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Abstract: Automatic building extraction using a single data type, either 2D remotely-sensed images
or light detection and ranging 3D point clouds, remains insufficient to accurately delineate building
outlines for automatic mapping, despite active research in this area and the significant progress which
has been achieved in the past decade. This paper presents an effective approach to extracting buildings
from Unmanned Aerial Vehicle (UAV) images through the incorporation of superpixel segmentation
and semantic recognition. A framework for building extraction is constructed by jointly using an
improved Simple Linear Iterative Clustering (SLIC) algorithm and Multiscale Siamese Convolutional
Networks (MSCNs). The SLIC algorithm, improved by additionally imposing a digital surface
model for superpixel segmentation, namely 6D-SLIC, is suited for building boundary detection
under building and image backgrounds with similar radiometric signatures. The proposed MSCNs,
including a feature learning network and a binary decision network, are used to automatically learn
a multiscale hierarchical feature representation and detect building objects under various complex
backgrounds. In addition, a gamma-transform green leaf index is proposed to truncate vegetation
superpixels for further processing to improve the robustness and efficiency of building detection,
the Douglas–Peucker algorithm and iterative optimization are used to eliminate jagged details
generated from small structures as a result of superpixel segmentation. In the experiments, the UAV
datasets, including many buildings in urban and rural areas with irregular shapes and different heights
and that are obscured by trees, are collected to evaluate the proposed method. The experimental
results based on the qualitative and quantitative measures confirm the effectiveness and high accuracy
of the proposed framework relative to the digitized results. The proposed framework performs better
than state-of-the-art building extraction methods, given its higher values of recall, precision, and
intersection over Union (IoU).

Keywords: building extraction; simple linear iterative clustering (SLIC); multiscale Siamese
convolutional networks (MSCNs); binary decision network; unmanned aerial vehicle (UAV)

1. Introduction

Building extraction based on remote sensing data is an effective technique to automatically
delineate building outlines; it has been widely studied for decades in the fields of photogrammetry and
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remote sensing, and is extensively used in various applications, including urban planning, cartographic
mapping, and land use analysis [1,2]. The significant progress in sensors and operating platforms has
enabled us to acquire remote sensing images and 3D point clouds from cameras or Light Detection
And Ranging (LiDAR) equipped in various platforms (e.g., satellite, aerial, and Unmanned Aerial
Vehicle (UAV) platforms); thus, the methods based on images and point clouds are commonly used to
extract buildings [3–5].

Building extraction can be broadly divided into three categories according to data source: 2D
image-based methods, 3D point cloud-based methods, and 2D and 3D information hybrid methods. 2D
image-based building extraction consists of two stages, namely, building segmentation and regularization.
Many approaches have been proposed in recent years to extract buildings through very-high-resolution
2D imagery, including the active contour model-based method [6], multidirectional and multiscale
morphological index-based method [7], combined binary filtering and region growing method [8],
object-based method [9], dense attention network-based method [10], and boundary-regulated
network-based method [2]. Although these methods have achieved important advancements, a single
cue from 2D images remains insufficient to extract buildings under the complex backgrounds of
images (e.g., illumination, shadow, occlusion, geometric deformation, and quality degradation), which
cause inevitable obstacles in the identification and delineation of building outlines under different
circumstances. Consequently, differentiating building and non-building objects that carry similar
radiometric signatures is difficult by using spectral information alone. Existing methods focus more on
building qualitative detection than accurate outline extraction, thus requiring further improvement in
building contour extraction to satisfy various applications, such as automatic mapping and building
change detection.

Unlike 2D remotely-sensed imagery, LiDAR data can provide the 3D information of ground objects,
and are especially useful in distinguishing building and non-building objects by height variation.
Various approaches based on LiDAR data, such as polyhedral building roof segmentation and
reconstruction [11], building roof segmentation using the random sample consensus algorithm [12,13]
and global optimization [14], and automatic building extraction using point- and grid-based features [15],
have been proposed for building extraction. However, the utilization of height information alone
may fail to distinguish building and non-building objects with similar heights, such as houses and
surrounding trees with smooth canopies. The accuracy of building extraction often relies on the density
of 3D point clouds, and the outline of poor-quality points at the edge of buildings is challenging
to accurately delineate. Moreover, most LiDAR-based methods may only be applicable to urban
building extraction and may be unsuitable for extracting rural buildings with topographic relief
because of the difficulty in giving a certain height threshold to truncate non-building objects. Aside
from these limitations, automatic building extraction is challenging in the contexts of complex shape,
occlusion, and size. Therefore, automatically extracting buildings by using a single data type, either
2D remotely-sensed images or 3D LiDAR point clouds, remains insufficient.

Many approaches that combine spectral and height information have been proposed to overcome
the shortcomings of building extraction using a single data type. In [16,17], Normalized Difference
Vegetation Index (NDVI) and 3D LiDAR point clouds were used to eliminate vegetation and generate
a building mask, and height and area thresholds were given to exclude other low-height objects and
small buildings. A method based on LiDAR point clouds and orthoimage has been proposed to
delineate the boundaries of buildings, which are then regulated by using image lines [1]. However,
compared with satellite and aerial imagery, LiDAR data are actually difficult to access due to the high
cost involved [5]. Tian et al. [18] proposed an approach to building detection based on 2D images and
Digital Surface Model (DSM); unlike 3D LiDAR point clouds, height information is generated from
stereo imagery by the dense matching algorithm. Moreover, the combination of 2D UAV orthoimages
and image-derived 3D point clouds has been used for building extraction on the basis of low-cost and
high-flexibility UAV photogrammetry and remote sensing [5,19]. Most civil UAVs only acquire remote
sensing images with RGB channels and do not include multispectral bands (e.g., near-infrared bands),
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that is, eliminating vegetation by the NDVI is not feasible. As an alternative method, RGB-based
Multidimensional Feature Vector (MFV) and Support Vector Machine (SVM) classifiers were integrated
by Dai et al. [5] to eliminate vegetation; in this method, buildings are extracted by using a certain height
threshold (e.g., 2.5 m), and building outlines are regularized by jointly using a line-growing algorithm
and a w-k-means clustering algorithm. However, this method is only useful for extracting buildings
with linear and perpendicular edges and not applicable to extract buildings with irregular shapes.

On the basis of the advantages of UAV photogrammetry and remote sensing, this study concentrates
on building segmentation and outline regularization based on UAV orthoimages and image-derived
point clouds. First, image segmentation is implemented to cluster all pixels of UAV orthoimages;
SLIC is a popular algorithm for segmenting superpixels and does not require much computational
cost [20], but it easily confuses building and image backgrounds with similar radiometric signatures.
We accordingly exploit a novel 6D simple linear iterative clustering (6D-SLIC) algorithm for superpixel
segmentation by additionally imposing DSM that is generated from image-derived 3D point clouds;
DSM helps to distinguish objects from different heights (e.g., building roof and road). Second,
the vegetation superpixels are truncated by using a Gamma-transform Green Leaf Index (GGLI). Then,
the boundaries of non-vegetation objects are shaped by merging the superpixels with approximately
equal heights. Inspired by the progresses made in deep learning in recent years, the deep convolutional
neural network is one of the most popular and successful deep networks for image processing because
it can work efficiently under various complex backgrounds [21–26] and is suitable for identifying
building objects under different circumstances. The Fully Convolutional Network (FCN) [27] is
a specific type of deep network that is used for image segmentation and building extraction [28].
U-shaped convolutional Networks (U-Nets) are extended for image segmentation [29] and building
extraction [30]. In this study, buildings are detected by Multiscale Siamese Convolutional Networks
(MSCNs), including a feature learning network and a binary decision network, which are used to
automatically learn a multiscale hierarchical feature representation and detect building objects. Finally,
the building outlines are regulated by the Douglas–Peucker and iterative optimization algorithms.

The main contribution of this study is to propose a method for building extraction that is suitable
for UAV orthoimage and image-derived point clouds. In this method, the improved SLIC algorithm for
UAV image segmentation, which helps accurately delineate building boundaries under building and
image backgrounds with similar radiometric signatures. MSCNs are used to improve the performance
of building detection under various complex backgrounds, and the Douglas–Peucker algorithm and
iterative optimization are coupled to eliminate jagged details generated from small structures as a
result of superpixel segmentation.

