plots were positioned using static measurements and subsequent post-processing with data from a
local base-station. Two survey grade dual-frequency receivers, observing pseudo-range and carrier
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phase of both the Global Positioning System (GPS) and the Global Navigation Satellite System were
used as rover and base units. The positions of the trees were measured in polar coordinates (distance
and azimuth from the plot center). A total of 9467 trees were recorded. The AGB of each tree was
calculated using the allometric models of Marklund [27].

The lidar data were acquired on 9 September 2011 using a Leica ALS70 system operated with a
pulse repetition frequency of 180 kHz. The flying altitude was of 1500 m above ground level. Up to
four echoes per pulse were recorded, and the resulting density of single and first echoes was 2.4 m−2.
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Figure 1. Location of the two study areas: (A) Hadeland and (B) Våler. In panels A and B the field
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3. Methods

The proposed strategy is summarized in Figure 2, and it is based on the following steps:
(1) define the possible field plots to survey according to a predefined sampling strategy

(e.g., random and systematic);
(2) apply an ITC delineation method over the lidar data of the area of interest and assign the ITCs

to the plots defined at step 1;
(3) on the basis of some pre-existing field data over the same area or a similar area, run the AL

algorithm in order to define the best plot to survey and the best ITCs to survey inside the plot;
(4) go to the field and measure the trees (that corresponds to the ITCs delineated at step 2)

suggested by the AL method;
(5) go back to step 3 and run again the AL method with the updated field data until the stopping

criteria are reached.
In the following paragraphs, the processing steps are described with particular attention to the

proposed AL for regression method (Section 3.3).
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3.1. Lidar Data Preprocessing

A digital terrain model (DTM) was generated from the lidar echoes by the vendor using TerraScan
software. The lidar point cloud was normalized to create a canopy height model (CHM) by subtracting
the DTM from the z-values of the lidar echoes.

3.2. ITC Delineation

ITCs were delineated using an approach based on the lidar data and the delineation algorithm
of the R package (itcSegment) [28,29]. The algorithm starts by first finding the local maxima within
a rasterized CHM and designates them as treetops, and then uses a decision tree method to grow
individual crowns around the local maxima. The final output of the algorithm is the detected ITCs
with the height and crown area information. For more details about the algorithm, we refer the
reader to [29].

The delineated ITCs were automatically matched to the trees in the field datasets. If only one
field-measured tree was included inside an ITC, then that tree was associated with that ITC. In the case
that more than one field-measured tree was included in a delineated ITC, the field-measured tree with
the height most similar to the ITC height was chosen.

3.3. Proposed Active Learning System for Regression

3.3.1. Problem Definition

Let us assume that a training set D =
{
(xi, yi)

}N
i=1 is initially available, where N is the number of

sample units, and each unit xi is represented by a vector in the d-dimensional measurement space and
yi ∈ R is its corresponding target value. In our case, N corresponds to the number of ITCs available
for the initial training set and the measurement space is their corresponding H and CD. The target
value corresponds to the ground reference DBH (measured) and AGB (predicted). Given this training
set D, we aim to predict an output value (DBH and/or AGB) of an unknown unit xi from a test set
T = {xi}

M
i=1 by using an interactive regression system as mentioned in Figure 3. This interactive method

is based on selecting first at each iteration the best plot P’ and then select a batch B = {xi}
b
i=1 of the best

b sample units belonging to P’ from a larger set U = {xi}
u
i=1. of u unlabeled sample units, where b� u.

Those selected sample units are then associated with their output measures and added into the training
set D. In Algorithm 1, a general description of the proposed method is presented. More details are
provided in the following subsections.
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Algorithm 1: Interactive regression.

Input:

Training set D =
{(

xi, yi

)}N

i=1
Unlabeled set U = {xi}

u
i=1

Number of iterations: ITER
Number of ITCs to label at each iteration b
Output: predicted results of DBH and AGB
Step 1: train the SVR using the training set D;
for iter in 1: ITER
Step 2: predict the output of the unlabeled sample units from U;
Step 3: rank the ITCs and the plots based on diversity and cost criteria;
Step 4: collect in the field the data for the top-ranked b ITCs from the selected plot;
Step 5: increase the training set D with these new labeled sample units;
Step 6: train the SVR using the updated dataset D;
Step 7: output the final prediction results.

