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Abstract: Linear dunes and human fingerprints share many characteristics. Both have ridges, valleys,
and defects (minutiae) in the form of bifurcations and termination of ridgeline features. For dunes,
determining how defects vary across linear and transverse dunefields is critical to understanding the
physics of their formative processes and the physical forcing mechanisms that produce dunefields.
Unfortunately, manual extraction of defect locations and higher order characteristics (type, orientation,
and quality) from remotely sensed imagery is both time-consuming and inconsistent. This problem is
further exacerbated when, in the case of imagery from sensors in orbit around Mars, we are unable to
field check interpretations. In this research, we apply a novel technique for extracting defects from
multiple imagery sources utilizing a robust and well-documented fingerprint minutiae detection
and extraction software (MINDTCT: MINutiae DecTeCTion) developed by the National Institute of
Standards and Technology (NIST). We apply our ‘fingerprinting” approach to Transverse Aeolian
Ridges (TARs), relict aeolian features commonly seen on the surface of Mars, whose depositional and
formative processes are poorly understood. Our algorithmic approach demonstrates that automating
the rapid extraction of defects from orbitally-derived high-resolution imagery of Mars is feasible and
produces maps that allow the quantification and analysis of these features.
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1. Introduction

Even a cursory comparison of images of ripples, linear, and transverse dunes to human fingerprints
reveals many similarities in the form and organization of features (Figure 1). In general, dunes and
fingerprints are composed primarily of fields of ridges with intervening valleys. In most cases, these
features are parallel and somewhat regularly spaced with a width and characteristic wavelength that is
potentially related to prevailing formative forces acting over a 3-dimensional surface [1-9].

Dunefields are found on planetary surfaces (Mars and Venus) [10-15] and their satellites [16-18]
in environments that differ significantly from Earth. On Mars dunefields exhibit similar defect patterns
over a range from centimeter-scale ripples to multi-kilometer-scale longitudinal dunes [9,19]. Many of
these longitudinal Martian features are termed Transverse Aeolian Ridges (TARs) and are prevalent
across much of the surface of Mars.

Ridges, the primary features in both dunefield and fingerprint feature spaces, are typically the
only uniquely identifiable and bonified features in a field of poorly defined objects (Figure 2) [20].
Other objects within these feature spaces are defined with reference to ridges. Ridges can be defined by
their length, orientation, and derived metrics (sinuosity, etc.), as well as the number, type, and spatial
arrangement of secondary features. Since these features can be georeferenced, they can be used to
define slip faces and other features with well-defined upper edges, and indirectly used to define valleys
or interdune areas which are less distinct on all sides. Within the aeolian analysis environment these
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secondary bonified subfeatures, are termed defects with splits and crest ends identified as Y-junctions
and terminations respectively [3,5,6,21-29].

From the perspective of fingerprint analysis, defects are termed minutiae, with subfeatures
termed bifurcations and ridge endings [30-35]. Minutiae are characterized by their type, position, and
orientation, and are unique from fingerprint to fingerprint. Minutiae are classified as local features [36]
occurring at unique points that are invariant with respect to global transformations [37-39] and are
thus useful for the unique identification of individuals. They differ from global features which are
characterized by attributes that capture the global spatial relationships of a fingerprint as expressed by
ridge form (arch, loop, and whorl), orientation, and spacing [40].

Figure 1. Dune crest and fingerprint ridgeline forms. a. Linear dunes Namib Desert —24.43 15.17,
b. Transverse Aeolian Ridges (TARS) on Mars (Image ESP_036397_1785) c¢. Linear dunes on Titan
(Cassini T8 flyby, Oct. 2005, 8°S, 264°W, ~ 300 m resolution). d. Perspective view of ripples on
larger dune slope facet (1 cm resolution) from a digital handheld camera. Note crest bifurcations and
terminations. e. Ripples on dunes Nili Patera, Mars (High Resolution Imaging Science Experiment
(HiRISE) image PIA18818). f. Raw ten-print image f0444_03 from the NIST fingerprint database [41]
showing arch structure, ridge organization and bifurcations, and terminations (mm resolution).
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Figure 2. Dune types and wind direction relationships. a. Linear dunes and their generating wind
field. b. Transverse dunes and their generating wind field. c. Linear and transverse dune features and
their attributes [20].

2. Materials and Methods
2.1. Background to the Problem

2.1.1. Dune Processes

Dune forms are the result of interactions between the local wind regime and topography, sand
transport, sand supply, and other local variables including vegetation [2,5-7,42—44]. Linear dunes are
the most common form of desert dune on Earth [45], occurring under climatic conditions in hyperarid
deserts to subhumid Sandy Lands [28]. These dunes exhibit ridges with distinct variability in spacing
and organization, potentially reflective of both formative processes and the evolution in the dunefield
over time.

Linear dunes form parallel to the net sand transporting wind vector, while transverse dunes
form perpendicular to the dominant wind direction [2,46] in regions with restricted sediment supply
under a bidirectional wind with relatively high wind direction variability [1,47,48]. Winds coming
from different directions and striking the dune obliquely have been found to be responsible for net
transport, erosion or deposition [2]. In contrast, transverse dunes form perpendicular to the dominant
wind direction in areas of high sand abundance with distinctly different lee and windward faces.
For both dune types, the interaction between a wind field and a mobile substrate results in erosional
and depositional processes which in turn produce dunefield patterning [1,46,47].