The remainder of this paper is organized as follows. Section 2 describes the details of the
proposed method for building extraction. Section 3 presents the comparative experimental results in
combination with a detailed analysis and discussion. Section 4 concludes this paper and discusses
possible future work.

2. Proposed Method

The proposed framework for building extraction consists of three stages, as presented in Figure 1.
In the segmentation stage, 6D-SLIC is used to segment superpixels from UAV orthoimages and DSM
(generated from image-derived point clouds), and the initial outlines of ground objects are shaped by
merging the superpixels. In the building detection stage, a GGLI is used to eliminate vegetation, and
the buildings are detected by using the proposed MSCNs (including a feature learning network for
deep feature representation and a binary network for building detection). In the regularization stage,
the building boundaries are decimated and simplified by removing insignificant vertices using the
Douglas–Peucker algorithm. At the same time, the building outlines are regulated by using a proposed
iterative optimization algorithm. Finally, the building outlines are validated and evaluated.
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Figure 1. The proposed framework for building extraction.

2.1. D-SLIC-Based Superpixel Segmentation

Image segmentation is a commonly used and powerful technique for delineating the boundaries of
ground objects. It is also a popular topic in the fields of computer vision and remote sensing. The classical
segmentation algorithms for remotely-sensed imagery, such as quadtree-based segmentation [31],
watershed segmentation [32], and Multi-Resolution Segmentation (MRS) [33], often partition an image
into relatively homogeneous regions generally using spectral and spatial information while rarely
introducing additional information to assist segmentation (e.g., height information) despite various
improved methods for finding solutions to some image datasets [9,34–36]. Therefore, the commonly
used segmentation methods that are highly dependent on spectral information cannot still break
the bottleneck, i.e., sensitivity to illumination, occlusion, quality degradation, and various complex
backgrounds. Especially for UAV remote sensing images, a centimeter-level ground resolution provides
high-definition details and geometric structural information of ground objects but also generates
disturbances, which pose a great challenge in accurately delineating boundaries.

Examples of four types of buildings are given in Figure 2a. The best results of segmentation
obtained from classical methods are exhibited in Figure 2b,c; such results are achieved through multiple
tests to find the optimal parameters (e.g., scale: 300, shape: 0.4, compactness: 0.8 in MRS). MRS
performs better than quadtree-based methods do, but the building boundaries under MRS are still
incomplete or confused with backgrounds relative to ground-truth outlines (Figure 2d) because the
spectral difference is the insignificant gap at building edges. The accurate outlines of buildings are
difficult to delineate from the spectral and spatial information of UAV images. Many strategies can be
used to merge the segmented regions to the entities, but finding a generic rule to achieve a perfect
solution in a single data source is actually difficult. Most classical algorithms (e.g., MRS) are time and
memory consuming when used to segment large remotely-sensed imagery, because they use a pixel
grid for the initial object representation [37].
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Figure 2. Comparison of building extraction from UAV images using two classical segmentation
methods. Column (a) includes four types of buildings in urban and rural areas. Columns (b,c) are the
results of quadtree and MRS, respectively; the red lines are the outlines of ground objects. Column
(d) is the ground-truth outlines corresponding to (a), with the red regions denoting the buildings.

Many deep learning-based algorithms, such as multiscale convolutional network [38], deep
convolutional encoder–decoder [39], and FCN [40], have been proposed for the semantic segmentation
of natural images or computer vision applications, and prominent progress has been made. However,
deep learning-based methods dramatically increase computational time and memory and are thus
inefficient for the fast segmentation of large UAV orthoimages. In the current study, a 6D-SLIC algorithm
is used to extract initial building outlines by joining height information. SLIC is a state-of-the-art
algorithm for segmenting superpixels that does not require much computational resource to achieve
effective and efficient segmentation.

In the 6D-SLIC algorithm, superpixels are generated by clustering pixels according to their color
similarity and proximity in the 2D image plane space; in this way, the proposed algorithm is similar to
the SLIC algorithm [20]. Compared to the five-dimensional (5D) space [l, a, b, x, y] in the SLIC algorithm,
the height information obtained from image-derived 3D point clouds is then used to cluster pixels.
Hence, a 6D space [l, a, b, x, y, z] is used to generate compact, nearly uniform superpixels, where [l, a, b]
is defined by the pixel color vector of the CIELAB color space and [x, y, z] is the 3D coordinate of a pixel.
The pixels in the CIELAB color space are considered perceptually uniform for small color distances,
and height information z is used to cluster the pixels into the building area with approximately
equal heights.
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Unlike that in the SLIC algorithm, the desired number of approximately equally sized superpixels
K is indirectly given in the 6D-SLIC algorithm but is computed on the basis of the minimum area Amin,
as follows:

K =
N ·R2

Amin
, (1)

where N is the number of pixels in an image and R denotes the ground resolution (unit: m). Amin

is commonly given as 10 m2 with reference to the minimum area of buildings in The literature [5],
whereas 5 m2 is given to consider small buildings in the current study; each superpixel approximately
contains N/K pixels, and a superpixel center would exist for roughly equally sized superpixels at every
grid interval S =

√
N/K. K superpixel cluster centers Ck = [lk, ak, bk, xk, yk, zk] with k = [1, K] at regular

grid intervals S are selected. Similar to the SLIC algorithm, the search area of the pixels associated with
each cluster Ck is assumed to be within 2S× 2S of the 2D image plane space. The Euclidean distance of
the CIELAB color space and height are used to define pixel similarity, which is useful in clustering
pixels for small distances. The distance measure DS of the proposed 6D-SLIC algorithm is defined
as follows:

DS = α · dlab + (1−α) · dh +
m
S

dxy, (2)

where DS is the sum of the lab distance dlab, height difference dh, and the 2D image plane distance dxy

normalized by the grid interval S; α represents the weight to emphasize the contribution of dlab and dh,
and it is the SLIC distance measure when α is set as 1, the weight α can be determined by selecting
several building samples from the segmented data and performing multiple trials to obtain the optimal
superpixel segmentation effect; and m is a variable that can be given to control the compactness of a
superpixel. The distances of di,Ck

lab , di,Ck
h , and di,Ck

xy between a pixel i (i ∈ R2S×2S) and the cluster center Ck
can be computed as follows:

di,Ck
lab =

√
(lk − li)

2 + (ak − ai)
2 + (bk − bi)

2

di,Ck
xy =

√
(xk − xi)

2 + (yk − yi)
2

di,Ck
h = |zk − zi|.

(3)

As a result of the high-definition details of UAV images, noisy pixels may be considerable and
should be avoided in the selection of a cluster center. A 3D gradient is proposed to control the sampling
of K cluster centers and move them to the lowest 3D gradient position in a 3×3 neighborhood to avoid
placing a cluster center at the edge of buildings. The 3D gradients G(x, y, z) are computed as

G(x, y, z) = GI + Gz, (4)

where GI and Gz denote the gradients of image intensity and height difference, respectively. The two
gradients can be computed as

GI(x, y) = ‖I(x + 1, y) − I(x− 1, y)‖2 + ‖I(x, y + 1) − I(x, y− 1)‖2

Gz(x, y) = ‖DSM(x + 1, y) −DSM(x− 1, y)‖2 + ‖DSM(x, y + 1) −DSM(x, y− 1)‖2,
(5)

where I(x, y) and DSM(x, y) represent the lab vector and height corresponding to the pixel at position
(x, y), respectively; and ‖.‖ denotes the L2 norm. DSM is generated from image-derived 3D point clouds.