3.3.2. Support Vector Regression

The proposed interactive method is based on the ε-insensitive support vector regression (SVR)
method. SVR performs a linear regression in the feature space using an epsilon-insensitive loss (ε-SVR).
This technique is based on the idea of deducing an estimate ĝ(xi) of the true, but unknown, relationship
yi = g(xi) (i = 1, . . . , N) between the sample unit xi and its target value yi such that: (1) ĝ(xi) has,
at most, ε deviation from the desired target yi; and (2) it is as smooth as possible. This is performed by
mapping the data from the original feature space of dimension d to a higher d'-dimensional transformed
feature space (kernel space), i.e., Φ(xi) ∈ <

d′ (d′ > d), to increase the flatness of the function and,
by consequence, to approximate it in a linear way as follows:

ĝ(xi) = ω∗.Φ(xi) + b∗ (1)

Therefore, the SVR is formulated as the minimization of the following cost function:

ψ(ω) =
1
2
||ω2
|| (2)

subject to: {
yi − (ω.Φ(xi) + b) ≤ ε
(ω.Φ(xi) + b) − yi ≤ ε

(3)
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In the previous equations, it is supposed that the function ĝ(xi) is existing for each couple (xi, yi)
N
i=1

with a precision ε. However, in order to increase the generalization ability, some errors are acceptable.
The concept of soft margin is introduced (see [30]) and the minimization problem will be formulated as
minimization of the following cost function:

ψ(ω, ξ) =
1
2
||ω2
||+ C

N∑
i=1

(
ξi + ξ∗i

)
(4)

subject to: 
yi − (ω.Φ(xi) + b) ≤ ε+ ξi
(ω.Φ(xi) + b) − yi ≤ ε+ ξ∗i

ξi, ξ∗i ≥ 0
(5)

where ξi and ξ∗i are the slack variables that measure the deviation of the training sample unit xi outside
the ε-insensitive zone. C is a parameter of regularization that allows tuning the tradeoff between the
flatness of the function ĝ(x) and the tolerance of deviations larger than ε.

The aforementioned optimization problem can be transformed through a Lagrange functional
into a dual optimization problem expressed in the original dimensional feature space in order to lead
to the following dual prediction model:

ĝ(x) =
∑
i∈S

(
αi − α

∗

i

)
K(xi, x) + b∗ (6)

where K is a kernel function, S is a subset of indices (i = 1, . . . , N) corresponding to the nonzero
Lagrange multipliers αi’s or α∗i ’s. The training sample units that are associated to nonzero weights
are called SVs. The kernel K(·,·) should be chosen such that it satisfies the condition imposed by the
Mercer’s theorem, such as the Gaussian kernel functions [31,32]. In this study, the SVR implemented
in the kernlab library [33] of the software R was used [34].

3.3.3. Ranking

During the training phase, we aim to find the best parameters by using the training set D so
that the estimate ĝ(xi) has, at most, ε deviation from the desired targets yi. When the built model is
applied to the unlabeled sample unit set U, the sample units that have a features distribution similar
or close to that of the training sample units will give predicted output values close to their real ones,
while the difference will be bigger for the sample units that have a very different feature distribution.
Our objective is to select sample units from this last group and to add them to the training set in order
to get more diversity among the training samples. This operation can help to create a more general
model for regression and to get better results.

Let us suppose that ĝ is the constructed regression model using the training set D with the
optimum parameters p, and let us suppose that g′ is a similar model as ĝ with slightly changed
parameters p’. By applying the trained model ĝ and the slightly modified model g′ to the unlabeled set
U = {xi}

u
i=1, we get:

ĝ(xi) = yi (7)

g′(xi) = y′i (8)

Using the results obtained from (7) and (8), we can compute the diversity "v" as follows:

vi =
∣∣∣yi − y′i

∣∣∣ (9)
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and also the inverse of the diversity "v′i ":

v′i =
1
vi

=
1∣∣∣yi − y′i

∣∣∣ (10)

The diversity measure is used to rank the unlabeled sample units. The sample units with the
highest diversity are more advantageous to be added to the training set D in order to improve the
regression model ĝ.