In recent years, there have been important advances in the knowledge of dune processes and
dunefield patterning through careful field and modeling studies of winds and sand movement [1,49-51].
Telfer et al. [29] have suggested that dunefield patterning is an emergent property influenced by regional
and/or site-specific boundary conditions [4-6]. However, Kocurek et al. [52] noted that the observed
variance in dunefield defects exceeds that generated from numerical modeling, implying that dune
formation and evolutionary conditions are still poorly understood [52-54]. Werner and Kocurek [5,6]
inferred that dune patterns should evolve such that dune spacing increases asymptotically and defect
density increases.

Longitudinal bedforms typically have long crests and large spacing that is inversely related to
defect density [45]. If along-crest transport is sufficiently large, defects facing upstream, which are
eroding, remain free standing, and defects facing downstream, where sediment is being deposited,
typically attach to adjacent bedform crests in Y-junctions forming an upstream-branching network
(Figure 3) [6]. Upstream-facing defects move downstream due to erosion, and downstream-facing
defects move upstream because of deposition at the junction of the Y.
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When a mobile defect approaches a bedform crest and attaches, it forms a Y-junction (Figure 3) [55].
Modeling and field-based studies [56,57] show that the downstream fork of the Y-junction then detaches,
resulting in a free-standing defect and a new near continuous crest line. This result implies that dune
interactions drive pattern evolution at all scales [9,28,58,59], and defect organization is reflective of
that evolution. Therefore, data on defect locations and their organization, especially with respect to
different dune types and under different environmental conditions, may profoundly aid understanding
of dune formation processes.

fi<

Figure 3. Linear dune defect formation and migration. The dominant wind vector is represented here

by the filled arrow, while the migration of the dune defects are represented as open arrows. Transport
parallel to crest lines produces downwind migration of defects (terminations: black circles) and upwind
migration of Y-junctions (bifurcations: white filled circle) [6].

2.1.2. Transverse Aeolian Ridges on Mars

Modern Mars is characterized by an aeolian dominated, hyperarid environment with a tenuous
atmosphere (~6.36 bar on average). The landscape has been extensively modified by aeolian processes,
including short term seasonal winds that entrain and transport dust along with rare high velocity
winds, possibly linked with atmospheric density changes capable of transporting sand grains [60-63].
Much of the surface contains depressions and craters where aeolian process have deposited linear
aeolian features (Figure 4).

Mars contains a wide diversity of aeolian bedforms and Transverse Aeolian Ridges (TARs) are one
of the most common [64,65]. TARs were first defined [66] to describe linear to curvilinear bedforms
on Mars that formed as either large ripples or small transverse dunes. They were specifically named
“ridges” by Bourke et al. [66] to preserve the possibility of both ripple or dune origins [67]. Alternatively
they have been described as reversing dunes [68-72] or linked to similar periodic bedrock ridges [73].
Despite the name, TARs do not have to be composed of transverse dune forms alone. Symmetry in
cross-section suggests that some TARs are in fact are linear rather than true transverse forms.

TARs were first observed in images from the Viking orbiter [74,75] and Mars Orbiter Camera
(MOC) [76,77]. They are concentrated in the mid to low latitudes [64], and can be found in most
settings including the floors of the deepest impact basins to the highest volcanoes [77]. Similar features
have been observed on Earth [69,78,79]. As Wilson [67] notes, TARs are widespread on Mars, but their
formation mechanisms, age, composition, and controlling environmental factors, as well as their role
in the global sediment cycle are poorly constrained. Spatial patterning of TAR fields, as expressed in
the organization and relative occurrence of defects, is potentially a measure of underlying physical
processes that formed TAR fields. Determining how defects may vary across features is critical to
understanding TAR formation and evolution.



Remote Sens. 2019, 11, 1060 5o0f 24

DTEEC_002387_1985_003798_1985_A01

-2601 m

NASA/JPL/University of Arizona MRO/HIRISE

b.

Figure 4. Jezero Crater Delta (Mars 2020 Landing site) a. Color altimetry of digital elevation model.
Latitude 18.49° Longitude 77.41°, Scale 1.00 m/pixel. (DTEEC_002387_1985_003798_1985_U01) b.
The large unnamed crater on the southern portion of the delta that contains a field of TARs that will
potentially be visited and interogated during the Mars 2020 rover mission. This TAR field is analyzed
in Sections 3.1 and 3.2. Images provided by NASA/JPL/University of Arizona.

2.1.3. The Extraction and Characterization Problem

Quantification of dunefield organization, both in terms of extraction of raw metrics from remotely
sensed imagery and characterization of the spatial arrangement of these metrics, presents significant
problems in terms of producing data that can be used to link form and underlying physical processes.
Since different observers may define crests and defects differently, they may manually place them
in slightly different locations and/or miss or misinterpret both type and position. The lack of an
objective and systematic approach to quantify dunes limits our ability to analyze these environments
and broadly characterize them [29]. Extraction and quantification of dune crests and the defects
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and Y-junctions of these crests is both time intensive, subjective, and often applied only for small
areas of dunefields [9,20,24]. Geocoding their location is difficult, with both existing computer and
human-based approaches outputting results that are not completely reproducible [20].