Remote Sens. 2019, 11, 1040 7 of 33

All the pixels of the UAV images are associated with the nearest cluster center on the basis of the
minimum distance of DS. The cluster center Ck is then updated by

lk =

nk∑
i=1,i∈RCk

li,k

nk
, ak =

nk∑
i=1,i∈RCk

ai,k

nk
, bk =

nk∑
i=1,i∈RCk

bi,k

nk

xk =

nk∑
i=1,i∈RCk

xi,k

nk
, yk =

nk∑
i=1,i∈RCk

yi,k

nk
, zk =

nk∑
i=1,i∈RCk

zi,k

nk
,

(6)

where nk is the number of pixels that belong to the cluster center Ck. The new cluster center should be
moved to the lowest 3D gradient position again on the basis of the values of Equations (4) and (5).
The processes of associating all pixels to the nearest cluster center and recomputing the cluster center
are iteratively repeated until the convergence of distance DS.

After all pixels are clustered into the nearest cluster center, a strategy of enforcing connectivity is
employed to remove the small disjoint segments and merge the segments in terms of the approximately
equal height in each cluster. Therefore, the initial boundaries of ground objects are shaped by connecting
the segments in the vicinity. This definition satisfies the constraint in Equation (7), and clusters i and j
are regarded to belong to the same ground object.∣∣∣∣mean_z(Ci) −mean_z

(
C j

)∣∣∣∣ < z_threshold, (7)

where mean_z represents the average operation of height and z_threshold is a given height threshold,
which is set to 2.5 m in this study.

We use an efficient and effective superpixel segmentation on the basis of the SLIC algorithm, which
is regarded as a simple and efficient approach that is suitable for large-image segmentation. 3D space
coordinates, rather than a 2D image plane space, are selected as a distance measure to cluster all pixels
of an image into superpixels. The algorithm is expressed below, and the comparisons of superpixel
segmentation based on the SLIC and 6D-SLIC algorithms are shown in Figure 3. The building areas
are identified by vegetation removal and Siamese-typed networks (described in Sections 2.2 and 2.3),
except for the regions merging on the basis of height similarity.

Algorithm 1: 6D-SLIC segmentation

Input: 2D image I and DSM.
Parameters: minimum area Amin, ground resolution R, compactness m, weight α, maximum number of
iterations max_iters, number of iterations n_iters, minimum distance min_dist.
Compute approximately equally sized superpixels K← N·R2

Amin
.

Compute every grid interval S←
√

N/K .
Initialize each cluster center Ck = [lk, ak, bk, xk, yk, zk]

T.
Perturb each cluster center in a 3×3 neighborhood to the lowest 3D gradient position.
repeat
for each cluster center Ck do
Assign the pixels to Ck based on a new distance measure (Equation (2)).
end for
Update all cluster centers based on Equations (5) and (6).
Compute residual error between the previous centers and recomputed centers e←

∣∣∣Dprev
S −Dcur

S

∣∣∣ .
Compute n_iters← n_iters + 1 .
until e < min_dist or n_iters > max_iters
Enforcing connectivity.
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Figure 3 depicts that the boundaries of the superpixels at the building edges obtained from
the proposed 6D-SLIC algorithm are closer to the true boundaries of buildings than those obtained
from the SLIC algorithm are. Additionally, other four state-of-the-art methods (e.g., Entropy Rate
Superpixels (ERS) [41], Superpixels Extracted via Energy-Driven Sampling (SEEDS) [42], preemptive
SLIC (preSLIC) [43], and Linear Spectral Clustering (LSC) [44]) are used to compare with the 6D-SLIC
algorithm, as shown in Figure 4, the four methods do not perform better, and the 6D-SLIC algorithm
also shows more similar shapes to the ground-truth maps of the buildings. Moreover, the metrics,
e.g., standard boundary recall BR and under-segmentation error USE [45], are used to measure
the quality of boundaries between building over-segments and the ground-truth. From the visual
assessment and the statistical results of two quantitative metrics in Table 1, it can be inferred that the
6D-SLIC algorithm performs better than the SLIC algorithm and other four state-of-the-art methods do
due to the additional height information used for superpixel segmentation in the 3D space instead of a
2D image plane space.

Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 33 

 

Enforcing connectivity. 
Figure 3 depicts that the boundaries of the superpixels at the building edges obtained from the 

proposed 6D-SLIC algorithm are closer to the true boundaries of buildings than those obtained from 
the SLIC algorithm are. Additionally, other four state-of-the-art methods (e.g. Entropy Rate 
Superpixels (ERS) [41], Superpixels Extracted via Energy-Driven Sampling (SEEDS) [42], preemptive 
SLIC (preSLIC) [43], and Linear Spectral Clustering (LSC) [44]) are used to compare with the 
6D-SLIC algorithm, as shown in Figure 4, the four methods do not perform better, and the 6D-SLIC 
algorithm also shows more similar shapes to the ground-truth maps of the buildings. Moreover, the 
metrics, e.g. standard boundary recall BR  and under-segmentation error USE  [45], are used to 
measure the quality of boundaries between building over-segments and the ground-truth. From the 
visual assessment and the statistical results of two quantitative metrics in Table 1, it can be inferred 
that the 6D-SLIC algorithm performs better than the SLIC algorithm and other four state-of-the-art 
methods do due to the additional height information used for superpixel segmentation in the 3D 
space instead of a 2D image plane space. 

 
SLIC Initial building 3D point clouds 6D-SLIC Initial building 

  

  

  

  

(a) (b) (c) (d) (e) 

Figure 3. Comparison of building extraction using SLIC and 6D-SLIC algorithms from four building 
examples corresponding to Figure 2(a). Columns (a) and (d) are the superpixels obtained from the 
SLIC and 6D-SLIC algorithms, respectively. Columns (b) and (e) are the initial building areas that 
are shaped by merging superpixels on the basis of approximately equal heights. Column (c) shows 
the 3D point clouds of the four building examples. A high segmentation performance can be achieved 
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Figure 3. Comparison of building extraction using SLIC and 6D-SLIC algorithms from four building
examples corresponding to Figure 2a. Columns (a,d) are the superpixels obtained from the SLIC
and 6D-SLIC algorithms, respectively. Columns (b,e) are the initial building areas that are shaped
by merging superpixels on the basis of approximately equal heights. Column (c) shows the 3D point
clouds of the four building examples. A high segmentation performance can be achieved when the
weight α is set to 0.6.
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Figure 4. Building extraction using ERS, SEEDS, preSLIC, and LSC algorithms from four building
examples corresponding to Figure 2a. (a–d) include the superpixels and the corresponding initial
building areas obtained from the ERS, SEEDS, preSLIC, and LSC algorithms, respectively.

Table 1. BR and USE values of SLIC, ERS, SEEDS, preSLIC, LSC, and 6D-SLIC in the four images in
Figure 2a.

Dataset Metric SLIC ERS SEEDS preSLIC LSC 6D-SLIC

(1) BR 0.7487 0.7976 0.7161 0.8539 0.9039 0.9076
USE 0.0412 0.0640 0.0378 0.0450 0.0385 0.0231

(2) BR 0.7152 0.6419 0.7070 0.5769 0.8443 0.9286
USE 0.1038 0.1213 0.1027 0.1407 0.0654 0.0443

(3) BR 0.7323 0.8597 0.8608 0.8669 0.8912 0.9629
USE 0.0681 0.0415 0.0522 0.0539 0.0625 0.0311

(4) BR 0.7323 0.7918 0.8810 0.8410 0.9313 0.9795
USE 0.0712 0.0304 0.0413 0.0497 0.0395 0.0325

2.2. Vegetation Removal

In this study, height similarity is not immediately used to merge superpixels for generating
initial building boundaries after 6D-SLIC segmentation because the vegetation surrounding buildings
with similar heights may be classified as part of these buildings. An example is given in Figure 5.
The image-derived 3D point clouds show that the tree canopies have approximately equal heights
relative to the nearby buildings; therefore, the surrounding 3D vegetation points are the obstacle and
noise for building detection. Vegetation removal is used to truncate vegetation superpixels for further
processing to improve the robustness and efficiency of building detection.
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vegetation region. The definition satisfies the constraint in Equation (9), and the superpixel kC  is 
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Figure 5. Example to illustrate the vegetation surrounding a building with similar heights. (a–c) are
the orthoimage, 3D point clouds with true color, and 3D point clouds with rendering color, respectively.
(d–i) are the results of NGRDI, VARI, GLI, RI, ExG–ExR, and GGLI. The red lines denote the boundaries
of the superpixels.

