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Abstract: This work presents an approach to road network extraction in remote sensing images. In our
earlier work, we worked on the extraction of the road network using a multi-agent approach guided by
Volunteered Geographic Information (VGI). The limitation of this VGI-only approach is its inability to
update the new road developments as it only follows the VGI. In this work, we employ a deep learning
approach to update the road network to include new road developments not captured by the existing VGI.
The output of the first stage is used to train a Convolutional Neural Network (CNN) in the second stage to
generate a general model to classify road pixels. Post-processing is used to correct the undesired artifacts
such as buildings, vegetation, occlusions, etc. to generate a final road map. Our proposed method is
tested on the satellite images acquired over Abu Dhabi, United Arab Emirates and the aerial images
acquired over Massachusetts, United States of America, and is observed to produce accurate results.
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1. Introduction

In our earlier work, we worked on extraction of roads guided by Volunteered Geographic Information
(VGI) [1]. VGI is collected using crowd-sourcing tools which allow general public to contribute towards
a global database that contains geo-referenced data about the Earth’s surface. OpenStreetMap (OSM) is
one such example, which provides spatial, geometrical, and attribute information about road networks,
building footprints, landmarks, etc. In the case of roads, VGI data is often provided only as vector data
represented by lines and not as full extent. Also, depending the geo-registration accuracy of the base maps,
the VGI data can consist of significant errors. Our previous approach works based on the assumption
that road segments are always connected with local geometrical homogeneity. By using the direction of
the segments in VGI, we extract the full extent of the roads in the remotely sensed images. However,
the limitation of this VGI-only approach is its inability to update the new road developments which are
not captured in VGI; In this paper, we introduce an approach based on Convolutional Neural Network
(CNN) to extract the complete network by also extracting segments that are not available in the VGI.
The output of the first stage where VGI is used to extract the full extent of the road is employed as a
labelled class input to train the CNN in the second stage. Furthermore, post-processing is performed
to correct undesired non-road artifacts such as buildings, vegetation, occlusions, etc. In the third stage,
we develop a graph-theoretic approach as a post-processing step to enhance the accuracy of the extracted
road network by connecting disjoint road segments.
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In the last few years, the deep CNN architectures have quickly become prominent in many remote
sensing applications since they have the ability to effectively use spectral and spatial information without
needing any prepossessing step. A CNN is composed of multiple interconnected layers and learns a
hierarchical feature representation from lower-level pixel data as it discovers features in multiple levels of
representations. The lowest level is depicted by the primitive features of pixels (e.g., spectral properties).
The higher level involves transforming from the raw pixel representation into gradually more abstract
representations that are invariant to small geometric variations such as edges and corners. Furthermore,
they are gradually transformed and made resilient to contrast changes as well as contrast inversion
(i.e., object parts). The most frequent patterns related to the higher-level abstract categories that represent
whole objects are identified at the end [2,3].

Deep Learning has been widely applied to various computer vision tasks [4,5] with significant success
because of its superiority in terms of feature representation. In remote sensing, deep learning methods
have been able to provide remarkable success in the applications such as land cover/use classification [6–9],
synthetic-aperture radar (SAR) image classification [10,11], hyper-spectral image classification [3,12] as
well as object recognition in remote sensing images [13,14].

The first stage of our work was reported in [1]. It makes use of a segmentation approach where
autonomous agents traverse through segments in a known road direction provided by VGI to extract the
full extent of the road segments. The process starts with segmentation of the input image into smaller
image segments. Then, multiple parallel processes (the agents) traverse through these segments guided
by the VGI to group those with similar spectral characteristics as road segments. A post-processing step
which considers the general characteristics of the road objects prunes the shapes of these segments to
generate homogeneous road geometry throughout the network. This approach is shown to extract full
extent of the roads as shown in the example in Figure 1.