Day and Kocurek [9] estimated that visually measured defects estimated by multiple observers
for a given dunefield varied by up to 20%. They also noted that measurement of defects and their
interaction density is subjective, with image interpretation limiting an observer’s ability to discern small
offsets (e.g., whether a Y-junction exists or “almost” exists), and with respect to images representing
snapshots in time, capturing features that can migrate and change over short time intervals. As well,
estimating direction of these defects is nearly impossible directly by humans, tending to be approximate
at best and nonreproducible between different observers [9].

Extraction limitations severely impact analysis of dune defect location and type. If a consistent
and repeatable automated defect extraction processes could be formulated, it would significantly
augment our ability to map these features and to understand linear dunefield organization, evolution
and dynamics. In this study the fingerprint minutiae extraction software (MINDTCT: MINutiae
DeTeCTion) [31,32] was evaluated to determine whether dune defects could (1) be extracted from
remotely sensed satellite imagery of aeolian features, (2) used to quantitatively characterize these
features, (3) produce repeatable results, and (4) to determine whether this extraction can occur in an
automated manner and be applicable over a wide range of scales, spatial extents and environments.
We have chosen to examine this extraction using Transverse Aeolian Ridges (TARs) on Mars with the
goal of extracting defects and using defect type and spatial organization to classify TAR type.

2.2. Extracting Dune Defects from Remotely Sensed Imagery

2.2.1. Basic Approach

The basic premise of this work is to produce a defect extraction approach that can be used to
quantify and analyze dunefield organization, and to eventually answer the question: “Is there some
fundamental organization of dunefields that reflects the physical forcing that produced the field?”
As we noted above, no automated or semiautomated method to extract and analyze these defect
features from remotely sensed imagery exists. We strive here to develop a methodology that is fast,
simple to apply, easily repeatable, and that produces consistent results.

The absence of quantitative metrics at the dunefield scale has been noted as a limitation in past
studies [20,29]. An ideal approach would thus be an automated or semiautomated methodology to
enable quantitative, systematic, objective, and large-scale morphometric analysis. Within aeolian
science, this extraction has traditionally been done by manual interpretation of aerial and satellite
imagery. However, as Telfer et al. [29] note, because of the time-consuming nature of this approach it
has been limited to small dunefields [80] or derived from small subsamples of larger dunefields [81,82].

Most recently Telfer et al. [29] delineated linear dune crest trend lines over larger areas automatically
from remotely sensed data using a combination of multispectral analysis using Landsat 8 imagery in
concert with a LInear Dune Optimized edge detection algorithm (LIDO) based on Sobel operators,
directional filtering, and topologically-constrained recursion. They also found that the high-resolution
DEM data (~10 m) was useful in areas with simple patterning but was of marginal use generally since
dune height was of the same order as the vertical precision of the dataset, precluding realistic extraction.

Looking outside of aeolian science, we find a large range of approaches that may be applied to
the extraction of dune defects. These include edge detection, segmentation, and thresholding [29],
all of which are also used in extraction of minutiae (defects) from fingerprints and the identification of
individuals. Computer based approaches relying on pattern recognition [83-86], edge detection [87-89],
segmentation [90], and classification from remotely sensed data [91,92] have been used in part to
address different portions of the problem of defect extraction. However, the extraction of these features
in the aeolian environment is a very complex process and currently there is no simple solution in
place. Each of the above approaches provides at least one part of an analysis package that would allow
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defect extraction, but not all parts are currently in place and no integrated system exists to utilize these
myriad approaches in the aeolian sciences.

The forensic science community has developed a robust and mature fingerprint software package
that allows users to extract fingerprint minutiae and to further analyze these minutiae for fingerprint
matching and identification [93-95]. The discipline standard is currently the well-documented
MINDTCT (MINutiae DeTeCTion) fingerprint minutia detection and extraction software developed by
the National Institute of Standards and Technology (NIST) [31,32]. It has the advantage over other
approaches in that it is an open application written using the C sharp (C#) programming language and
as such can run on many platforms and be called from other applications. The software is not subject
to copyright protection, is in the public domain, and is available without license or cost. Therefore, the
development and application of a modified version of MINDTCT may provide the aeolian science
community with a robust tool for the extraction of dune defects. We discuss the MINDTCT approach
and present its application over a range of imagery below. We specifically deal with the extraction
of defects from Transverse Aeolian Ridges (TARs) on Mars, but note that the MINDTCT approach
has also been successfully applied on terrestrial dunes and is potentially applicable to the automated
extraction from imagery of any feature type that exhibits linear structures and defects.

2.2.2. The Underlying Algorithmic Approach of MINDTCT

MINDTCT [31,32] is a set of algorithms used to detect minutiae and to assess the characteristics
of each minutiae including location (x,y), type (termination of bifurcation), orientation, and quality.
The starting point for MINDTCT is an input image with 256 gray levels (8 bit). Output files include image
maps of ridge orientation, edge quality, local and regional metrics (surrounding field characteristics
and statistics), and minutiae (Figure 5). In the following we outline the basic process of generating
these fields using MINDTCT and then turn to a discussion of how this processing flow can be altered
to be applicable to the problem of dune crest and dune defect extraction.

5. Remove False Minutiae

A

6. Count Neighbor Ridges
Y

7. Assess Minutiae Quality
v

8. Dutput Minutiae File

Figure 5. Flow chart for the MINutiae DecTeCTion (MINDTCT) algorithm [31,32].