The NDVI is commonly used to detect vegetation on the basis of near-infrared information, but it
is unavailable to 3D image-derived point clouds with true color (RGB) in most UAV remotely-sensed
imagery. Thus, many vegetation indices based on the RGB system are proposed, and they include
the normalized green–red difference index (NGRDI) [46], visible atmospherically resistant index
(VARI) [47], green leaf index (GLI) [48], ratio index (RI) [49], and excess green minus excess red
(ExG–ExR) [50]. Figure 4d–h show the extracted vegetation information of Figure 5a using the five
vegetation indices. GLI performs better than NGRDI, VARI, GLI, and ExG–ExR do. A suitable intensity
threshold is actually difficult to set to separate vegetation from the results of the vegetation index
calculation. In [5], a standard SVM classification and a priori training data were employed to extract
vegetation from an MFV, which was integrated by the five vegetation indices. However, the method
may not achieve a satisfying result when a priori training data are not representative, and the poor
vegetation indices also reduce the performance of vegetation extraction. Therefore, in this study,
a GGLI is created to extract vegetation by enhancing vegetation intensity and using a self-adaptive
threshold. The GGLI is defined as follows:

GGLI = 10γ ·
( 2G−R− B

2G + R + B

)γ
, (8)

where γ denotes the gamma value, which is set to 2.5 that is approximately estimated based on the
range of 0 to 255 of GGLI value in this study; and R, G, B are the three components of RGB color.
Figure 5i shows that the proposed GGLI performs better than the other five vegetation indices do.
When the number of pixels belonging to vegetation in the superpixel Ck is more than half of the number
of pixels in the superpixel Ck, then the superpixel Ck is considered a vegetation region. The definition
satisfies the constraint in Equation (9), and the superpixel Ck is classified into a vegetation region.

num
(
Ii; Ii ∈ v∩ i ∈ RCk

)
>

1
2
· num

(
Ii; i ∈ RCk

)
, (9)
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where num denotes the calculation operator of the number of pixels, Ii ∈ v denotes the pixel Ii belonging
to vegetation v, and RCk is the region of the superpixel Ck. The GGLI value of a pixel is more than
0.5 times the maximum GGLI value in the entire image, and the pixel is classified into vegetation.
Tests using UAV data, including two urban and two rural areas with different vegetation covers,
are conducted. Figure 6 shows the receiver operating characteristics (ROCs) of the five popular
indices and the proposed GGLI. The true positive rate TPR = TP/(TP + FN) and false positive rate
FPR = FP/(FP + TN) of vegetation are computed on the basis of the number of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN). Over 92.3% of vegetation can be
correctly extracted by the proposed GGLI, and the FPs are mainly caused by roads and bare land. Hence,
the proposed GGLI achieves the best performance in vegetation detection among all vegetation indices.
The vegetation superpixels can be effectively detected and removed with the proposed GGLI, and
non-vegetation ground objects are shaped by merging the superpixels on the basis of height similarity.
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Figure 6. Examples to illustrate the accuracy of vegetation detection by using different datasets. (a,b) are
the results of vegetation detection in two urban areas; (c,d) are the results of vegetation detection in
two rural areas.

2.3. Building Detection Using MSCNs

After the removal of vegetation superpixels, there still exist some non-building superpixels that
are meaningless for further delineation of building outlines and should thus be eliminated. Building
detection is commonly achieved by classification or recognition of ground objects, in which many
types of features, such as color, texture, and geometric structure, are used to directly or indirectly
represent building characteristics by feature descriptors. However, most manually designed features
remain insufficient to extract buildings from UAV images with high-definition details under various
complex backgrounds (e.g., shadow, occlusion, and geometric deformation).
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In this paper, we present MSCNs used in building recognition as feature representation using
a convolutional network can work efficiently under various complex backgrounds. We aim to learn
deep convolutional networks that can discriminate building and non-building ground objects by
2D UAV image and height information. In our case, the discriminative training of buildings does
not rely on labels of individual ground objects but on pairs of 2D UAV images and their height
information. Multiscale Siamese-typed architecture is suitable for achieving this goal due to three
reasons. First, MSCNs are capable of learning generic deep features, which are useful for making
predictions on unknown non-building class distributions even when few examples are available in
these new distributions. Second, MSCNs are easily trained using a standard optimization technique
on the basis of pairs sampled from 2D images and 3D height information. Third, the sizes of buildings
in UAV images vary from small neighborhoods to large regions containing hundreds of thousands of
pixels. The feature maps displayed in Figure 7 indicate that the small local structures of buildings
tend to respond to small convolutional filters, whereas the coarse structures tend to be extracted by
large filters. Thus, multiscale convolutional architecture is suitable to extract the detailed and coarse
structures of buildings.
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sizes, which are selected from the first layer of an MSCN model.

The architecture of the proposed MSCNs is shown in Figure 8, and it includes input, feature
learning networks, binary decision networks, and output. In this study, input patches are extracted
from the merged superpixels. The feature learning network consists of two streams of convolutional
and max-pooling layers, three convolutional layers are arranged for feature extraction in each stream,
and two max-pooling layers are inserted in between successive convolutional layers to reduce the
number of parameters and the computation in MSCNs. Batch normalization [51] is also inserted into
each convolutional layer before the activation of neurons. Three subconvolutional layers arranged
for the convolutional layers of Conv_x1, Conv_x2, Conv1, and Conv2 are to extract the feature from
multiscale space. The convolutional layers Conv1 and Conv2 in two streams share identical weights,
whereas Conv_x1 and Conv_x2 do not because of the different inputs of x1 and x2. The binary decision
network consists of two fully connected layers, and the outputs of MSCNs are predicted as 1 and 0
corresponding to building and non-building regions, respectively.
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Figure 8. Architecture of MSCNs. In (a), C(n, k, m) denotes the convolutional layer with n filters of
spatial size k× k of band number m. Each max-pooling layer with a max filter of size 2× 2 of stride 2 is
applied to downsample each feature map. F(n) denotes a fully connected layer with n output units.
ReLU represents the activation functions using the rectified linear unit σ(x) = max(0, x). As shown in
(b), x1 and x2 with same size denote the true-color RGB (m = 3) and height intensity (m = 1) patches,
respectively; the extents of x1 and x2 are defined on the basis of the external square and buffer of the
initial outline of a ground object, and x1 and x2 are resampled to a fixed size as input, e.g., a fixed size
of 127× 127 pixels used in this study.

In the proposed MSCNs, the output f l
j of the jth hidden vector in the lth layer via the operators of

linear transformation and activation can be expressed as

f l
j = σ(zl) = σ

 ∑
i∈Sl−1

f l−1
i ∗wl

i j,k + bl
j

, (10)

where f l−1
j is the ith hidden vector in the (l− 1)th layer; Sl−1 is the number of hidden vectors in the

(l− 1)th layer; w and b represent the weights (or convolution kernels with size k× k in the convolutional
layers) and biases, respectively; ∗ is the dot product (or convolution operator in the convolutional
layers); and σ(.) denotes the activation function. ReLU is applied to the feature learning and binary
decision networks, and sigmoid is used in the output of MSCNs. In this study, discriminative training
is prone to achieve the binary output of building and non-building probabilities, which are restricted
between 0 and 1. Hence, sigmoid function (σ(x) = 1

1+e−x ), instead of ReLU, is used to compute the
building and non-building probabilities of a ground object, and the global cost function is an alternative
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function of the hinge-based loss function with regard to sigmoid output. The proposed MSCNs are
trained in a supervised manner by minimizing the global cost function L.