Figure 1. Illustration of VGI approach on test image 5; (a) RGB image, (b) available VGI data of a test image,
(c) Output obtained after the traversal of segments in the direction provided by VGI indicated in orange
color (before its post-processing), and (d) Final output of VGI approach indicated in orange color.
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However, as can be seen in Figure 1d, the approach doesn’t extract segments (as indicated in white
color in Figure 1d) which are not represented in the VGI which is often not updated regularly. The main
contribution of this paper lies in introducing the following two additional stages to address the issue of
automatic road network extraction and updating.

1. In the second stage, we make use of the outputs from the first stage where VGI data has been used to
extract an initial road network to train the CNN architecture. To our best knowledge, ours is the first
attempt to use a CNN architecture with reduced context size of ‘8 × 8’ pixels for road classification
based on the combination of both probabilistic pixel and patch based prediction for the purpose of
road network extraction. This reduces the computational load significantly. Furthermore, we carry
out post-processing to rectify the extracted road network to improve the accuracy.

2. In the third stage, we connect the isolated road segments to ensure a continuous network with
simple features pertaining to road’s spectral, geometric and topological information. The edges
of the isolated segments are connected to the closest node in the existing network extracted in the
previous steps.

2. Background and Related Works

Convolutional neural network (CNN) is a multi-level feed-forward artificial neural network belonging
to the category of deep learning. A typical CNN consists of multiple layers which repeat in turn with
convolutional and pooling layers, and one or more fully connected (FC) layers. The convolutional layer
produces the feature maps of the previous layers with filters. The pooling layer receives smaller size
rectangular blocks from the convolutional layer and further sub-samples it to obtain a single output
from each block. Max pooling and average pooling are its two types. In the former, the maximum value
observed in the window is sent to the next layer whereas in the latter, an average of the observed value is
sent. The fully connected layer has connections to all neurons of previous layers, with each connection
having its own individual weight [15].

Usually, CNN classification is performed in either patch-based mode or pixel-to-pixel-based
(end-to-end) mode. In the patch-based mode, we commonly start with small image patches to train
the CNN model. By using a sliding window over all the pixels to extract patches corresponding to
neighborhoods around the pixels, the classes of the pixels are predicted. Also, the fully connected layers
can be converted to convolutional layers, without overlapping at pixel level [16,17] to usually detect large
urban objects. Pixel-based methods use an end to end CNN, where usually encoder-decoder architectures
are used by applying methods like up-sampling, interpolation, etc. [18,19]. The latter approach is essential
to trace fine details of the input images.

CNN is able to deliver significant performance improvement as it is shown to learn the optimal filters
performing convolution operations in the image domain [20]. GoogLeNet, AlexNet, VGG-16, VGG-19 and
ResNet are some of the widely used CNN frameworks in different remote sensing tasks which address
problems based on performing transfer learning or with convolutional feature extraction [20]. CNNs have
been widely used in literature for various applications such as speech recognition [21], natural language
processing (NLP) [22], information retrieval [23], compute vision [24], and image analysis [2]. In the work
of Jiang et al. [18], graph-based segmentation is integrated with CNNs to localize image patches, which
help in localizing objects effectively. Lngkvist et al. [19] used CNNs along with spectral features of Simple
Linear Iterative Clustering (SLIC) segmentation to improve the performance of CNNs. Zhang et al. [25]
makes use of a semantic segmentation neural network approach which combines the strengths of residual
learning and U-Net.

For road extraction, various classification-based, knowledge-based, mathematical morphology and
dynamic programming approaches have been explored [26]. Previous works using CNN on road extraction
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mostly tend to detect road pixels or patches, and then uses complex post-processing heuristics to infer
graph connectivity. Li et al. [27] uses CNN to get the probable road segments and then uses line integral
convolution based connection scheme to connect the segments. Recently, Bastani et al. [28] used an iterative
search process guided by a CNN-based decision function to derive the road network graph directly from
the output of the CNN. [29] employs post-processing to make the extracted road region more realistic,
several morphological algorithms are typically deployed to fill the holes, smooth the edges, connect the
road segment, and then achieve the coarse center lines of road segments.