1. Input Fingerprint File

|

A
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F
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4
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4. Detect Minutiae

Input Fingerprint File

MINDTCT is designed to use the standard 10-print fingerprint image (Figure 1f) used by the FBI
with a resolution of 500 pixels/inch or 19.69 pixels/mm. In humans this average fingerprint wavelength
is ~0.46 mm. We note that with this input resolution, the average distance between fingerprint ridges
of ~0.46 mm equates to ~8 or 9 pixels in the input image. This is critical both for understanding
many of the functions of MINDTCT described below which utilize 8 x 8 pixel windows (queen’s-case
nearest-neighbor pixel operators) for processing and extraction, and potentially for how MINDTCT,
and the images input into MINDTCT, may need to be modified for use in the extraction of dune defects.

Applying MINDTCT to dune images requires preprocessing of the raw image. As noted above,
the scales of crests spacing and dunefield sizes vary by orders of magnitude, while fingerprint sizes
and ridge scales do not vary by even an order of magnitude. Dune imagery must be resampled to the
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MINDTCT tuned resolution of ~8 pixels between ridges. Further image manipulations may also be
required, including low-pass filtering for smoothing, despeckling for noise removal, and thresholding
for production of an image that ‘looks’ like a fingerprint.

Image quality is important since high contrast is necessary to evaluate the quality of localized
regions to detect directional flow of ridges, regions of low contrast, areas where ridge flow direction
is indeterminate (low ridge flow), and regions where directional change is rapid (high curvature).
Issues with these parameters, primarily in terms of localized contrast, produce unstable results and
make minutiae detection difficult. To address these issues, contrast within an image is evaluated and
if there is low contrast it is normally enhanced using a trimmed 10% sample [31,32]. There is also a
low-contrast setting that can be altered in the source code for further enhancement. The result is a
process where both local information in the form of blocks of pixels and individual pixel values are
used to derive minutiae information.

Image Map Production

Direction Map: A derived directional ridge flow map is required for detection of terminations
and bifurcations. Production of a direction map requires well-formed and clearly visible ridges so that
the algorithm can find areas of image with enough ridge structure for further analysis. This approach
requires local detection which depends on answering the question “How much local information is
required to characterize the image?” To evaluate this question the image is divided into 8 X 8 pixel
blocks. The algorithm [96,97] uses a moving 24 X 24 window where the cells are convolved to produce
an 8 x 8 output block centered in the 24 x 24 window. Each pixel in the center block is given the same
value. Edges are padded with a mean expected intensity of 128. This block structure removes fine
structure noise resulting in a smoothed image that minimizes discontinuities, while padding allows
evaluation and defect extraction over the entire image field.

Ridge Flow Direction: For each local 8 x 8 block the surrounding 24 x 24 window is rotated through
16 orientations. Each is separated by 11.25 degrees (16 x 11.25 = 180 degrees), with 0 representing
due north (up) and 15 representing a flow direction of 168.75 degrees (Figure 6). This is the default
for the number of subdivisions in a semicircle but can be changed and made finer or coarser in the
control structure of MINDTCT using NUM_DIRECTIONS parameter [32]. For each orientation pixels
along each rotated row are summed producing a vector for the 24 row sums. The maximum sum is
designated as the local ridge flow direction and is placed in the local 8 x 8 block [31,32].

24
Initial

Position

1. 11.25° 2 225° 3. 33.75° 8. 90° 15. 168.75°

Figure 6. Ridge Flow Direction Calculation. Top left: 24 x 24 grid oriented 0°. Top Right: Rotational
reference frame. Lower: Range of possible orientations separated by 11.25° [31,32].
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This process produces 16 vectors, each of which is convolved with four waveforms with frequencies
including a single period (12 pixels wide), two periods (six pixels wide), four periods (three pixels
wide), and eight periods (1.5 pixels wide) (Figure 7). Discrete values for the sine and cosine function
for each of the four functions are computed for each vector. The results are added together to produce
a resonance coefficient that represents how well each vector fits the specific waveform. The dominant
ridge flow direction recorded is the block orientation with the maximum waveform resonance. Further
details are found in the source code documentation [31].

N 1-Cycle

2-Cycles

4-Cycles

8-Cycles

Figure 7. Waveform patterns over a 24-pixel field. Top to bottom: 1, 2, 4, and 8-cycle windows.

Contrast Enhancement

Low contrast areas complicate ridge detection making extraction of minutiae difficult [93,94].
The contrast enhancement subroutine flags low contrast areas by comparing the block pixel intensity
to the surrounding window intensity. The algorithm uses a 10% upper/lower trim of the pixel
intensity distribution between 0 and 255 and then measures remaining values which represent the
most significant portion of the distribution [32]. This has the effect of removing extreme outliers
and enhancing contrast within the remaining values. If the dynamic range of the center 80% of the
distribution of the block values is less than 10 the block is considered to be low contrast and is flagged
as such and becomes part of the assessment of minutiae strength.

Low Flow Areas

If 8 x 8 pixel blocks in the direction map have no dominant ridge flow they are labeled low flow.
No direction is assigned initially but may be carefully interpolated from surrounding blocks. Minutiae
within these areas (blocks) have a lower quality assignment and as such tend to be suspect relative to
minutiae found in areas with higher contrast and flow [31,32].

