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Abstract: Land use/land cover change (LUCC) is the most direct driving force of landscape pattern
change. The Zoige Plateau is a natural ecosystem with the largest high-altitude swamp wetland in
China and its land use pattern has undergone great changes in recent years, but how the changes
of each land use type affect the landscape pattern is uncertain. Here, we used the object-oriented
method to extract land use information in 2015. Then, combined with land use data, the land use
change characteristics from 2000 to 2015 were analyzed. We used the correlation analysis method to
analyze the effects of land use changes on landscape pattern systematically. Three key conclusions
were reached. (1) Land use information for the Zoige Plateau could be extracted with high accuracy
by combining the object-oriented method and support vector machine (SVM). The overall accuracy
was 93.2% and the Kappa coefficient was 0.889. (2) The comprehensive dynamic degree of land
use was the highest from 2010 to 2015. From 2000 to 2015, the wetland area decreased the fastest
because 57.05% of the wetlands were transferred out. Construction land increased the fastest, and the
transferred in area from grassland and farmland were the main reason. (3) The effects of unused
land, farmland, and construction land on the overall landscape pattern were stronger than that of the
other types, among which farmland had the most significant impact (with a correlation coefficient of
0.959, p < 0.001). The change of unused land was the most highly significant factor associated with
the landscape area pattern, and both the water body and unused land showed strong correlations
with landscape shape pattern change. This suggested that the effects of land use types occupying a
relatively small area on the landscape pattern were intensified. This study will provide guidance for
the environmental management of local land resources and other natural ecosystem areas.
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1. Introduction

Land use and land cover change (LUCC) is a basic parameter to quantify changes in the natural
environment and to measure the impact of human activity [1–4]. As one of the decisive factors affecting
the global ecosystem and the most direct manifestation of global change [5–7], LUCC has always
been an important concern in global climate change and global environmental change research [7–9].
Understanding the LUCC could support the implementation of effective strategies to improve the
stability of ecosystem functions and services [3,10–12].
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The correct acquisition of land use information is the basis of land use change analysis. Due to the
timeliness and periodicity of remote sensing technology, LUCC monitoring by remote sensing has
become a conventional method [13]. The rapid development of new satellite sensors and automatic
techniques for classification has enabled researchers to expand the scale of studies from local surveys
to macroscopic regional and global monitoring [8,14,15]. Pixel-based and object-based techniques are
the two main approaches generally used for classification. The pixel-based method relies mainly on
the spectral characteristic of individual pixels, while the spectral, spatial, texture, color, and other
attributes are comprehensively considered in the object-based method [16,17]. In view of this,
object-based classification is generally better than that based on pixels, especially for high resolution
images [18]. Hence, object-oriented analysis (OOA), also referred to as object-based image analysis
(OBIA), is becoming a popular research direction, and good results have already been achieved [17–19].

LUCC is the main determinant of the landscape spatial pattern and the most direct driving force
of changes in the surface landscape pattern [20,21]. As human populations and their demands for
resources grow, land cover has been directly altered by human activities. Research has indicated
that 60% of global land cover change was directly associated with human activities [15,22] and that
natural systems in a relatively fragile environment are more susceptible to human activities [23].
Thus, natural ecosystems being sequentially transformed in a predictable sequence is referred to as
land-use transition [10]. The ways in which humans use land are critical to the landscape pattern and
processes. Therefore, understanding the effect of LUCC on the landscape pattern is always one of the
core issues of LUCC science [24]. Landscapes are not affected by single factors acting individually
and independently. Rather, they respond to multiple factors acting across a wide range of scales
and which may interact [25]. The change of any type of land use, whether large or small, is likely
to have an impact on the landscape pattern in a region, especially for natural ecosystems that are
sensitive to change. Determining what the land use pattern will be in the future, or should be to
optimize competing goals, is not easy [24,26,27]. A landscape pattern analysis based on geometric
characteristics can effectively reflect the spatial pattern of LUCC and its effect on the influence of
landscape ecology [24,28]. Landscape pattern indices are the most commonly used methods to
reflect landscape changes [29,30]. Most landscape pattern response analyses for natural ecosystems
have simply analyzed the characteristics of the landscape pattern index on the basis of land use
information extraction, and usually analyze the effects of major land use types [31–33]. It is true
that in the natural ecosystem, grassland, forest land, and wetlands provide greater ecosystem service
values [34], but due to the impact of human activities, the effects of the increase of land use types,
such as construction land and farmland, on the whole natural system should not be ignored [35].
In natural ecosystems, changes caused by small land use types are likely to play a greater role in the
overall landscape pattern. Therefore, under the influence of climate change and human activities, it is
necessary to comprehensively consider the possible impact of the change of each land use type on
the overall landscape pattern, so as to systematically analyze the effects of land use change on the
landscape pattern.