Few works use CNN also focused on composite extraction of roads and buildings together [30,31].
Saito et al. [30] used a single CNN architecture for extracting roads and buildings on the Mnih imagery
dataset [32] using multi-class probability output of roads, buildings and background simultaneously.
They also apply Channel-wise Inhibited Softmax (CIS) function to suppress the effect of the background.
Alshehhi et al. [31] used a single patch-based CNN architecture for extraction of roads along with buildings
from high-resolution remote sensing images. It uses a deeper patch-based segmentation, and a CNN
consisting of a simple global average pooling layer. It also make use of a post-processing method based
on low-level features such as asymmetry and compactness of adjacent regions, incorporating spatial
structures to distinguish between roads and buildings. Recently, Shi et al. [33] used Generative Adversarial
Networks to generate road networks which consists of generative model that produces segmentation
maps by stimulating the data probability distribution of the road, and a discriminative model that helps to
distinguish whether the samples are coming from generative model or the ground truth. Both generative
and discriminative models form an adversarial training network to obtain final results.

3. Proposed Methodology

Figure 2 represents the block diagram using deep learning framework. In this section, we describe
the three stages starting from (i) training data generation, (ii) defining CNN architecture and performing
post-processing on the generated outputs, and finally (iii) completion of the road network.

Figure 2. Block diagram of road network extraction and updating using deep learning framework.
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3.1. Stage 1: Training Data Generation from Initial Road Extraction Using VGI

In the first stage, we use the VGI to generate an initial map of the road network as described in [1].
We use the initial network as training data for the CNN. In order to generate the training data, we extract
patches of size ‘8 × 8’ pixels from input satellite images and the binary road map. The multi-spectral
patches are fed as input features into CNN while the patches from output of first stage are treated as their
class labels. We increase the size of the training data by rotating these patches by 90 degrees. All the
training data is normalized. If at least one fourth of the pixels in the patch are classified as road pixel, then
we consider the patch to be labeled as road. Finally, in order to prevent that CNN becomes biased towards
one particular class, we balance the training dataset to include the same number of patches from both the
classes (i.e., road and non-road classes). Patches consisting of less than one fourth of the pixels classified as
road pixels are ignored in the training set as they represent ambiguous patches.

3.2. Stage 2: CNN Approach to Extract Probable Road Segments

We train a CNN to develop a general model for extracting roads and also carry out post-processing to
remove non-road artifacts in the extracted road network.

3.2.1. CNN Architecture

In this work, we use a CNN model consisting of five convolutional and two fully connected layers
(as shown in Figure 3) whose structure is expressed as: CL(5 × 5, 3, 8) - CL(3 × 3, 8, 8) - CL(3 × 3, 8, 16) -
CL(3 × 3, 16, 32) - CL(3 × 3, 32, 64) - FC(1024, 64) - ReLU - FC(64, 2).

• CL(N ×N, I, F) : It represents a convolutional layer with filter size of N ×N, I represents no. of image
input channels, and F defines the no. of output channels obtained by using different number of filters.
The default stride in both vertical and horizontal direction is 1.

• M(N × N, S) : It represents max-pooling layer of size ‘N × N’ with ‘S’ unit strides.
• FC(I, O) : It represents fully connected layer with ‘I’ input channels and ‘O’ output channels.
• LRNL : It represents local response normalization layer which sufficiently prevents overfitting without

needing to perform additional dropout and L2 regularization.

Figure 3. Architecture of used CNN framework (ReLU and Max-Pooling layers are not shown for simplicity;
CL: convolutional layer, FC: fully-connected layer, SM: softmax layer).

Here, each convolutional layer is followed with rectified linear unit (ReLU) activation layer, LRNL
and with a M(2 × 2, 2) max-pooling layer. The activation function used in the first FC layers is identity
function while second FC has the sigmoid function. Then, softmax function is applied to two outputs
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to get the probabilities for two classes. Cross entropy is used as the loss function to train the weights of
the network.