L(w, b) =
1
n

n∑
i=1

(1
2

∥∥∥∥h
(
x(i)

)
− y(i)

∥∥∥∥2)
+

λ

2

nl−1∑
l=1

Sl∑
i=1

Sl+1∑
j=1

(
wl

ji,k

)2
, (11)

where h(x) denotes the predicted results of the output layer; y refers to the expected output values
(i.e., 0 and 1 in this study) given in a supervised manner; n and nl are the numbers of trained data
and layers, respectively; λ is a weight decay parameter; and Sl and Sl+1 are the numbers of hidden
vectors in layers l and l + 1, respectively. The optimization of the proposed MSCNs is achieved by
using the standard back-propagation algorithm based on stochastic gradient descent. The update rule
of weights and biases at epoch T can be written as

wl
i j,k = wl

i j,k + ∆wT,l
i j,k

∆wT,l
i j,k = −η

∂L(w,b)
∂wl

i j,k
+ µ∆wT−1,l

i j,k ,
(12)

bl
i = bl

i + ∆bT,l
i

∆bT,l
i = −η

∂L(w,b)
∂bl

i
+ µ∆bT−1,l

i , (13)

where η is the learning rate and µ is momentum. We let δl+1
i =

∂L(w,b)
∂zl+1

i
, and the partial derivatives with

respect to the weight and bias between the layer l and the successive layer l + 1 can be computed by

∂L(w, b)

∂wl
i j,k

=
∂L(w, b)

∂zl+1
i

∂zl+1
i

∂wl
i j,k

= δl+1
i

∂zl+1
i

∂wl
i j,k

, (14)

∂L(w, b)

∂bl
i

=
∂L(w, b)

∂zl+1
i

∂zl+1
i

∂bl
i

= δl+1
i

∂zl+1
i

∂bl
i

. (15)

The residual errors δnl
i and δl

i of the output layer and back propagation in the ith feature map of
the lth convolutional layer can be computed as

δ
nl
i =

∂L(w, b; x, y)

∂znl
i

= −
(
yi − f

(
znl

i

))
· f ′

(
znl

i

)
, (16)

δl
i =


Si+1∑
j=1

wl
jiδ

l+1
i

 · f ′
(
zl

i

)
. (17)

In this study, the two outputs of MSCNs are considered building probability p(b) and non-building
probability p(nb), which are used to define whether a non-vegetation object belongs to a building.
The two probabilities satisfy the constraint in Equation (18), and the non-vegetation object is regarded
as a building region. (

p(b) − p(nb)
)
> T1 ∪ p(b) > T2, (18)

where T1 and T2 are two given thresholds.

2.4. Building Outline Regularization

Once a building and its initial outline have been determined, the next step is to refine the building
outline. An initial outline of a building is shown in Figure 9a. Many points are located in the
same line segment, and the building edges are jagged and disturbed by small structures because of
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pixel-wise segmentation. The initial outline should be optimized by eliminating low-quality vertices
and regularizing line segments. For this task, an iterative optimization algorithm, which utilizes
the collinear constraint, is applied to regulate the building boundary. This algorithm consists of the
following steps:

(1) The Douglas–Peucker algorithm [52,53] is used to optimize building outlines by simplifying
the curves that are approximated by a few vertices; the simplified outline is shown in Figure 9b.

(2) The consecutive collinear vertex vi, which satisfies the condition that the angle θ =

∠
(
→

vivi−1,
→

vivi+1
)

(as shown in Figure 9c) between two adjacent line segments θ ∈
[

11π
12 , 13π

12

]
∪

[
0, π

12

]
, is

determined. Vertex vi is added to a candidate point set Sco to be eliminated.
(3) Step (2) is repeated by tracking the line segments sequentially from the first vertex to the last

vertex until all vertex set Vb of the outline is traversed. The vertices of initial outline belonging to the
point sets Sco are eliminated from the vertex set Vb, the vertex set Vb is updated, and the candidate
point set Sco is set as null.

(4) Steps (2) and (3) are repeated until no more consecutive collinear vertex vi is added to the
candidate point set Sco.

(5) The vertex set Vb is tracked sequentially from the first vertex to the last vertex; two adjacent
vertices vi and vi+1 are considered too close if they satisfy the condition that the distance d (as shown
in Figure 9c) between vi and vi+1 is less than a given threshold d < Tvv (0.5 m). One of vi and vi+1 is
eliminated, and the vertex set Vb is updated.

(6) Step (5) is repeated until no more vertex needs to be eliminated, and the outline is reconstructed
by the vertex set Vb.
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Figure 9. Example to illustrate building outline regularization. (a) is an initial outline of the building,
with the red lines denoting the line segments and the green dots denoting the vertices. (b) is the
simplified outline of the building using the Douglas–Peucker algorithm. (c) describes the angle of
two line segments and the distance of two adjacent vertices. (d) is the regulated outline of building
obtained from the proposed iterative optimization algorithm.
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Figure 9d shows that the proposed iterative optimization algorithm can effectively reduce the
superfluous vertices while reconstructing a relatively regular building shape.

3. Experimental Evaluation and Discussion

3.1. Data Description

Two datasets for building extraction are collected by a UAV aerial photogrammetry system,
which comprises a UAV platform, one digital camera, a global positioning system, and an inertial
measurement unit, to evaluate the performance of the proposed method. The digital camera selected
to capture low-altitude UAV remotely-sensed imagery is a SONY ILCE-7RM2 35 mm camera. The test
datasets were captured over Zunqiao of Jiangxi Province of China (28◦ 21′30′′N, 117◦57′39′′E) in
the summer of 2016, during which the UAV flew upward for approximately 400 m. These study
areas include urban and rural areas, which are characterized by different scales, different roofs, dense
residential, tree surrounding, and irregular shape buildings. Structure from motion [54] and bundle
adjustment are used to yield high-precision relative orientation parameters of all UAV remotely-sensed
images and recover 3D structures from 2D UAV images, which are referenced by using ground
control points collected from high-precision GPS/RTK equipment. Dense and precise 3D point clouds
with an approximately average point spacing of 0.1 m are derived from corresponding UAV images
using a multiview matching method [55] and can thus provide a detailed 3D structure description
for buildings. These image-derived 3D point clouds are also used to generate high-resolution UAV
orthoimages and DSMs. Two subregions of Zunqiao are selected for building extraction with two
datasets of 3501 × 3511 and 1651 × 3511 pixels. The experimental datasets are shown in Figure 10.
The two selected regions include not only urban and rural buildings of different materials, different
spacings, different colors and textures, different heights, and complex roof structures, but also, complex
backgrounds (e.g., topographic relief, trees surrounding buildings, shadow next to buildings, and
roads that resemble building roofs).

To facilitate the comparison, the proposed method was also evaluated on an open benchmark
dataset, the International Society for Photogrammetry and Remote Sensing (ISPRS) 2D semantic
labeling contest (Potsdam), which can be downloaded from the ISPRS official website (http://www2.
isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html). The dataset contains 38 patches
(of the same size, i.e., 6000 × 6000 pixels), each consisting of a very high-resolution true orthophoto
(TOP) tile that is extracted from a larger TOP mosaic, and the corresponding DSMs were also provided.
The ground sampling distance of both, the TOP and the DSM, is 5 cm. And the buildings were
labeled in the ground truth. In this study, to be as consistent as possible with the UAV images, and to
evaluate the performance of distinguishing building roof from ground, two very high-resolution true
orthophoto tiles that are partially similar in texture and spectral characteristics (e.g., cement road and
bare land), are selected to evaluate the proposed method, as shown in Figure 11.

http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
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Figure 11. ISPRS true orthophoto tiles for the test regions (a,b) and the corresponding DSMs (c,d).

We provide the referenced building outlines, namely, ground-truth building outlines, that are
extracted by manually digitizing all recognizable building outlines using ArcGIS software to verify the
accuracy of the proposed method and compare it with other state-of-the-art methods. The boundary
of each building is difficult to manually interpret by UAV orthoimage alone; therefore, we digitize
the boundaries of buildings by the combination of UAV orthoimage and DSM. The two datasets
contain 99 and 34 buildings separately. Figure 10a shows many buildings with boundaries that are
not rectilinear and not mutually perpendicular or parallel. The ground-truth buildings of the four
experimental datasets are given in Figure 12, some buildings with boundaries that are not rectilinear
and not mutually perpendicular or parallel are shown in Figure 12a,c,d.
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Figure 12. Ground-truth buildings of the four datasets. (a,b) are the ground-truth buildings of two
UAV datasets. (c,d) are the ground-truth buildings collected from the ISPRS dataset. White and black
denote building and non-building regions, respectively.