Our study focused on the Zoige Plateau for three main reasons. First, it is home to the most
important plateau wetland in China [36], which plays an important role in water conservation
and supply, and in ecological balance as well [37]. Second, land use in this region has changed
dramatically as a result of its relatively fragile ecological environment and the acceleration of human
activities [23,38–41]. The progress of previous studies has been relatively slow, with most research
conducted before 2010 [31,32,41,42]. In addition, previous studies of land use information extraction
were mostly based on visual interpretation [34,41], a simple supervisory classification [26], or failed to
elaborate upon the extraction method [14]. Thirdly, most landscape pattern response analyses simply
analyzed the characteristics of the landscape pattern indices on the basis of land use information
extraction [31,32,42]. Further, how the changes of different land use types affect the overall landscape
pattern, and how the changes of different land use types contribute to the landscape pattern in the
Zoige Plateau have not been systematically studied. Three specific research aims are: (1) explore the
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applicability of the object-oriented method based on the Landsat 8 operational land imager (OLI) for
land use information extraction in the Zoige Plateau; (2) analyze the temporal and spatial changes of
land use in the Zoige Plateau from 2000 to 2015, and (3) analyze the effects of land use changes on
landscape patterns systematically. This study has great practical significance for understanding the
status of land use in the study area, and the results could provide guidance for the sustainable use of
local land resources and the construction of regional ecological civilization.

2. Profile of the Study Area

The Zoige Plateau is located at the source area of the Yellow River in the northeastern part of the
Qinghai-Tibet Plateau [43,44]. The ecological security of the rich grassland and wetland resources in
the Zoige Plateau is related to the social and economic development of the western, Yellow and Yangtze
River Basins [42,45,46]. In this study, Zoige, Hongyuan, and Aba counties in Sichuan Province, and
Maqu County in Gansu Province were selected as research areas (31◦50′–34◦30′ N and 100◦40′–103◦40′

E) (Figure 1). The climate of this region is characterized by a typical humid/semi-humid monsoon
climate in the continental cold-temperate zone. The annual precipitation is 400–800 mm and the annual
average temperature is 1.6 ◦C [34]. The study area is rich in tourism resources, including Zoige Wetland
Nature Reserve and Huahu scenic area. The process of tourism development has inevitably had an
impact on the land use change and landscape pattern.
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3. Data and Methods

3.1. Data Sources and Processing

The Landsat 8 operational land imager (OLI) has a medium spatial resolution and operates in
multiple wavebands, providing an abundance of spectral band information. Landsat 8 OLI was
therefore used as the data source for the extraction of land use information from 2015 in the Zoige
Plateau. The specific Landsat 8 OLI band information is shown in Table 1. With respect to the data
quality and imaging effects, Landsat 8 OLI data for 2015 covering the study area were downloaded
from the United States Geological Survey (USGS, http://glovis.usgs.gov/). There were six scenes in
total, and the imaging time was from July to November when the growth status of vegetation was
good. The specific image information is given in Table 2. Prior to information extraction, Landsat 8
OLI data were processed (e.g., radiation correction, geometric correction and atmospheric correction)
to eliminate possible errors. All processing was performed using the ENVI 5.1 software. To realize the
long-term dynamic monitoring of land use changes in the Zoige Plateau, the land use data for 2000,
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2005, and 2010 were obtained from “Ten-Year Evaluation of National Ecological Environmental Change
(2000–2010)” database [47]. These data were generated through visual interpretation using Landsat
TM and HJ-1CCD satellite remote sensing images, and independent ground survey samples were used
for accuracy evaluation. The average accuracy was >86% [47], which met the study requirements of
this area.

Table 1. Spectral bands of Landsat 8 operational land imager (OLI) sensor.