3.2.2. Post-Processing

In this step, the output obtained from CNN is refined by filtering out VGI detected road segments
and non-road segments which includes removing buildings and other occlusions, etc. In classification of
remote sensing images, occlusions such as buildings, parking lots, etc. often tend to be identified as roads,
as they are made out of similar materials and share similar spectral characteristics. The segments extracted
in the first step based on VGI are used directly and only the updated segments are processed.

The post-processing consists of the following components:

• Identifying building regions: In our proposed method, in order to remove buildings, we utilize an
approach which uses image segmentation for detecting building regions [34]. The method uses image
segmentation to segment the images into smaller segments and detect buildings as segments with
high contrast to the darkest segment in the neighborhood in the direction of the expected shadows
based on the sun angle.

• Vegetation and Shadows: To avoid confusion between vegetation and shadow regions, normalized
difference vegetation index (NDVI) values are used. Shadows are expected to have NDVI values
lower than 0 and vegetation is expected to have values greater than 0.3. The thresholds are chosen
based on manual observation across the test images.

• Removing Parking Lots: To remove the remaining non-road artifacts like parking lots, we analyze
the number of branches in skeletons of the segments additionally added to the initial road network
extracted using VGI. The skeleton of non-road segments such as parking lots tend to have more
number of branch points as compared to road segments which are much smoother.It can be seen
that road segments are often smooth and continuous segments which consists of fewer branches
in the skeleton. However, areas like parking lots are wider and asymmetric. So, the skeletons of
such objects have higher number of branches. We use the ratio of Area to Branch points as the
indicator to discriminate between road/non-road segments. We set the threshold to 0.0025 based on
the observation of various road segments in the test images.

3.3. Stage 3: Completion of Road Network

The final stage consists of the process to ensure that all road segments are connected in a network.
It makes use of end points of detected road segments as nodes, and defines a way to connect disjoint
segments to form a complete road network.The building blocks of our road network are the road segments
after post-processing which removes artifacts and smooths the edges of the road segments. Often, there is
a main road and other arterial roads that connect to the main road resulting in a network. Our working
hypothesis is thus to start from a main segment and then try to connect this large segment with other
smaller unconnected segments (i.e., new finds).

A single segment consists of multiple branch points which are obtained after performing the thinning
process of the segments. We refer the branch points of the segments as ‘nodes’ from here onward.
And within each segment, we further rank the nodes in that segment based on a calculated cost factor
known as ‘minimum feature value cost’ obtained from detected disturbances between the nodes belonging
to different unconnected segments. We identify these disturbances as distance, color variations and
noise. These are the characteristic features that are used in road network modeling to arrive at a complete
road network.
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1. Distance: In a segment, we assign each node, a Euclidean distance cost based on its nearest neighbors
distance to the nodes belonging to the unconnected segments. Here, the node with the smallest cost
based on distance is the one that is likely to get connected to another node in the other unconnected
segment, thus linking the two segments together.

2. Color-segments: This is second type of disturbance. It represents segments (obtained from SLIC image
segmentation process) on a straight path between the two nodes belonging to different segments.

3. Noise: This is the last type of disturbance which is defined as the number of edges detected between
the two nodes belonging to the different segments. We identify the edges between the nodes using
edge detection procedure on a straight path between the two nodes.

Here, we proceed with a note that the more the disturbances ( noise or distance or color-segments)
between nodes belonging to two disjoint segments, the less likely there is a path between them.
The minimum feature value of each node (x ε Segment ‘X’) can then be defined as the problem of finding
the values with the minimum cost which can be achieved in near polynomial-time using Equation (1).

minimumFeatureValueCostxi ,yj = minimize(Distance(xi ,yj)
+ Noise(xi ,yj)

+ Color(xi ,yj)
) (1)

where, xi and yj is the associated link between nodes ‘xi’ of segments ‘X’, ∀ nodes ‘yj’ of another
disconnected segment ‘Y’.