High Curvature

While this is more of a problem with fingerprints, high curvature errors can occur when a dune
makes a sharp turn in response to an obstacle. High curvature refers to a portion of a feature where
the ridge exhibits a large change in direction over a short distance [31,32,93-97]. Two measures
are calculated: vorticitythe cumulative change in ridge flow around all neighbors in a block—and
curvature—the largest change between a blocks ridge flow and the ridge flow of its neighbors. Minutiae
in blocks where there is high vorticity or curvature are given a reduced quality assessment.
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Quality Map

Each block is assigned a value from 0 to 5 based on the contribution of contrast, flow and curvature.
This value is later used along with measures of minutiae relaibility to evaluate and characterize the
quality of extracted minutiae [31,32].

Binarize Image

Each pixel is evaluated for the presence or absence of ridge flow. If there is no ridge flow for the
current pixel block then the pixel is set to black (0). If there is ridge flow then the pixel intensities
surrounding the pixel are analyzed with a 7 X 9 grid aligned with the ridge flow direction (with rows
parallel to the local ridge flow direction) (Figure 8). Grayscale pixel intensities are accumulated along
each row (C1 to C9) and compared with the accumulated values of the center row (C5). If C5*9 is less
than the sum of all rows then no ridge is detected and the pixel is set to black. If C5*9 is greater than or
equal to the sum then a ridge is detected and the pixel is set to white.

Ridge Flow
Direction

Figure 8. Ridge flow detection approach. a. 7 X 9 grid is used to sum values. b. Rotated grid centered
on the pixel to which the sum will acrue [32].

Minutiae Detection

The algorithm uses the feature detection templates shown in Figure 9. These 10 feature types can
be decomposed into ridge terminations or bifurcations. The templates are used to detect features by
sweeping the image both horizontally (2 x 3 kernel) and vertically (3 X 2 kernel). The orientation of
extracted minutiae can be in any one of 32 (0-31) directions with zero (0) at the top of image. Direction
is quantized in 11.25 degree increments proceeding clockwise from the zero reference direction.

1. Ridge Ending 2. Ridge Ending 3. Bifurcation 4. Bifurcation 5. Bifurcation
(appearing) (disappearing) (disappearing) (appearing) (disappearing)
6. Bifurcation 7. Bifurcation 8. Bifurcation 9. Bifurcation 10. Bifurcation
(disappearing) (appearing) (appearing) (disappearing) (appearing)

Figure 9. Feature extraction templates. Horizontal image sweeps [31,32]. The templates are rotated 90°

for vertical image sweeps. Blue box (terminations) and red box (bifurcations) represent the most basic
extraction kernals.
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Minutiae Quality

High-quality minutiae occur where the local neighborhood has both well-defined ridges and
valleys and when the values cover the entire gray scale [93,94,97]. So if the neighborhood has a mean
of 127 (1/2 way between white 255 and black 0) and a standard deviation greater than 64 (wide range)
individual minutiae extracted from this neighborhood are considered to be both high-quality and
reliable. The algorithm for assessing overall quality combines the quality map described in Table 1
with the specific gray scale values and ranges which define reliability as listed above.

Table 1. MINDTCT Output.

Output Type Output Description

16 integer bidirectional units. A value of —1 in this map represents a

Direction Map neighborhood where no valid ridge flow was determined.

Cell values of 1 represent 8 x 8 pixel neighborhoods in the image that are

High- M . . . .
igh-Curvature Map located within a high-curvature region, otherwise cell values are set to 0.

Cell values of 1 represent 8 X 8 pixel neighborhoods in the image that are

Low-Contrast M 1 . .
ow-i-ontrast Viap located within a low-contrast region, otherwise cell values are set to 0.

Cell values of 1 represent 8 X 8 pixel neighborhoods in the image that are
Low-Flow Map located within a region where a dominant directional frequency could not
be determined, otherwise cell values are set to 0.

Five discrete levels of quality. Each value in the map representing an 8 x 8
Quality Map pixel neighborhood in the fingerprint image. A cell value of 4 represents
highest quality, while a cell value of 0 represents lowest possible quality.

A text file with the minutiae number, X,y location, minutiae direction,

Minutiae Detection Results quality and type (bifurcation (BIF) or ridge ending (RIG))

Minutiae Output

MINDTCT outputs several maps that define ridgelines and minutiae (Table 1). These maps
contain grids of integers, where each cell in the grid represents an 8 x 8 pixel neighborhood in the
image. These maps include the direction map, low contrast map, low flow map, high curve map, and
quality map. The maps are represented by a grid of numbers, each corresponding to a 8 X 8 block
in the fingerprint image. Here again we must note the importance of pixel-based operations to the
successful analysis of imagery. Extracted minutiae are contained in a formatted listing of attributes
associated with each detected minutiae. This file is organized with one space delimited line per
minutiae containing its x and y coordinate, direction angle, and the minutiae quality.

3. Results

As an example of the application of this approach, and an evaluation of its utility for remote
sensing analysis and interpretation within the aeolian environment, we applied MINDTCT to a range of
remotely sensed dunefield images derived from the Mars HiRISE data acquisition campaign [98], which
produces 25 cm resolution images. However, we note that application of the MINDTCT algorithm is
not limited to HiRISE and has been successfully applied to dune images from a wide range of Martian
imagery sources including the MRO Context Camera (5.5 m resolution) and the Mars Orbiter Camera
(MOC 1.5 to 12 m resolution). As well, we note that MINDTCT has been successfully applied over a
range of terrestrial image types ranging from Landsat (14.8 m panchromatic and ~28 m multispectral
resolutions) to hand held camera perspective images of centimeter-scale dune ripples. While our
approach across all of these imagery types has focused on the extraction of dune defects (terminations
and bifurcations), we note that our extraction process, in concert with other tools within the MINDTCT
processing evironment and a Geographic Information System (GIS) spatial analysis environment may
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also be used to extract dune crestlines, their local direction, and the spatial organization of both defects
and crests.