Bands Wavelength (µm) Resolution (m)

Band 1-Coastal 0.433–0.453 30
Band 2-Blue 0.450–0.515 30

Band 3-Green 0.525–0.600 30
Band 4-Red 0.630–0.680 30

Band 5-NIR (Near Infrared) 0.845–0.885 30
Band 6-SWIR (Short-wave infrared) 1 1.560–1.651 30

Band 7-SWIR2 2.100–2.300 30
Band 8-Pan 0.500–0.680 15

Band 9-Cirrus 1.360–1.390 30

Table 2. Basic details of the Landsat 8 OLI images.

Type Path Row Time Cloud Cover (%)

OLI 130037 20150706 8.12
OLI 131036 20150729 1.9
OLI 131037 20150729 6.97
OLI 131038 20151102 0.74
OLI 132036 20150922 0.85
OLI 132037 20150922 2

Additionally, Google Earth images were used for selecting validation samples. We also conducted
a field survey of Zoige and Hongyuan counties in 2016 and got an understanding of the land use status
of the area by sample collection and consultation with local experts. The basic geographic data included
vector diagrams of the administrative and township divisions in the four counties, which were on
the 1:250,000 scale. Projection coordinate information and geographic coordinate information were
edited to unify all data for the same coordinate system and thus to avoid data analysis errors caused
by inconsistent data coordinates.

3.2. Methods

3.2.1. Land Use Information Extraction by the Object-oriented Method

The whole classification process was completed using the feature extraction module in the ENVI
5.1 software. The detailed processes were as follows.

The first step was to use “Ten-Year Evaluation of National Ecological Environmental Change
(2000–2010)” database to determine the seven types of land use in the study area, including forest
land, grassland, wetland, water body, farmland, construction land, and unused land (e.g., bare rock,
bare soil, and saline-alkali land). The seven land use types represent the ground object information in
the study area. In addition, these surface objects showed different colors, shapes, and other features
which could be easily distinguished in the Landsat 8 OLI images. For example, wetland was brown
and distributed as a combination of grassland and water, while the water body was blue or dark blue.

The second step was to determine a reasonable combination of segmentation level and merge level
for high precision information extraction. Through image segmentation and merging, the images were
divided into objects. An object represents a combination of pixels with the same or similar attributes
within a range. Selecting high-scale image segmentation will produce fewer patches, while a low-level
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image segmentation will produce more patches. When the threshold is too low, some features will
be segmented by wrong images, and a feature may also be divided into many parts. We solved this
problem by merging. There were two segmentation algorithms (edge and intensity) and two merging
algorithms (full Lambda schedule and fast Lambda) in the Feature Extraction module. We selected
the edge algorithm and full Lambda schedule algorithm, respectively. A trial-and-error method was
carried out and many repeated experiments of scale combinations between segmentation and merging
were adopted to determine the optimum scale. Figure 2a shows the segmented result of optimum
segmentation. The segmentation of the image in the study area was considered to be reasonable,
with a relatively high internal homogeneity, clear boundary contour, and good representativeness.
Figure 2b is the segmented result of over-segmentation. Segmented segments/objects were cracked
and the separability between different image objects was low. Figure 2c is the segmented result of
under-segmentation, where different kinds of segments/objects were grouped as an object. This meant
subsequent information extraction could not be performed correctly. In order to more clearly represent
the segmentation effect at the optimal scale, we chose the segmentation images of the representative
region for analysis (Figure 3). In Figure 3a, adjacent farmland pixels and construction land pixels
could be clustered in an object at this scale, respectively, which demonstrates relatively high internal
homogeneity. The region in Figure 3b shows the distribution of grassland, water body, and construction
land. The main land use types of the region in Figure 3c are unused land, wetland, and grassland.
Grassland and forest land are mainly shown in Figure 3d. On the whole, a good segmentation effect
was achieved in both the areas with complex land use types and with a small distribution area of a
certain land use type based on Landsat 8 OLI images. The parameter combination at the scale level of
30 and merge level of 60 was determined as the optimum segmentation.
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which contains mixed pixels.
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Figure 3. Image segmentation sketch diagrams of representative areas based on Landsat 8 OLI. The red
line represents the object border. (a) Farmland, construction land, and grassland; (b) grassland,
water body, and construction land; (c) unused land, wetland, and grassland; (d) grassland and
forest land.