A commonly used criteria for building road networks between nodes of the segments is the distance.
In the absence of extra disturbances (noise and color variation), the path costs would simply be distance
value, calculated from the associated geometric distance. However, in the presence of all the other
disturbances; spectral, geometric and topological features are combined to produce a single measure
known as minimum feature value cost. We connect the nodes belonging to two different segments based
on the minimum feature value calculated using Equation (1). The following povides and example for the
network generation process:

Consider an example consisting of four road segments, as shown in Figure 4a. We first define the
nodes by extracting the nodes in each segment with the help of end points/branch points of the skeleton
of the road segments, as shown in Figure 4b. Once, we extract the nodes, we look at each node within a
segment and associate that node with a cost value, which is based on minimum distance from that node to
the other node in the unconnected segment, as shown in Figure 5a.

(a) (b)

Figure 4. Illustration of nodes in Road Segments. (a) Example of road segments detected by machine
learning approach; (b) Skeleton of the road segment after thinning process with nodes as the end/branch
points, where star denotes the nodes represented by alphabets.

Then, we change our focus from ‘cost of nodes’ within a segment towards the cost of ‘segment’ as a
whole, where we consider the minimum cost of each segment represented by single node, as shown in
Figure 5b. Then in each segment, we rank nodes based on Horton ordering which provides the ranking
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of the nodes that are likely to get connected as shown in Figure 6. If a higher ranked node is already
connected, then the second highest node gets the probability of the connection in that segment.

Finally, we look to connect the segments such that each unconnected segment gets connected to
form our road network. Therefore, first we consider segment A where the highest probable node ‘a’ gets
connected to node ‘e’ based on the cost value (in reality, we consider the cost defined by distance, noise
and color variation). Then based on Horton order, we look to connect between either node ‘f’ to ‘l’ or from
‘e’ to ‘k’ which is selected randomly (let us say the selection is from node ‘f’ to ‘l’ ).

Then we move to segment C, where connection between node ‘e’ to ‘k’ takes place. Lastly, we
move to component D, where we connect node ‘i’ to node ‘c’. We follow an iterative process, so that
each unconnected segments gets a chance to get connected until all segments are connected (as shown
in Figure 7.

(a) (b)

Figure 5. Cost associated with nodes and segments. (a) Minimum cost associated with each node based on
distance; (b) Minimum cost of each segment.

Figure 6. Ranking of the nodes within each segment based on Horton Order.

Figure 7. Connection of the segments based on minimum feature value.
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4. Experimental Data and Setup

4.1. Datasets

In this experiment, we have used two datasets, namely, (i) Abu Dhabi dataset and (ii)
Massachusetts dataset.

4.1.1. Abu Dhabi Dataset

Abu Dhabi dataset includes the test data images acquired in 2014 over Abu Dhabi, United Arab
Emirates by the WorldView-2 satellite with 0.46 m ground sampling distance for panchromatic and 1.84 m
for multispectral images. Images are composed of eight multispectral bands (Coastal, Blue, Green, Yellow,
Red, Red Edge, NIR 1, and NIR 2) with a radiometric resolution of 11 bits per pixel. The used test
images are shown in Figure 8. All the multi-spectral images are pan-sharpened with Gram-Schmidt
approach [35] using Panchromatic images to create higher resolution images which helps to enhance the
shape of the objects in color images. The assessment of our proposed approach is performed over 5 test
images (each image has a size of 1200 × 1200 pixels) which differ in the width of the road and the noise
present on the road. The ground truth of the actual road network in each test image is manually traced by
the authors in a very careful manner before applying our method to the image in order to avoid any bias.