3.1. Application of MINDTCT to Remotely Sensed HiRISE Imagery of Martian TARs

To evaluate MINDTCT in its raw state we first applied MINDTCT to a high-resolution image of a
simple TAR field in an ~1 km diameter crater located on a delta within Jezero Crater (Figures 4 and
10a). TARs crests average ~25-27 m of separation so at a pixel resolution of 25 cm/pixel the average
pixel spacing is ~100-110 pixels. This is ~12-14x% the resolution of the ten print fingerprint images
MINDTCT is tuned to. Figure 10b shows the results of the extraction process with 136 defects extracted.
Misplacement of both bifurcations (green) and terminations (red) as well as missed defects of both
types, especially along the edge of the TAR field, are readily apparent.

b.

Figure 10. a. Unnamed crater Jezero delta. High Resolution Imaging Science Experiment (HiRISE)
Image ESP_037396_1985. Map projected scale 25 cm/pixel. North is up. Acquired 19 July 2014.
(Image NASA/JPL/University of Arizona). b. Defects extracted using the full resolution image
(3088 x 2280 pixels). Green circles and red squares are bifurcations and terminations respectively.
Defects missed by the MINDTCT algorithm not shown.

With the problems introduced by pixel resolution and edge issues in mind we used MINDTCT
in concert with preprocessing of raw digital images to analyze TARs of different types at four
localities on the Meridini Plain Mars Exploration Rover (MER) Spirit landing site (Figure 11) (Image
ESP_037709_1650 NASA/JPL/University of Arizona). We chose these four localities from over 300 TAR
occurrences to specifically evaluate the ability of MINDTCT to extract defects from different TAR types
(defined below in Table 2), image resolutions and complexity, as well TAR spacing and field complexity.
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ESP_037709_1650_RED

NASA/JPL/University of Arizona MRO/HIRISE

Figure 11. Meridini Plain MER Spirit landing and exploration site. Four TAR test sites indicated.

Site F275-276 on the southern flank of the Columbia Hills consists of a simple TAR field within a
poorly defined crater (Figure 12). TARs at this locality are generally oriented N/S with crests spaced
~2.5 m apart. These TAR and image characteristics produce a ~10-pixel TAR spacing at the raw image
resolution (Figure 12a) which is close to the native MINDTCT tuning. There is some scanline noise
in the image generally oriented N/S and while resolution is 0.25 cm/pixel, this portion of the raw
image (Figure 11) exhibits some graininess and appears slightly degraded. Overall this image, both in
appearance and crest spacing appears more like a raw 10-print fingerprint image (Figure 1f) than other
TAR fields that we analyzed.

MINDTCT analysis (Figure 12b) resulted in the extraction of 123 defects with 71 terminations and
52 bifurcations (Termination to Bifurcation Ratio (T/B) ~1.37). With few exceptions, MINDTCT extracted
all the interior defects correctly. Like the previous example MINDTCT missed some terminations at the
edge of the TAR field but the percentage correctly detected improved to ~48% capturing 31 terminations
at the edge of the field while missing ~33 terminations. Image enhancement using a combination of
smoothing, despeckling and thresholding in Image] [99] (not shown) improved both the detection of
local flow and contrast at the field edge, capturing ~60 to 75% of the field edge terminations depending
on the combination of enhancements used.
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a. b.

Figure 12. Site F275-276 (175.615°, —14.633°, Projection GCS_Mars). a. Full resolution image
(25 cm/pixel). TAR spacing in image pixels approximates MINDTCT input fingerprint ridge spacing.
b. Defect extraction. Color key same as Figure 10. Radiating lines represent defect orientation.

Table 2. TAR classification system [100,101].

Crest Pattern ~ Topographic Control

Simple Confined
Forked Controlled
Sinuous Influenced

Barchan-like

Networked Independent

Site L09-10 (Figure 13a) is a TAR field within a double crater with a low dividing ridge. TAR
spacing is ~2.75 m which is equal to ~13 pixels at the raw image resolution. Unlike the relatively
simple TAR structure exhibited at Site F275-276, this field is more complex with indications of an
interference pattern between the two subfields, branching structures, and short connecting low ridges
perpendicular to the primary TAR orientation.

Figure 13. Site L09-10 (175.613, —14.514 decimal degrees, —260,101.2515 m, —860,177.3776 m, Projection
GCS_Mars). a. Raw image. b. Enhanced MINDTCT processed image. Color key same as Figure 10.

Analysis of the field with MINDTCT resulted in the extraction of 245 defects with 141 terminations
and 104 bifurcations (Figure 13b). The T/B ratio of ~1.35 suggests a tendency towards a forked pattern.
A variation in the defect direction horizontally across the image and an abrupt 90-degree change in
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the upper right of the image potentially complicate defect extraction. Unlike the prior extraction
issues with algorithmic edge effects, it appears that MINDTCT correctly extracted most terminations at
the edge of the field. This is likely due to the higher contrast between the field and the edge of the
double crater.