The third step was to establish marks for the seven types of surface features. The object training
samples were selected by a visual interpretation of the segmented images. A total of 893 training objects
were selected in this study, including grassland (213), forest land (144), wetland (91), water body (55),
farmland (30), construction (236), and unused land (124). All attributes including spectral, texture,
and spatial attributes of the sample were selected for the following supervised classification in this study.

The fourth step was to use the two classifiers: K-nearest neighbor (KNN) and support vector
machine (SVM) for land use classification. The KNN method classifies the image according to
the Euclidean distance between the pending number and the elements in the training area in the
N-dimensional space [48]. SVM is a supervised learning algorithm that takes the set of training data
and marks it as part of a category, then predicts whether the test document is a member of an existing
class [48]. The default values in ENVI 5.1 for each parameter of these two classifiers were adopted in
this study.

The fifth step was to select the verification samples by visual interpretation using
very-high-resolution satellite images available in Google Earth. Because we selected training samples
based on polygon units, we also selected the polygonal verification samples in the Google Earth images
with nearly four meters resolution in order to match the unit between the two (Figure 1). The precision
results were characterized by a confusion matrix. The classification result with the highest accuracy
between the method of SVM and of KNN was selected as the final classification result. Considering
that there was a certain process and time interval between the changes of land use, it was feasible to
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verify the classification results of 2015 by using the on-site information of 2016. Therefore, we further
verified the results by using the filed survey samples.

3.2.2. Land Use Change Analysis

(1) Comprehensive dynamic degree of land use
The comprehensive dynamic degree of land use refers to the change in the extent of the whole

land use type within a certain time range in a study area. It can reflect the comprehensive impact of
social and economic activities on land use changes in a region [49]. It is expressed as:

S = (
m∑

n=1

∆si− j/si) × 1/t× 100% (1)

where si is the total area of land use i at the beginning of monitoring, ∆si− j is the total area of land
use i converted into other land uses within the period from the beginning of monitoring to the end of
monitoring, and t is the time period.

(2) Dynamic attitude of land use
To quantitatively describe the range, rate, and differences of land use change over a specific time

period, the concept of dynamic attitude was introduced by referring to LUCC research. The dynamic
attitude of a single land use type expresses the quantitative change of a certain land use type within a
certain time range in a certain research area [49], and is expressed as:

Lc = (Ub −Ua) ×U−1
a × T−1

× 100% (2)

where, Lc is the dynamic attitude of the land use type over T years. Ua and Ub are the area of the land
type at the beginning and the end of the study, respectively.

(3) Transfer matrix of land use
The transfer matrix of land use is an analysis method used to describe the transformation between

land use types. It can describe the direction of regional land use change and the source and composition
of land use types at the end of the study period. It can not only reflect the structure of land use types at
the beginning and the end of a study period, but also reflect the transfer and change of land use types
during the study period. In this study, the land use types were merged using the dissolve command in
ArcGIS10.0 software, and then an overlay analysis was conducted using the intersect command to
extract the patches where land use types had changed. The area of these patches was then counted.
Finally, the land use transfer matrix was obtained and carried on the spatial display.

3.2.3. Analysis of the Effects of LUCC on Landscape Pattern

LUCC is the main determinant of the landscape spatial pattern and the most direct driving force
of changes in the surface landscape pattern. Changes in landscape pattern index were selected to
analyze the effects of land use changes on landscape pattern in this study. An analysis of the landscape
pattern index generally includes three scales, namely landscape, class, and patch. In this study,
15 landscape pattern indices were selected, which could be divided into four categories, namely area,
shape, accumulation and dispersion, and diversity, to represent the landscape pattern of the Zoige
Plateau from different perspectives. The landscape pattern index information is presented in Table 3.
The specific meaning of, and formula used to calculate each landscape pattern index is given in the
description file of the Fragstats 4.2 software [50].
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Table 3. Landscape pattern index information [50–52].

Category Index Name Description

Area
Number of patches (NP) Total number of patch.

Landscape fragmentation index (LFI) The ratio of number of patches and the area of corresponding the landscape.
Patch density (PD) Number of patches per unit area.

Shape
Landscape shape index (LSI) A standardized measure of patch compactness that adjusts for the size of the patch.

Perimeter area fractal dimension (PAFRAC) Non-randomness or degree of aggregation for different patches.