4.1.2. Massachusetts Dataset

Massachusetts dataset [36] consist of 1171 aerial images of the Massachusetts state with images
having a size of 1500 × 1500 pixels and consisting of urban, suburban and rural areas covering an
area of 2.25 square kilometers. We have randomly selected over 50 contrasting images to perform
comparison analysis.

4.2. Experimental Setup

All the weights assigned for CNN framework are initialized with the value of ‘0.1’ and the network is
trained using Adam optimizer with a learning rate ‘0.1’ [37]. Here, we decided to stick with context size of
‘8 × 8’ as it provided with better segment outputs in comparison to other context sizes of ‘16 × 16’ across
several test images.

The output obtained from CNN is available in both ‘8 × 8’ patch size format as well as probabilistic
value at a pixel level (i.e., probability of pixel representing road). Here, with rigorous observation over
several sample patches, a threshold of 0.90 is chosen and then used at the patch level to get the final output
from CNN framework (i.e., we treat a patch as road only if it contains more than 1/4 of its constituent
pixels’ value to be equal or greater than 0.90). With the use of 0.90 as a threshold value, noise is reduced to
a great extent. Then, the buildings from the output are removed as explained in Section 3.2.2. We then
perform morphological opening and closing using a square structuring element of size ‘5 × 5’ to further
smooth the result. To remove other occlusions such as non-road segments, analysis of branch points to
its segment area is performed. By comparing the ratio of count of end points to its object’s area, we were
able to separate out the non-road segments from actual road segments with a threshold value of 0.0025
obtained by analysis of road and non-road segments in test images.

In the Massachusetts data, the process of post-processing stage is limited because of availability of
only 3 bands (i.e., RGB bands) in an image. Hence, only the branch points analysis is used to remove
non-road segments. The same threshold value of 0.0025 is chosen here as well and can be considered as
general threshold for such data.
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Detection Performance Measures

Pixel-based performance measures such as accuracy, precision (correctness), recall (completeness),
and F1-score are determined to assess the quality of the results. A false positive (FP) is defined as an “over
detection” where an actual non-road pixel is detected as a road pixel by our method. A false negative (FN)
is defined as an “under detection” where an actual road pixel is left out as a non-road one by our method.
A true positive (TP) (true negative (TN) respectively) means that an actual road as well as non-road pixels
are correctly identified.

Precision (Correctness) =
TP

TP + FP
(2)

Recall (Completeness) =
TP

TP + FN
(3)

Quality =
TP

TP + FP + FN
(4)

F1-score =
2·TP

2·TP + FP + FN
(5)

5. Experimental Results and Discussions

5.1. Results of CNN Plus Post-Processing

Figures 9 and 10 shows the output obtained from CNN. Figures 11 and 12 shows the branch/end
points in detected non-road and road segments respectively. We performed segment-wise analysis to
distinguish between these road and non-road segments based on the branch points constituting in the
skeletonized version of the investigating segment as shown in Figure 13 and figured out that a cutoff
threshold value of 0.0025, which is the ratio of the number of branch points to the total area covered by
that segment. But in the process, we also see few parking lots as roads as these parking lot segments were
connected to the road guided by VGI. The output of building identification can be seen in the Figure 14
while Figure 15 shows the output with removal of vegetation and shadows. The Figures 16 and 17 shows
the output after the complete post-processing step.

The Figures 18b and 19 show the comparison of output obtained after all the post-processing steps
from CNN against the ground truth. In the Figure 18, we are able to show the newly obtained segments
which do not exist on the existing ground truth developed with reference to VGI. More importantly, we
are also able to exclude the road segments that do not exist but are shown in VGI (as shown in Figure 18a
highlighted by a black oval shape over a dotted line). In the approach using VGI and segmentation,
we were unable to update road segments because of the traversing in the presence of outdated VGI.
In Figures 18b and 19, pink color shows the new road segments, green color shows the missed roads while
white color shows compliance with the ground truth. Thus, with supervised learning approach like CNN,
we are able to detect new roads as well as remove non-existing roads.
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Figure 8. Satellite test images: (i) Image 1, (ii) Image 2, (iii) Image 3, and (iv) Image 4.