3.3.4. Selecting Best Plot and Best ITCs

In field surveys, trees are usually measured in plots of a given size, and each plot can contain
many trees and consequently many ITCs. For this reason, the selection strategy is based firstly on
the selection of the best plot in each iteration, and then on the selection of the best b ITCs inside this
plot. The main criteria used for the selection are the cost c and the diversity v. In our case, the cost is
interpreted as the distance in meters that a person needs to travel in the forest in order to measure
the selected trees. In order to find a tradeoff between the two measures (v′ and c), we opted for
a Pareto-like optimization method which is inspired by the multi-objective optimization literature
(MO optimization) and the non-dominated sorting concept [35–37].

3.3.5. Multi-Objective Optimization

In the presence of multiple measures of competing objectives that need to be simultaneously
estimated, MO optimization can be solved by combining in a linear way the different objectives into a
single function with fitting weights, or by finding a set of optimal solutions rather than just a single
one. The selection of the best solution from this set is not trivial, and it is usually user-dependent.
From a mathematical viewpoint, a general MO optimization problem can be formulated as follows:
find the vector p∗ which minimizes the ensemble of K objective functions:

f(p) = [ fk(p), i = 1, . . . , K] (11)

subject to the I equality constraints:

g j(p) = 0 i = 1, 2, . . . , I (12)

and the J inequality constraints:

h j(p) ≤ 0 j = 1, 2, . . . , J (13)

where p is a candidate solution to the considered optimization problem.
The MO optimization problem is solved using the concept of dominance. A solution pi is said to

dominate another solution pj if and only if f
(
pi

)
is partially smaller than f

(
pj

)
, i.e.,

(1) for all indices k1 ∈ {1, 2, . . . , K} :

fk1

(
pi

)
≤ fk1

(
pj

)
(14)

and
(2) for at least one index k2 ∈ {1, 2, . . . , K} :

fk2

(
pi

)
< fk2

(
pj

)
(15)

This concept leads to the definition of Pareto optimality: a solution p∗i ∈ Ω (Ω is the solution
space) is said to be Pareto optimal if and only if there exists no other solution p∗j ∈ Ω that dominates p∗i .
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The latter is said to be non-dominated and the set of all non-dominated solutions forms the so-called
Pareto front of optimal solutions.

The final step, after the extraction of the Pareto front, is to select the final solution among the
non-dominated ones. From the literature, we can find many strategies to extract this solution, and in
the current study, we opted for the selection of the median solution in order to maintain a tradeoff

between the two different criteria.
Figure 4 shows an example of a non-dominated sorting concept, in which a joint optimization

of two criteria f1 (which represents in our case v′) and f2 (which represents the cost) is involved.
The non-dominated samples (in red) constitute the Pareto front, which represents the set of optimal
solutions (optimal samples). From this set, the selected solution is given by the median one (in green).
Dominated solutions are drawn with black circles.
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3.4. Performance Evaluation

In order to evaluate the proposed method, we adopted the root mean square error (RMSE):

RMSE =

√
1

Nt

∑Nt

i=1

(
yti − ŷti

)2
(16)

where Nt is the total number of test sample units, and yti and ŷti are the field-reference and lidar-predicted
output, respectively, for the ith test sample unit xti .

3.5. Design of the Experiments

In order to evaluate our method, each dataset (i.e., Hadeland, and Våler) was divided into two
sets: training and test. The ITCs matched with the field measured trees of each species in each plot
were sorted according to the DBH and one every second ITC was used for test and the rest for training.
In this way, training and test sets had similar characteristics in terms of spatial distribution, species
distribution, DBH, and AGB variation. For the Hadeland dataset, 607 sample units (ITCs) were used
as training, and 627 sample units (ITCs) were used for testing, while for the Våler dataset, 1398 and
1245 ITCs were used for training and testing, respectively.