3.2. Evaluation Criteria of Building Extraction Performance

The results of building extraction using the proposed method and other existing methods are
evaluated by overlapping with them with the ground-truth maps on the basis of previous reference
maps of buildings. Four indicators are used to evaluate the classification performance of buildings and
non-buildings: (1) the number of building regions correctly classified as belonging to buildings (i.e., TP),
(2) the number of non-building regions incorrectly classified as belonging to buildings (i.e., FP), (3) the
number of non-building regions correctly classified as belonging to non-buildings (i.e., TN), and (4) the
number of building regions incorrectly classified as belonging to non-buildings (i.e., FN). Three metrics
(i.e., completeness, correctness, and quality) are used to assess the results of building detection, which
are computed as [56]

Comp = TP
TP+FN ,

Corr = TP
TP+FP ,

Qual = TP
TP+FN+FP ,

(19)

where Comp (i.e., completeness) is the proportion of all actual buildings that are correctly identified as
buildings, Corr (i.e., correctness) is the proportion of the identified buildings that are actual buildings,
and Qual (i.e., quality) is the proportion of the correctly identified buildings in all actual and identified
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buildings. The identified building or non-building regions are impossible to completely overlap with
the corresponding regions in the reference maps. Therefore, we define two rules to judge whether a
region is correctly identified to the corresponding category. First, the identified region that overlaps
the reference map belongs to the same category. Second, the percentage of the area of the identified
region that overlaps the reference map is more than 60% [9].

Although Comp, Corr, and Qual are the popular metrics to assess the results of building detection,
these metrics remain insufficient to measure how good the overlap is between an outline of a building
and the corresponding outline in the reference map. Hence, we use three other metrics, i.e., Recall,
Precision, and intersection over Union (IoU) [57], to quantitatively evaluate the delineation performance
of building outline. As shown in Figure 13, A and B are respectively the ground truth and the extracted
building area, then Recall, Precision, and IoU can be computed as

Recall =
Area(A∩ B)

A
, (20)

Precision =
Area(A∩ B)

B
, (21)

IoU =
Area(A∩ B)
Area(A∪ B)

, (22)
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3.3. MSCNs Training

The training datasets of MSCNs are generated from UAV orthoimages and DSMs, which are
obtained by photogrammetric techniques. The datasets include buildings of multiscale, different colors
and heights, and complex roof structures in urban and rural areas. The datasets also contain patches
with complex backgrounds, such as shadows, topographic relief, and trees surrounding buildings.
A total of 50,000 pairs of patches (half building and half non-building patches) with a fixed size of
127 × 127 pixels are extracted in a supervised manner from the UAV orthoimages and DSMs that do not
include the experimental images. The non-building patch examples are generated by two ways. First,
we randomly select patches from non-building areas, which are determined by manually masking
building areas. Second, some examples that are easily confused with buildings are specially selected
from the regions of roads, viaducts, and railways to supplement non-building patches. Furthermore,
150,000 pairs of patches are extended to avoid overfitting by image rotation (e.g., 90◦, 180◦, and 270◦),
Gaussian blur, and affine transformation. Therefore, the total number of patch pairs is 200,000, in which
195,000 and 5,000 pairs of patches are randomly selected as training and test datasets, respectively.

At the training stage of MSCNs, a batch size of 100 is used as the input; hence, 1950 iterations
exist in each epoch. The MSCNs are trained in parallel on NVIDIA GPUs, and training is forced to
terminate when the average value of the loss function is less than 0.001 or the epochs are more than
100. The weights of convolutional and fully connected layers are initialized by random Gaussian
distributions [58]. The momentum and weight decay are fixed at 0.9 and 0.0005, respectively. The
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initial learning rate is set to 0.01 and then gradually reduced by using a piecewise function [25] to
accelerate the training of MSCNs. Another metric, namely, overall accuracy (OA), is used to evaluate
the performance of building and non-building classification for quantitatively assessing the training
performance of the proposed MSCNs. OA is computed as

OA =
TP + TN

TP + FN + TN + FP
, (23)

in which TP, FN, TN, and FP are defined in Section 3.2.
We train three Siamese networks, namely, SCNs3, SCNs5, and SCNs7, to evaluate the effects of

Siamese networks with and without multiscale. Here, a convolution operator is achieved by using one
of the filters with sizes of 3 × 3, 5 × 5, and 7 × 7 in our model. We also evaluate the effect of layer number
in our model by adding one convolutional layer to train and test the datasets, namely, MSCNs(layer+).
The trained model achieves state-of-the-art results in training and test datasets (Table 2), and Figure 14
shows the changes in OA and the losses with increasing epochs during the training of MSCNs. Our
network and the deeper network (layer+) achieve higher accuracies than SCNs3, SCNs5, and SCNs7
do. Although the deeper network (layer+) performs slightly better than MSCNs do, the convergence of
MSCNs(layer+) is slower than that of MSCNs. MSCNs(layer+) converge at nearly 24 epochs (4.68× 104

iterations), whereas MSCNs converge at nearly 30 epochs (5.85× 104 iterations). In addition, MSCNs
perform better than SCNs3, SCNs5, and SCNs7 do in terms of Completeness, Correctness, and Quality.
The experimental results demonstrate the effective performance of MSCNs given the tradeoff between
accuracy and network complexity.

Table 2. Metrics of MSCNs, including Comp, Corr, Qual, and OA.

Model Dataset Comp Corr Qual OA

SCNs3
Training 0.9232 0.9349 0.8674 0.9295

Test 0.8824 0.9230 0.8219 0.9044

SCNs5
Training 0.9440 0.9584 0.9069 0.9515

Test 0.9088 0.9385 0.8577 0.9246

SCNs7
Training 0.9530 0.9686 0.9244 0.9610

Test 0.9226 0.9553 0.8844 0.9397

MSCNs
Training 0.9670 0.9796 0.9479 0.9735

Test 0.9584 0.9689 0.9298 0.9638

MSCNs(layer+) Training 0.9672 0.9798 0.9483 0.9736
Test 0.9594 0.9693 0.9311 0.9645
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in the training epochs.

3.4. Comparisons of MSCNs and Random Forest Classifier

After vegetation removal and superpixel merging, many non-building regions remain.
Postprocessing is needed to further classify building and non-building regions. The identified
vegetation and the remaining regions after vegetation removal are shown in Figure 15. A classifier of
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MSCNs is designed for building detection in this study due to its capability of non-linear estimation
and the robustness of object classification under complex backgrounds. Another classifier, named
Random Forest, has been proven to perform efficiently in the classification of building and non-building
regions in the literature [59], in which an experiment comparing Random Forest with MSCNs was
conducted to test the effectiveness of the MSCN classifier. Multiple features were extracted to classify
using Random Forest and compared to deep features. Table 3 provides the details of multiple features
and the parameters of the Random Forest classifier. The experimental results of the ISPRS dataset are
given in Figure 16, Figure 17 shows the confusion matrices of building and non-building classification
obtained from the Random Forest classifier and MSCNs in the four experimental datasets.
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Red lines in (a) and (b) show the boundaries of superpixels obtained from the 6D-SLIC algorithm. 
White regions in (c) and (d) are the vegetation obtained from the proposed GGLI algorithm. Green, 
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(g) and (h) are the buildings extracted by using the proposed framework, and white color denotes 
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Figure 15. Results of 6D-SLIC, vegetation removal, and superpixel merging in two UAV datasets.
Red lines in (a,b) show the boundaries of superpixels obtained from the 6D-SLIC algorithm. White
regions in (c,d) are the vegetation obtained from the proposed GGLI algorithm. Green, red, and blue in
(e,f) denote the vegetation, building, and non-building regions, respectively. (g,h) are the buildings
extracted by using the proposed framework, and white color denotes the building areas.
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Figure 17 shows that the performance of the proposed MSCNs is better than that of the 
Random Forest classifier that uses the color histogram, bag of SIFT, and Hog in terms of confusion 
matrices. Almost all buildings in the two experimental datasets are correctly identified by using the 
proposed MSCNs, whereas the building identification accuracy of the Random Forest classifier 
based on color histogram and the bag of SIFT is less than 85%, and that based on Hog is less than 
90%. This finding is attributed to two reasons. First, height is combined with spectral information 
for jointly distinguishing building and non-building ground objects. This approach helps determine 
a clear gap between building and other ground objects that are similar in texture and spectral 

Figure 16. The experimental results of the ISPRS dataset using the proposed method. Red lines in
(a,b,d,e) show the boundaries of superpixels obtained from the proposed 6D-SLIC algorithm. White
regions in (b,e) are the vegetation obtained from the proposed GGLI algorithm. (c,f) are the buildings
extracted by using the proposed framework, and white color denotes the building areas.