Figure 9. Output of images from CNN: (i) Image 1, (ii) Image 2, (iii) Image 3, and (iv) Image 4.
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Figure 10. Output of Image 5: (a) CNN Output, (b) Output of VGI overlayed on top of CNN output; pink
along with white color indicates VGI output, and (c) Input for post-processing obtained after a removal of
VGI output from CNN output.

Figure 11. Branch points in the skeleton of non-road segment samples.

Figure 12. Branch points in the skeleton of road segment samples.
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Figure 13. Analysis of ratio of the number of branch points to the area of the extracted segment to determine
the road segments.

Figure 14. Buildings detected in Image 5 using the segmentation approach [34].

Figure 15. Output of Image 5 with removal of vegetation, shadows, and buildings (i.e., after partial
post-processing).
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Figure 16. Output of Image 5 after complete post-processing.

Figure 17. Output after post-processing in other 4 images: (a) Image 1, (b) Image 2, (c) Image 3, and
(d) Image 4.
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Figure 18. For Image 1: (a) Comparison of output of VGI-only [34] against ground truth (outdated VGI
portion highlighted by black oval shape) and (b) Comparison of output of CNN against ground truth.

Figure 19. Comparison of output of CNN against ground truth for: (a) Image 2, (b) Image 5, (c) Image 3,
and (d) Image 4.
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Figure 20. Output of road extraction using the approach of Li et al. [38] with a probability map; (a) Image 1,
(b) Image 2, (c) Image 3, and (d) Image 5.

5.2. Results of Road Network Completion

One of the major problems for road extraction, especially for those by supervised learning techniques,
is that it results in the extraction of road segments that are often disjointed as can be seen from the output
of Stage 2 of our approach as well as the approach used by Li et al. [38] (as shown in Figure 20). Therefore,
there is a need for further processing in order to have a complete road network by properly defining the
ways to connect those disjoint segments. We makes use of end points of detected road segments as nodes
(as shown in Figure 21), and defines a way to connect disjoint segments to form a complete road network.

Figure 22 shows the features (i.e., noise, segments, and distance) by counting the number of particular
features whose sum gives a cost value, the one having the least cost value between the nodes of
unconnected segments is used to connect the nodes between those segments. The nodes between the
segments that are likely to get connected can be seen by the lines as shown in Figure 23a. The grayed region
in the Figure 23 shows the probability of connection to the other segment. The grayed region can represent
vegetation, shadows, buildings, roads or combination of any of these mentioned objects. Since, vegetation
and shadows can appear in the road as noises, we may need to consider both vegetation and shadows if
they are lying underneath the dotted line, before performing the connection of the segments. Besides that,
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we may consider other dotted line as roads only if they are predicted as road (with at least a probability
of more than 0.4) before post-processing step from the output of CNN. Table 1 shows comparison of the
results before and after applying the proposed approach over the Abu Dhabi test images, which shows
improvement. The use of proposed approach is able to detect newly emerged road segments which is not
available in cases with outdated VGI, which can be seen more prominently based on Figure 18. The output
of proposed approach in Massachusetts dataset can be seen in Figure 24.

Table 1. Performance evaluation in different test images compared to the results of our previous first stage
approach [1], i.e., input for CNN against output of proposed approach.

First Stage Output Output of Proposed Approach

Measure Img1 Img2 Img3 Img4 Img5 Img1 Img2 Img3 Img4 Img5
Precision 0.84 0.79 0.87 0.88 0.84 0.86 0.85 0.89 0.96 0.87
Recall 0.77 0.88 0.70 0.87 0.83 0.94 0.92 0.92 0.96 0.96
Quality 0.87 0.81 0.94 0.94 0.91 0.94 0.84 0.96 0.98 0.97
F1-score 0.81 0.83 0.88 0.90 0.85 0.88 0.87 0.90 0.95 0.91

Figure 21. (Top) Image 5 with disjoint road segments; (Bottom) Probable nodes in road segments for
completing connection.
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Figure 22. Features considered to connect the nodes: (a) Edges detected on Image 5 which acts as noise
feature and (b) SLIC segmentation on Image 5.