Site L188 (Figure 14a) illustrates a far more complex TAR field with sinuous features, significant
directional variability and crest spacing, and a networked structure. Dune spacing varies from 2.0
to 3.0 m equating to a pixel spacing of eight to 12 pixels. The western edge of the field has excellent
contrast while other portions of the edge of the field are characterized by low contrast and poorly
defined crests.

MINDTCT extracted 351 defects, with an almost equal quantity of terminations (180) and
bifurcations (171) (T/B ~1.05) (Figure 14b). In areas where the underlying TAR structure resembles a
fingerprint (Figure 14b; lower left and upper right) MINDTCT performs well. However, in the portions
of the field that are sinuous (lower right) or networked (upper center) MINDTCT performs poorly.
This is potentially indicative of patterns that differ significantly from the regular spacing, roughly
parallel ridges and noncrossing structure that characterizes standard MINDTCT 10-print input.

Figure 14. Site L188. (175.64, —14.727 decimal degrees, —258,319.587 m, —872,801.8553 m, Projection
GCS_Mars). a. Raw image. b. MINDTCT processed image. Color key same as Figure 10.

As a final test of MINDTCT we selected a TAR field at Site L02 (Figure 15a) that exhibited a
complex combination of ridge types and spacings. The spacing of much of the TAR field ranges from
2 to 3 m. The exception is the central portion of the field which has both a different structure and
well-defined ridges with an ~10 m spacing. These larger features exhibit a branching structure as well
as smaller narrow crests radiating at rightangles to the main crest lines.



Remote Sens. 2019, 11, 1060 16 of 24

e.

Figure 15. Site L02. (175.561, —14.53 decimal degrees, —263,485.6683m, —860,874.5724m, Projection
GCS_Mars). a. Raw image. 25 cm/pixel. b. Defect extraction. ¢. Zoom of field with a combination of
sinuous and crossing ridges. d. Zoom of field with primarily crossing pattern. e. Zoom of field with
primarily linear ridges. f. Zoom of central region with widely spaced ridges and crossing structure.
Color key same as Figure 10.

The results (Figure 15b), as expected from the prior examples, display a high degree of variability
depending of the spacing, structure and TAR type. A large number of defects (1314) were extracted
with type and quality varying significantly. The termination/bifurcation ratio (T/B) for the entire image
is ~0.98 (651/663), however it is clear from Figure 15c—f that this ratio varies considerably. Portions of
the field with a combination of sinuous and crossing ridges (Figure 15¢) are dominated by terminations
with a T/B of ~1.4, while other parts of the field exhibit a hatched pattern (Figure 15d) with far more
terminations than bifurcations (T/B ~1.7). Portions of the field with primarily linear ridges (Figure 15e)
are characterized by T/B ratios ranging from ~0.5 to 0.7. Defects on the widely spaced ridges of central
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portion of the image (Figure 15f) were poorly captured, however the closely spaced ridges that branch
off of them were partially captured.

Our results suggest that further refinement of the MINDTCT algorithm, with specific tuning for
imagery of aeolian features, may be required for before it can be applied to TAR fields with variable
complexity and scale. However, and even with this constraint, it is clear that MINDTCT output,
through quantification of the T/B ratio across different portions of complex fields, may be useful in
determining their underlying spatial pattern. This spatial patterning, as expressed in the organization,
relative occurrence, and T/B ratio [29,67], is potentially a measure of underlying physical processes that
formed them. Quantification of TAR field metrics therefore can aid our understanding TAR formation
and evolution.

3.2. Extraction Enhancement By Tuning MINDTCT

Clearly, the application of MINDTCT to aeolian features is just a first step towards more robust
feature extraction methodologies. Many defects are located inaccurately or not detected at all.
In Figures 10b and 14b the total lack of extraction in portions of the image where TAR crests are widely
spaced indicates that the algorithmic approach of MINDTCT does not work on high resolution images
with a large number of pixels between crests.

To improve the application of the MINDTCT algorithm, and assuming, as noted above, that the
underlying programming is tuned specifically to normal 10-print fingerprint inputs, we resampled
the Figure 10 TAR image such that the average pixel spacing between TAR crests matched that of
fingerprint ridges (eight pixels). Namely we resampled the data in Image] [99] (Image-> Transform->
Bin-) using a 10X resample and a mean operator. The results (Figure 16) show a realistic extraction
of terminations (25) and bifurcations (18). This extraction is best in the center of the field but is
inconsistent at the upper and lower edges of the field, failing to capture 42 terminations at the edge
of the field and 8 bifurcations. Manually adding these missing 42 terminations and 8 bifurcations
produces a termination/bifurcation ratio (T/B) of 2.62 which conforms to the simple to forked class of
Balme et al. [100,101]. MINDICT found fewer defects in the resampled image, but their locations and
distributions are far more even and accurate, even though the software did not identify a majority of
field edge terminations.

Figure 16. MINDTCT extraction from a resampled image (binned by 10 pixels). Green boxes
(terminations) and red circles (bifurcations) with direction indicated by vectors from their center points.

This result is not dissimilar to incomplete extraction of fingerprint minutiae at the edge of a
10-print image. Figure 17 illustrates an extraction from a 10-print (f0275_02.png). Here most defects in
the center of the image are correctly extracted. Because the algorithmic approach of MINDTCT views
the edge of each fingerprint ridge relative to an adjacent unpopulated field as neighborhoods where no
valid ridge flow exists and with low contrast and low flow as defined in Table 1, defects are rarely
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defined in low contrast areas. The few defects found at these locations are usually considered to be of
poor quality and normally are not used in fingerprint matching algorithms [38,102-106].