Table 3. Parameters of Random Forest classifier. SIFT denotes the feature detected by using scale-invariant
feature transform. Hog denotes the feature represented by using a feature descriptor, namely, histogram
of oriented gradients.

Feature Parameters Description

Color histogram quantization_level = 8 Level of quantization is applied to each image.
color_space = “lab” Image is converted into lab color space.

Bag of SIFT

vocab_size = 50 Vocabulary size is set as 50.
dimension = 128 Dimension of descriptor is set as 128.

smooth_sigma = 1 Sigma for Gaussian filtering is set as 1.
color_space = “grayscale” Image is converted into grayscale.

Hog

vocab_size = 50 Vocabulary size is set as 50.
cell_size = 8 Cell size is set as 8.

smooth_sigma = 1 Sigma for Gaussian filtering is set as 1.
color_space = “rgb” RGB color space is used.
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Figure 17 shows that the performance of the proposed MSCNs is better than that of the Random
Forest classifier that uses the color histogram, bag of SIFT, and Hog in terms of confusion matrices.
Almost all buildings in the two experimental datasets are correctly identified by using the proposed
MSCNs, whereas the building identification accuracy of the Random Forest classifier based on color
histogram and the bag of SIFT is less than 85%, and that based on Hog is less than 90%. This finding is
attributed to two reasons. First, height is combined with spectral information for jointly distinguishing
building and non-building ground objects. This approach helps determine a clear gap between building
and other ground objects that are similar in texture and spectral characteristics (e.g., cement road and
bare land). Second, deep learning-based networks can extract non-linear and high-level semantic
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features that are not easily affected by image grayscale variations, and they show higher robustness
than the other three low-level manually designed features (color histogram, bag of SIFT, and Hog)
do. Figure 18 shows the feature representation of the color histogram, bag of SIFT, Hog, and MSCNs.
The influence of grayscale variations is given by simulation. Hog is more robust to gray variations
than color histogram and SIFT are, the feature vectors extracted by color histogram are easily affected
by image grayscale variations, and the feature vectors extracted by SIFT in the dimension of 0 to 20
are different. Compared with the visualization of the three low-level manually designed features, as
shown in Figure 18i, that of high-level deep features obtained by the proposed MSCNs shows high
similarity to Figure 18a,e under grayscale variations. This result proves that the proposed MSCNs
perform with high stability for feature extraction.
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Figure 18. Comparison of features of the color histogram, SIFT, Hog, and MSCNs. (a) is an example of a
building, and (e) denotes the gray variations (e.g., brightness + 50% and contrast + 50%) corresponding
to (a). (b,f) are the feature vectors of the color histogram of (a,e), respectively. (c,g) are the feature
vectors of SIFT of (a,e), respectively. (d,h) are the feature vectors of Hog of (a,e), respectively. (i) is
the visualization of deep features extracted by MSCNs in the three convolutional layers, i.e., Conv_x,
Conv_1, and Conv_2. Only 12 feature maps are provided in each convolutional layer, and (a)→ and
(e)→ denote the corresponding rows to the images (a,e) that are the feature maps of Conv_x, Conv_1,
and Conv_2.
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3.5. Comparisons of Building Extraction Using Different Parameters

In the 6D-SLIC-based algorithm, the initial size and compactness of superpixels and the weight
of height are the three key parameters that affect the extraction of building boundaries. The metric
(i.e., IoU) are used to evaluate the effects of building extraction. Figure 19 shows the results of
segmentation with different initial sizes of superpixels (e.g., 3, 5, 10, and 15 m2; i.e., 17 × 17, 22 × 22,
31 × 31, and 38 × 38 pixels inferred by Equation (1)), different compactness values (e.g., 10, 20, 30, and
40), and different weights (e.g., 0.2,0.4, 0.6, and 0.8).
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Figure 19a depicts that 6D-SLIC at 5 m2 initial size of superpixels performs better than it does at
other sizes in terms of IoU. The superpixel merging of the small size (e.g., 3 m2) is susceptible to UAV
image-derived poor-quality 3D point clouds at the edge of buildings (as shown in Figures 3 and 4) that
result in the shrinkage of building boundaries. By contrast, the superpixel merging of the larger size
(e.g., 10 and 15 m2) may be insensitive to building boundary identification because building details are
ignored. Therefore, the results of 6D-SLIC at 3, 10, and 15 m2 initial sizes are worse than those at 5 m2

initial size. Figure 19b shows a trade-off between spatial proximity and pixel similarity of color and
height information when the compactness value is set to 20. A good segmentation performance can be
achieved when the weight α is set as 0.6 in Figure 19c, which is also a trade-off of the contribution
between lab distance dlab and height difference dh.

3.6. Comparisons of the Proposed Method and State-of-the-Art Methods

Our work uses the proposed 6D-SLIC algorithm as the building outline extractor in the image
segmentation part as it allows the full use of the spectral and terrain information of UAV remotely-sensed
imagery. The proposed MSCNs with nine layers are then used to classify building and non-building
areas. The state-of-the-art results have fewer parameters and involve less computation than the results
of two of the most popular networks for image segmentation, i.e., FCN [27] and U-Net [29], do.

To testify the superpixel segmentation performance of the proposed 6D-SLIC algorithm for
building extraction, ERS, SEEDS, preSLIC, and LSC are used to extract building from the four
experimental datasets. For a fair comparison, the segmented subregions are merged on the basis of the
height similarity in the neighborhoods, and the optimal segmentations of ERS, SEEDS, preSLIC, and
LSC are achieved through many repeated trials. Also, we select three other state-of-the-art methods,
namely, UAV data- (i.e., see Dai [5]), FCN-, and U-Net-based methods, for comparison and analysis to
evaluate the proposed building extraction method. The open-source code and pretrained weights of
FCN and U-Net are respectively collected from the corresponding GitHub to ensure the repeatability
of the experiments. The training samples generated from the UAV images are used for the parameter
fine tuning of FCN and U-Net.

Tables 4 and 5 present the comparative results of Recall, Precision, and IoU values using the six
superpixel segmentation algorithms (i.e., SLIC, ERS, SEEDS, preSLIC, LSC, and 6D-SLIC) before and
after the regularization. 6D-SLIC achieves a better performance than the other five algorithms do in
terms of the Recall, Precision, and IoU values. The building outlines obtained from 6D-SLIC are closest
to the ground-truth maps, whereas the regions at the building edges with similar colors are easily
confused in the other five algorithms and result in poor building extraction. From the comparison of
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before and after the regularization, it can be inferred that the proposed regularization can also improve
the performance of building extraction that uses the six superpixel segmentation algorithms.

Table 4. Superpixel-based building extraction results on the four datasets before regularization stage.

Dataset Metric SLIC ERS SEEDS preSLIC LSC Ours

Dataset1
Recall 0.8833 0.8933 0.8803 0.9113 0.9153 0.9421

Precision 0.8927 0.9027 0.9127 0.8977 0.9143 0.9650
IoU 0.7986 0.8148 0.8119 0.8256 0.8430 0.9109

Dataset2
Recall 0.8994 0.9094 0.8964 0.9304 0.9315 0.9583

Precision 0.8907 0.9107 0.8804 0.8960 0.9220 0.9675
IoU 0.8001 0.8349 0.7991 0.8397 0.8635 0.9285

Dataset3
Recall 0.8104 0.8204 0.8077 0.8414 0.8425 0.8890

Precision 0.8213 0.8413 0.8111 0.8266 0.8526 0.9286
IoU 0.6889 0.7105 0.6798 0.7152 0.7354 0.8321

Dataset4
Recall 0.8317 0.8417 0.8280 0.8667 0.8628 0.9016

Precision 0.8446 0.8476 0.8448 0.8493 0.8754 0.9101
IoU 0.7213 0.7311 0.7187 0.7512 0.7684 0.8279

Table 5. Superpixel-based building extraction results on the four datasets after regularization stage.