An outline of the different experiments accomplished in this study is presented in Table 2.
In experiments A, B, and C, the training set of the Hadeland dataset was used as the initial training set
D, while the training and the test sets of the Våler dataset were used as the unlabeled set U and the test
set T, respectively. The total number of iterations was fixed to 20, and the maximum number of selected
sample units in each iteration b was fixed to 10. The objective functions f 1, related to the diversity,
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and f 2, related to the cost, were computed in each iteration for each plot and the selected solution was
the median of the Pareto front solutions. In order to have an additional evaluation of the proposed
method, the position of the two datasets was permuted in experiments D, E, and F (see Table 2). In the
latter case, due to the limited number of plots in the Hadeland dataset, the total number of iterations
was fixed to 10 only, while the maximum number of selected sample units in each iteration b was fixed
to 20. The criteria of samples selection were the same as the previous experiments.

In experiments A, B, D and E, the prediction of DBH and AGB was done separately. From a
practical point of view, such a way of prediction is costly especially when a person needs a double
effort in order to measure trees existing inside a plot that is selected twice, first time for DBH prediction
and the second time for AGB prediction. In order to reduce this cost, in experiments C and F, we
predicted both DBH and AGB at the same time. In this case, two models were trained (one model for
DBH and the other model for AGB) using the same training data. The final diversity, which will be
considered for the next steps, was the average of diversities calculated for both models.

Table 2. Summary of the experiments carried out.

Experiment Predicted
Variables

Training Set (D) Test set (T) Unlabeled Set (U)

Location # of ITCs Location # of ITCs Location # of ITCs

A DBH Hadeland 607 Våler 1245 Våler 1398
B AGB Hadeland 607 Våler 1245 Våler 1398
C DBH+AGB Hadeland 607 Våler 1245 Våler 1398
D DBH Våler 1398 Hadeland 627 Hadeland 607
E AGB Våler 1398 Hadeland 627 Hadeland 607
F DBH+AGB Våler 1398 Hadeland 627 Hadeland 607

For comparison purposes, three other methods of selection were used: (1) Cost: minimization
of the cost by selecting the closest plot from the current one at each iteration; (2) Diversity: selection
of the plot that presents the maximum diversity in order to get the best accuracy; and (3) Rand:
random selection.

Regarding SVR, the Radial Basis Function (RBF) was used as kernel functions. To compute the
best parameter values, we use a cross-validation technique with a number of folds equal to three.
During the cross-validation, the regularization parameter C of the SVR, and the width of its kernel
function γwere varied in the range [1, 104] and [10−3, 5], respectively. The ε-value of the insensitive
tube was fixed to 10−3.

4. Results

Table 3 shows the results obtained for the experiments A, B, and C using the four selection criteria.
Regarding experiments A and B, we can see that the random selection criteria provided the worst
results, with a very high cost and a small improvement in terms of RMSE compared to the initial
case (the initial RMSE found by using the initial training D). Almost similar RMSEs were obtained by
using only the Cost criterion for selection, with the advantage of having a very small cost. In contrast,
when using only the Diversity criterion, the RMSEs improved but at a high cost. Using the MO Pareto
optimization in order to find a compromise between the two criteria (Cost and Diversity), we can
notice that the improvement in terms of RMSE is close to the one obtained by using only the Diversity
criterion, but at a smaller cost (smaller distance).
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Table 3. Results obtained for Våler dataset (experiments A, B, and C). The initial RMSE is the RMSE
obtained on Våler test set using only the Hadeland training set to build the model. The best results are
highlighted in bold.

Experiment Initial
RMSE

Methods

Rand Diversity Cost MO Pareto

A 5.46 cm
Added sample units 154 183 173 132

Cost (m) 28,391 30,159 3190 8256
RMSE (cm) 5.20 5.06 5.29 5.09

B 107.8 kg
Added sample units 146 181 150 158

Cost (m) 30,086 30,589 3560 6173
RMSE (kg) 102.1 94.7 101.1 95.5

C
5.46 cm
107.8 kg

Added sample units 162 180 168 160
Cost (m) 30,372 27,263 3560 8327

RMSE DBH (cm) 5.35 5.06 5.19 5.12
RMSE AGB (kg) 102.9 95.4 100.3 95.7

Regarding the results of experiment C (simultaneous prediction of both DBH and AGB), similarly
to the previous results, the smallest RMSE was found by using the Diversity criterion but at a high cost.
In contrast, using only the Cost criterion provided the minimum cost but with a large RMSE. A good
compromise was found by using the MO Pareto optimization where the obtained RMSEs were close to
those obtained by the Diversity criterion but at a smaller cost. The last remark concerning experiment
C is that the obtained RMSEs were very close to those obtained in experiments A and B (predicting
DBH and AGB separately) but at almost half of the cost.