Mean fractal dimension (FRAC_MN) The shape complexity of patches, which approaches 1 for shapes with simple
perimeters and 2 for complex shapes.

Accumulation and
dispersion

Mean patch contiguity index (CONTIG_MN) It equals the average contiguity value for the cells in a patch.

Proportion of like adjacency (PLADJ)
It equals the number of like adjacencies involving the focal class, divided by the total
number of cell adjacencies involving the focal class; multiplied by 100 (to convert to a

percentage). It measures the degree of aggregation of the focal patch type.

Interspersion and juxtaposition index (IJI) The measurement of evenness of patch adjacencies and the degree of intermixing of
patch types.

Patch cohesion index (COHESION) It is proportional to the area-weighted mean perimeter-area ratio divided by the
area-weighted mean patch shape index.

Effective mesh size (MESH) The ratio of square of summed patch areas and the total area. It expresses the
fragmentation independent of the extent of the studied landscape.

Splitting index (SPILIT) The number of patches obtained with subdividing the landscape into equal-sized
patches based on the effective mesh size.

Aggregation index (AI)
The ratio of the observed number of like adjacencies and the maximum possible

number of like adjacencies given the proportion of the landscape comprised of each
patch type.

Diversity Shannon’s diversity index (SHDI) Uncertainties and landscape heterogeneity of patches.

Simpson’s diversity index (SIDI) It equals 1 minus the sum, across all patch types, of the proportional abundance of
each patch type squared



Remote Sens. 2020, 12, 14 9 of 21

Firstly, we calculated 15 landscape pattern indices of the landscape scale using Fragstats 4.2
software [50] to analyze temporal changes of the overall landscape pattern in the Zoige plateau.
Furthermore, we calculated 13 landscape pattern indices of the class scale to see how the changes
of different land use types affected the overall landscape pattern. The SHDI and SIDI were not
included because they did not have the results of the class scale. The landscape pattern index rate of
change for different periods, namely, 2000–2005, 2005–2010, 2010–2015, and 2000–2015, was calculated.
Pearson correlation analysis was conducted between the results of the 13 landscape pattern indices rate
of the class scale and the corresponding landscape scale results in order to determine the denominating
factors. However, the ecological significance of some landscape pattern indices is consistent, so we
further analyzed the impact of LUCC on different types of landscape characteristics. The index change
rate results of all landscape patterns in one category of each land use type were taken as a whole,
and then the Pearson correlation between the landscape pattern at the class and landscape scales was
analyzed so as to determine the effects of LUCC on the different categories of the landscape pattern
indices. For example, in order to analyze how grassland change affected the area category of landscape,
we took the change rates results of four time periods of the three landscape pattern indices (NP, LFI,
PD) representing area category of grassland as a whole, and the corresponding results of the landscape
scale as a whole, respectively. And then the correlation between two was analyzed. The effects of
LUCC on the landscape pattern in different time periods were also determined in this way. The analysis
process was completed using the SPSS statistical software.

LandR = (LandE − LandB)/LandB (3)

where, LandR is the rate of change of the landscape pattern index, LandB is the initial value of the landscape
pattern index in the analysis stage, and LandE is the later value of the landscape pattern index.

4. Results

4.1. Assessment of Classification Accuracy

The comparison of classification accuracy between SVM and KNN is implemented and shown in
Table 4. The results showed that both the overall accuracy (93.2%) and Kappa coefficient (0.889) of
SVM were higher than those of the KNN method (57.7% and 0.456). With respect to individual classes,
except that the user’s accuracy of water body obtained by KNN method was greater than the result
of SVM method, all other SVM classification results were better than KNN. A total of 35 filed survey
samples was available (Figure 1), 30 of which were correctly classified in the result of the method of
SVM, with a classification accuracy of 85.7%. There were 19 samples of wetland, 16 of which were
correctly classified with a classification accuracy of 84.2%, and 3 of which were wrongly classified as
water bodies. The land use classification results obtained by combining the object-oriented method
and SVM were used to provide land use information for the research area in 2015. However, both SVM
and KNN classifications showed lower user accuracy for forest land. Possible reasons for this are
explained in the discussion section. In order not to affect later analysis, we manually modified the
areas with obvious errors in forest land classification. Combined with land use data, maps of the land
use type distribution in the Zoige Plateau in 2000, 2005, 2010, and 2015 were obtained, and the results
are shown in Figure 4.