Figure 23. Road network formation in Image 5 using feature of distance, segments, and noise: (a) Red
line represents probable connection between segments and (b) Road network formation with probable
underlying connecting segments.
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5.3. Comparison with Existing Methods

Figure 20 shows the probability map of road extraction using Li et al.’s approach [38] for our
Abu Dhabi test images. We can observe that it is unable to detect entire road segments with a varying
probability threshold. This shows that without the presence of VGI information, the detection of road in
Abu Dhabi dataset becomes difficult, since a portion of road at times tends to be covered up with blown
away sand. Table 2 provides the comparison of different approaches in the test dataset on the basis of
correctness. Our proposed approach tends to out-perform other methods as the input consisting of VGI
result forms a solid base for the complete road extraction.

Figure 25 shows the comparison of the output using different methods in a part of Massachusetts
data. The output clearly shows that the use of the analysis of branch points approach in a segment helps to
distinguish it between non-roads and road segments. In this Figure 25, the other methods tends to predict
non-road segments as roads and at times also, fails to predict the proper width of the road, which our
approach does it with better estimation.

Figure 24. Demonstration in a portion of Massachusetts dataset: (a) Ground truth overlayed on image,
(b) Output of VGI approach fed into CNN, (c) CNN results with probable road segments (shown in
gray color), and (d) Comparison of output of proposed method (after removal of non-road segments) to
ground truth.
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Figure 25. Comparison of outputs: (a) Part of Massachusetts data shown in Fig. with its ground truth,
(b) Output using method of Sujatha and Selvathi [39], (c) Output using method of Alshehhi et al. [31],
and (d) Output of proposed method.

Table 2. Comparison with other approaches in Abu Dhabi and Massachusetts datasets (** Experiment
might have been performed in different images of the same dataset, N/A means data was not reported.).

Datasets Abu Dhabi Massachusetts

Methods/Measures Correctness (%) Completeness (%) Correctness (%)

Maurya et al. [40] N/A 82.3 ± 4.7 70.5 ± 4.3
Sujatha and Selvathi [39] N/A 83.5 ± 4.3 76.6 ± 4.5
Mnih [32] 78.30 N/A 90.1
Shu [41] 78.2 N/A 87.1
Li et al. [38] 72.25 N/A N/A
** Saito et al. [30] 79.00 90.5 N/A
Alshehhi et al. [31] 80.9 92.5 ± 3.2 91.7 ± 3.0
Proposed method 88.61 90.8 ± 1.9 94.4 ± 3.1

6. Conclusions and Future Works

In this work, a multi-stage approach is employed where available VGI information is used, which
itself is incomplete in the first stage to extract complete road segments. In the second stage, these segments
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are then used as training data for a CNN which uses multi-layer convolutions to extract the probable
road segments. Furthermore, a detailed post-processing approach is employed to improve the accuracy.
In the third stage, road fragments that are potentially continuous are connected using a graph-theoretic
approach. This method is suitable for updating the global road network, which involves adding new
road regions and amending the regions of the existing ones. The experimental results on two challenging
datasets demonstrate the effectiveness of the proposed approach and comparison with the existing
state-of-the-art methods.

As for the future work, we plan to improve the post-processing and the segment connection
mechanisms by studying the failures in the current approaches. For example, the angle of the connecting
segments can be considered with respect to its end points, to decide whether two segments can be
connected or not. This particular case can be viewed in Figure 17c, where two parallel roads in the
presence of shadows detected, should not be getting connected. Thus, by considering the angle between
the connecting segments, it may prove fruitful while connecting the segments to deal with the scenario of
segments from multiple parallel roads.
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