In Figures 5 and 6, the evolution of the RMSE and the cost during the different iterations is
presented for the prediction of DBH and AGB using the different criteria. For both cases using the
Diversity and the MO Pareto optimization, the graphs show a convergence toward better predictions
with small fluctuations, contrary to the two other criteria (Rand and Cost criteria) where the variations
are more marked. This phenomenon is due to the fact that in some iterations the selected sample
units did not provide the expected improvement in the re-trained model, but they rather reduced the
predictive ability of the model. Regarding the cost, we can notice from both figures that by using the
MO Pareto and the Cost criteria for the selection we had a very low cost compared to the two other
criteria (Rand and Diversity).

Figure 7 shows the evolution of the RMSE during the different iterations of experiment C. Similar
to the previous experiments (A and B), the graphs of the Rand and Cost criteria show a large variation,
which was due to the ineffective selection of samples in some iterations, and it was more stable and
converged toward better predictions for the Diversity and MO Pareto criteria.
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Våler dataset during the different iterations.

As stated in the “Design of Experiments” Section, we also carried out three other experiments
inverting the datasets that were used. The different results obtained for the prediction of DBH and
AGB individually (experiments D and E) and together at the same time (experiment F) are presented in
Table 4. The results are in line with the ones obtained in the previous three experiments (A, B, and C).
From Table 4, we also conclude that using a method of optimization to reach a compromise between
accuracy and cost is the best way in order to get good results at the minimum cost possible. Figures 8
and 9 present the evolution of the RMSE and the cost as a function of the number of iterations for the
experiments D and E, respectively. In the case of the DBH prediction, the MO Pareto criterion is always
providing the lowest RMSE at each iteration, and almost always the lowest cost: the lowest cost is
obviously provided by the Cost criterion. The Rand approach is providing the worst results for both
RMSE and cost. In the case of AGB (Figure 9) the RMSE of the Diversity criterion is providing slightly
better results with respect to the MO Pareto criterion. Figure 10 shows the results obtained for the
experiment F. As in experiment C there is a higher variation at each iteration, with some cases where
some selected samples are decreasing the performance of the predictor.
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Table 4. Results obtained for the Hadeland dataset (experiments D, E, and F). The initial RMSE is the
RMSE obtained on Hadeland test set using only the Våler training set to build the model. The best
results are highlighted in bold.

Experiment Initial
RMSE

Methods

Rand Diversity Cost MO Pareto

D 5.39 cm
Added sample units 161 172 153 153

Cost (m) 96,980 86,650 40,821 49,502
RMSE (cm) 5.3 5.15 5.24 5.15

E 83.34 kg
Added sample units 163 161 153 157

Cost (m) 106,230 110,779 40,821 43,737
RMSE (kg) 82.36 80.57 81.61 80.95

F
5.39 cm
83.34 kg

Added sample units 158 155 156 146
Cost (m) 131,258 120,992 43,319 58,815

RMSE DBH (cm) 5.25 5.17 5.22 5.17
RMSE AGB (kg) 82.97 80.4 80.81 80.67
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5. Discussion

In this paper, we proposed a new method based on AL for improving field data collection for the
prediction of DBH and AGB at ITC level. The proposed method was shown to be effective as it allowed
to improve the prediction accuracy compared to pure random sampling while also reducing the cost
in terms of distance traveled in the forest. The proposed approach has margins for improvement
as the current cost function is based only on distance while in a real context it should consider the
roads and paths network of the study area and if the distance can be traveled on foot or by car (like in
Demir et al. [38]), but it still represents a good example of how field data collection could be improved
introducing advanced machine learning methods, like AL. Compared to a conventional field data
survey the proposed approach requires a total change in how it is planned. The selection of sample
units should be made after the lidar data have been collected, and it is required to have the possibility
to retrain the model after each selection of new sample units. In particular, it is necessary that the
field crew have access to a processing system through a tablet or a smartphone in order to run the AL
system. Another point to consider is the localization of the trees suggested by the AL system. In this
case, the knowledge, additionally to the position, of the height and DBH predicted by the AL system
could speed up the localization procedure. As the AL system will suggest measuring only trees visible
from above the forest, in case of a not very dense forest, or a mature forest, and in particular in boreal
and temperate forests, the localization procedure could be done just using a priori information like the
CHM of the area and the terrain contour lines, without the use of a highly accurate GPS device.