Figure 17. Fingerprint minutiae extraction. Image f0275_02.png from the NIST fingerprint database [41].
Note the lack of termination extraction at the edges of the fingerprint like that seen in the TAR extraction
in Figure 16.

4. Discussion

The application of fingerprint minutiae extraction software to remotely sensed dunefield imagery
provides several advantages to the dune defect extraction process over existing methods: ease of use,
well-developed and researched processing environment [32], availability of the software at minimal
or no cost [32,99], and the ability for the software to run within many processing environments.
Nevertheless, the extraction of minutiae from fingerprints [33,102] as well as defects from satellite
derived dune field images remains a difficult task [20,29]. A future application of our methodology
could be to use extracted defects to more objectively classify TAR morphologies. Past efforts have been
made to categorize TARs [100,101,107]. These categorization systems broadly address two features of
the TARs—(1) relative spatial context and (2) crest patterns (Table 2)—both of which are important in
understanding the formative and evolutionary processes that produce TARs. However, at present,
classifying TARs by either of these schemes remains a time-intensive and subjective manual endeavor.

Building a database of TARs and their spatial arrangement would potentially allow for the
correlation of defect properties in TARs (e.g., termination/bifurcation occurrence ratio, defect orientation
and location) with their corresponding ridge crest pattern. These connections would provide a more
objective method for categorizing TARs by ridge crest pattern (Table 3). A generalized example is
provided in Figure 18.

Table 3. Expected TAR defect properties.

Balme et al. [101] Expected Defect Properties
Crest Pattern Termination Termination Bifurcation Bifurcation Termination:
Categories Frequency Orientation Frequency Orientation Bifurcation Ratio
Simple Many Unidirectional None N/A Very high
Forked Many Unidirectional Few Unidirectional High
Sinuous Many Unidirectional Few Unidirectional Intermediate
Barchan-like Few Bidirectional Many Bidirectional Low

Networked Few None Many Bidirectional Very low
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(c)

Figure 18. TAR representational schemes. (a) (Traced) Generalized TAR crests following the
categorization scheme of [101]. (A) Simple, (B) forked, (C) sinuous, (D) barchan-like, and (E) networked.
(b) (Annotated) Generalized TAR crests with annotated defects. Terminations (red circles) and
bifurcations (green circles) are marked. More than 400 defects were located in these five small examples.
(c) (Defects) Extracted defects from each TAR morphology. Even without direction information, each
morphology’s defects are distinctly different, with the exception of forked vs. sinuous TARs.

5. Conclusions and Suggestions for Future Research

Establishing a link between crest defects, which are well documented and understood in terrestrial
environments, and TAR morphologies, which are distinct, but poorly understood, could provide
a new and robust perspective into the formative history of TARs. However, further refinement
and automation of the ‘fingerprinting” extraction technique from satellite imagery is required before
rigorous large-scale studies of this type can be conducted.

As we have shown, the difficulty increases when high resolution imagery does not conform to
the ‘tuned’ 10-print resolution used by MINDTCT. These issues are exacerbated when the dune field
is complex with a mix of features that do not conform to the characteristics of a fingerprint, namely
perpendicular ridges, and crossing structures. However, even with these constraints, MINDTCT
applied to “properly formatted” remotely sensed dune/TAR imagery was shown to extract aeolian dune
field defects quickly and accurately.

‘Properly formatted” in our approach in essence implies that the original dune/TAR image must
be reformmatted to look more like a fingerprint. This includes (1) redefining an image of dune
crests, which are typically sharp edged and often indicated by rapid brightness change (sunlit/shadow
transitions), through filtering and thresholding, such that they resemble the 10-print dark ridge/light
valley format of fingerprint images; (2) altering the dune image resolution through resampling such that
it matches the native resolution of the 10-print image (~8-10 pixel spacing between ridges); (3) altering
image quality and removing noise through despeckling when necessary to remove fine detail that
‘confuses’ the MINDTCT algorithm; (4) dealing with edge effects where the MINDTCT algorithm
fails to capture defects in low-contrast, low-directionality, and low-flow portions of the image; and
(5) dealing with defects in critical zones of the dune field (such as singular points) that are deleted
by MINDTCT even though they may be correctly detected in the initial subroutines [32,103,104] or
spurious defects outside of the dune field area [104]. In addition to these issues, the quality of the
defects should also be assessed to determine how estimated defect positions and angles differ from
the real defect characteristics [29,108]. Erroneous detections, including identifying both missing and
spurious defects may be dealt with using post-processing techniques [32,109-111].
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Our work suggests that additional ‘tuning’ of the MINDTCT source code, such that it can better
be applied to remotely sensed imagery for dune defect extraction, is possible. While we used remotely
sensed imagery of Transverse Aeolian Ridges (TARs) on Mars to illustrate our approach, the algorithmic
formulation of MINDTCT may also be appropriate for extraction of defects from imagery for a wide
range of aeolian features from fine-scale ripples to fields of longitudinal and transverse dunes.
We further note that this technique could also, through discipline specific modifications, be applied to
remotely sensed images of features exhibiting defects ranging from crevasses in ice sheets [112-114] to
bedform ripples in streams [115,116].
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