Dataset Metric SLIC ERS SEEDS preSLIC LSC Ours

Dataset1
Recall 0.9233 0.9243 0.8943 0.9223 0.9233 0.9611

Precision 0.8969 0.9167 0.9237 0.9119 0.9273 0.9656
IoU 0.8347 0.8527 0.8328 0.8468 0.8609 0.9293

Dataset2
Recall 0.9194 0.9364 0.9165 0.9514 0.9495 0.9683

Precision 0.8929 0.9227 0.8944 0.9102 0.9330 0.9679
IoU 0.8281 0.8683 0.8270 0.8698 0.8889 0.9382

Dataset3
Recall 0.8334 0.8474 0.8278 0.8624 0.8605 0.9190

Precision 0.8393 0.8533 0.8251 0.8408 0.8636 0.9406
IoU 0.7187 0.7396 0.7042 0.7413 0.7575 0.8740

Dataset4
Recall 0.8577 0.8687 0.8421 0.8897 0.8838 0.9416

Precision 0.8756 0.8696 0.8638 0.8675 0.9045 0.9321
IoU 0.7645 0.7685 0.7434 0.7833 0.8084 0.8876

The experimental results of Dai’s method, FCN, U-Net are also given in Table 6. A certain height
threshold (e.g., 2.5 m is used in the method of Dai [5]) is difficult to give for separating building points;
thus, some low-height buildings shown in the results of Dai in Figure 20a,e are incorrectly identified,
resulting in a smaller Recall value than that achieved by the other three methods. The FCN- and
U-Net-based methods, which allow deep neural network-based semantic segmentation that is robust
and steady for pixel-wise image classification, work efficiently for building detection, and almost all
buildings can be identified, as shown in Table 6 and Figure 20. However, the FCN-based method
is sensitive to noise, and it cannot accurately extract the building outlines in some regions, such as
the shadows shown in the result of FCN in Figure 20b. In comparison with the FCN-based method,
the U-Net-based method performs better in single-house-level building outline extraction, as shown in
Figure 20. Overall, our method demonstrates superior performance in terms of major metrics and
building outline delineation.

In addition, it can be inferred that the computational cost of our method is much less than FCN-
and U-Net-based methods because their architectures include more complex convolutional operations
with a high computational cost. During our computational efficiency analysis, our method also shows
a significant improvement in computational cost in terms of testing (less than one-fifth of the time
consumed by the FCN- and U-Net-based methods operated in parallel on NVIDIA GPUs).
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Table 6. Recall, Precision, and IoU values of Dai’ s method, FCN, U-Net, and our method in the
four datasets.

Dataset Metric Dai FCN U-Net Ours

Dataset1
Recall 0.7931 0.9306 0.9523 0.9611

Precision 0.9301 0.8593 0.9547 0.9656
IoU 0.7485 0.8075 0.9112 0.9293

Dataset2
Recall 0.7971 0.9484 0.9566 0.9683

Precision 0.9505 0.9533 0.9587 0.9679
IoU 0.7653 0.9063 0.9187 0.9382

Dataset3
Recall 0.7471 0.8684 0.8836 0.9190

Precision 0.8805 0.8833 0.9005 0.9406
IoU 0.6783 0.7790 0.8050 0.8740

Dataset4
Recall 0.7431 0.8506 0.8793 0.9416

Precision 0.8601 0.7893 0.8965 0.9321
IoU 0.6630 0.6932 0.7983 0.8876
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information for building extraction, the 6D-SLIC algorithm can rapidly cluster pixels into 
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Figure 20. Representative results of single-building-level building extraction from Dai’s method, FCN,
U-Net, and our method. (a–g) are the seven examples that are selected to exhibit the experimental
results. The green, red, blue, and white channels in the results respectively represent the TP, FP, FN,
and TN of building areas.

The experimental results indicate that the proposed framework presents more significant
improvements than the other methods do in terms of the effectiveness and efficiency of building
extraction, which can be explained by a number of reasons. First, the point clouds provide valuable
information for building extraction, the 6D-SLIC algorithm can rapidly cluster pixels into superpixels
by utilizing UAV image spectral information and image-derived point clouds; the latter helps accurately
delineate the outline of ground objects despite the existence of similar intensity and texture at building
edges in Figure 3. Second, the proposed GGLI can significantly remove vegetation and improve the
efficiency of building detection. Third, the deep and salient features learned by a Siamese-type network
are more useful and stable in classifying building and non-building areas, even in this case of image
intensity dramatic variations, in comparison with the manually designed features in Figure 18. Finally,
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the proposed building outline regularization algorithm integrates the Douglas–Peucker and iterative
optimization algorithms that can remove superfluous vertices and small structures, i.e., the pruned
processing is useful to improve the precision of building delineation.

In the method of Dai, the height of the off-terrain points is calculated by a certain threshold that is
unstable; thus, some buildings that are not in this threshold are incorrectly identified. The assumption
that only the geometry of two mutually perpendicular directions exists in buildings, i.e., the building
boundary regularization has limitations for accurately delineating non-regular buildings, is referred to.
In the FCN-based method, the subsampling and upsampling operations may cause the information
loss of input images, and thus, the prediction results of buildings often have blurred and inaccurate
boundaries of buildings, as shown in the results of FCN in Figure 20. In the U-Net-based method,
despite the skip connections added to achieve superior performance in comparison with the FCN-based
method, pixel-wise classification solely relies on the features within a localized receptive field; therefore,
it is still insufficient to capture the global shape information of building polygons, and it is sensitive
to noisy data. That is, the architectures of FCN and U-Net are not perfect enough, and there are
restrictions on performance improvement. As a result, small structures may exist in building boundaries.
The experimental results imply that the low-level manually designed features are unsuitable for building
detection because of the influences of grayscale variations. FCN- and U-Net-based methods are difficult
to use in extracting the regulated boundaries of buildings when noisy data are present. Our method
performs better not only because the point clouds provide valuable information but also is much less
computational cost in comparison with FCN- and U-Net-based methods.

4. Conclusions

In this paper, we present a framework to effectively extract building outlines by utilizing a UAV
image and its image-derived point clouds. First, a 6D-SLIC algorithm is introduced to improve
superpixel generation performance by considering the height information of pixels. Initial ground
object outlines are delineated by merging superpixels with approximately equal height. Second,
GGLI is used to eliminate vegetation for accelerating building candidate detection. Third, MSCNs are
designed to directly learn deep features and building confirmation. Finally, the building boundaries are
regulated by jointly using the Douglas–Peucker and iterative optimization algorithms. The statistical
and visualization results indicate that our framework can work efficiently for building detection
and boundary extraction. The framework also shows higher accuracy for all experimental datasets
according to qualitative comparisons performed with some state-of-the-art methods for building
segmentation, such as UAV data-based method and two semantic segmentation methods (e.g., FCN-
and U-Net-based methods). The results prove the high capability of the proposed framework in
building extraction from UAV data.

The proposed building extraction framework highly relies on the quality of photogrammetric
processing. UAV image-derived poor-quality point clouds at building edges can decrease the accuracy
of building boundary extraction. In addition, there are many parameters used in the proposed method,
these parameters are referred from literature or determined based on the best trials.

In future studies, we will optimize our framework to achieve the best performance through a
collinear constraint and by reducing the dependence on the quality of image-derived point clouds.
We will also try to improve the proposed method by reducing the related parameters, and improve the
architecture of U-Net to suit for building extraction from RGB bands and the point clouds for further
comparing with the proposed method.
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