The topic of the use of remote sensing data to optimize the field data collection design have been
widely studied [39–41]. Normally remote sensing data are used to stratify the distribution of the
samples, and to help in the selection of the most suitable samples, and once they are defined the field
data collection is carried out without any updating phase. The main difference among these methods
and the AL methods is that in the AL systems the model optimization is also involved in the choice
and also the data collection cost.

All the four methods considered allow to improve the prediction accuracy compared to the use of
only the initial training set. This was expected as obviously adding samples of the area under analysis
is improving the prediction accuracy, compared to use only sample units from a similar area located in
another place. Another expected result is that the Rand approach is always giving the worst results in
terms of both cost and accuracy, while the one based on Diversity is always providing the best results in
terms of accuracy. The MO Pareto optimization is the one having the best trade-off between the RMSE
and the cost, and this method is the one having more potential in the context of forest inventories.
Moreover, according to the needs, other parameters could be added to the optimization considering
thus not only the RMSE and the distance. Despite this, the choice of the selection strategy should
be made according to the final user needs: if the budget is limited a selection based on the Cost is
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essential, while if the objective is to have the best possible prediction accuracy, independently from the
cost, the choice should be based on the Diversity.

In this study, the potential plots to be selected by the AL method were systematically distributed
over the two study areas as they were used for previous studies, and forest inventory purposes.
We used thus a possible grid of plots to visit, defined according to sampling design, and then only
certain plots, and certain trees inside the plots were sampled. The proposed AL system could also
work with a totally random sampling design. This is the usual approach used in AL methods based on
photointerpretation [16]. In the specific case analyzed in this study, a random approach with many
possible candidate plots could be actually more effective for the AL system as it allows for much more
potential plots to choose from. The drawback could be that the plots selected will not respect any
sampling design, and they could not cover the entire spatial distribution of the study area. Moreover,
the proposed AL method could also work independently from the plots by selecting the best ITCs
directly over the entire area. In this case, the suggested approach should be to delineate ITCs over
the entire area and then either to use the position of each ITC as a possible candidate sample unit,
or to sample the ITCs according to sampling design, and then survey only the ones suggested by the
AL system.

As we showed in this study, changing the target variable could lead to the selection of different
sample units and to have a different final training set, that would not necessarily be suitable for the
prediction of other variables. In practical, such an issue should be kept in mind in order to survey
plots and ITCs that are useful for all the needed predictions. In the case where the variables to predict
are correlated, like DBH and AGB, the candidate sample units will be in any case similar, while in the
case where the variables to predict are not correlated there may be in any case the possibility to carry
on disjoint AL-based field surveys.

6. Conclusions

In this study, a new method of active learning for regression based on selecting the best field
sample units was presented. The method of regression used is the support vector regression, and the
criteria of selection are based on the accuracy and the cost. The accuracy criteria use the diversity
of the unlabeled sample units while the cost is considered as the distance traveled by the expert to
label the selected units. The developed method was applied to predict the DBH and the AGB using
the height of the trees and their crown diameter as independent variables. Those two last variables
are directly extracted from lidar data while DBH and AGB need to be measured/predicted in the
field. The experimental results show the effectiveness of the proposed selection strategy to give better
results with substantial improvements over the different iterations. We observed that the proposed
method converged to a low RMSE with a considerably lower cost compared to using a random
selection method.

The proposed method can be applied to any learning problem where the cost of labeling selected
sample units is an important factor to be taken into consideration. This is the case when labeling
queried sample units depends on the previously annotated ones.
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