Remote Sens. 2020, 12, 14 10 of 21

Table 4. The comparison of classification accuracy between SVM and KNN.

SVM KNN

User’s Accuracy
(%)

Producer’s
Accuracy (%)

User’s Accuracy
(%)

Producer’s
Accuracy (%)

Grassland 99.54 98.64 96.94 34.75
Farmland 91.62 99.52 57.53 79.64

Forest land 42.19 100 33.72 49.45
Unused land 99.77 100 78.16 85.82

Construction land 100 100 69.78 56.14
Wetland 100 86.52 95.27 88.35

Water body 70.95 100 98.34 70.87
Overall accuracy (%): SVM = 93.2, KNN = 57.7

Kappa: SVM = 0.889, KNN = 0.456
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2010 are obtained from “Ten-Year Evaluation of National Ecological Environmental Change (2000–2010)”
database [47]. The data for 2015 is the classification result based on the object-oriented method.
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4.2. Characteristics of the Distribution of Land Use Types

Grassland was widely distributed throughout the study area. Forest land was mainly distributed
in the east of Zoige County, the southeast of Aba County, and the northwest of Maqu County. There was
a belt of wetland distributed throughout the area. Zoige County was the main area where wetland
was distributed. Farmland distribution was relatively concentrated, and was mainly distributed in
Aba County along the river. The distribution of construction land was relatively scattered, but mostly
concentrated along the river. Unutilized land, such as bare rock, was mainly distributed in the
northwest of Maqu County and the northeast of Aba County. In recent years, other areas have also
developed scattered areas of bare rock.

Figure 5 shows the results of the proportion and rate of change in the proportional area of each
land use type from 2000 to 2015. Grassland covered the largest area among the seven land use types,
with the proportional area maintained at about 70% from 2000 to 2015. The average ratio of forest land
area to total area was 16.8%, displaying a fluctuating trend. Wetland was the third largest land use
type in the study area, with an average area ratio of about 9%. Although the area of wetland increased
between 2010 and 2015, the area in 2015 was still almost 300 km2 lower than in 2000. The proportional
areas of construction land, unused land, and farmland were all relatively small, but there was an
increasing trend for all three land use types over the 15-year study period. The area of construction
land increased the most in the 15 years, with a proportional area change rate of 223.92%. From the
analysis, it was apparent that, over the 15-year study period, the area of construction land, unused land,
and farmland increased substantially, while the area of natural ecosystems decreased to varying
degrees, among which wetland changed most significantly.
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Figure 5. The upper part of the solid red line shows the results of rate of change in the proportional
area of different land use in the Zoige Plateau in 2000–2015. The rate of change in the proportional area
refers to the rate of proportion change of the land use type in two time periods. The below part of the
solid red line show the results of land use proportional area of the Zoige Plateau in 2000–2015.

4.3. Characteristics of Land Use Change

4.3.1. Dynamic Degree of Land Use

The comprehensive dynamic degree of land use values in the Zoige Plateau in the four stages
of 2000–2005, 2005–2010, 2010–2015, and 2000–2015 were calculated as 5.27, 4.31, 6.93, and 2.20,
respectively. From 2000 to 2015, the comprehensive dynamic degree of land use in the Zoige Plateau
was high, and the rate of land use change was increasing, indicating a strong impact of social and
economic activities on land use.
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The statistical results for the dynamic attitude of each land use type from 2000 to 2015 are shown
in Figure 6. The change in the area of grassland remained basically constant over the study period,
with little overall change in area. Forest land increased rapidly with an increasing rate of 1.57% during
2005–2010, but with a decreasing rate of 0.20% during 2010–2015. The area of wetlands decreased from
2000 to 2010, and the rate of decrease accelerated with time. The area of unused land increased in both
2000–2005 and 2010–2015, with the rate of increase slowing down from 7.10% during 2000–2005 to
2.81% during 2010–2015. The rate of change of construction land was different, but it was higher than
other land use types in the same stage. The trend in the change of farmland area was similar to that of
construction land, but the rate of change was faster. The area of water body initially increased, and the
growth rate continued to accelerate from 12.75% to 15.15%. In the later stages of the period studied,
the area of water body decreased, with a 12.91% reduction rate. From 2000 to 2015, only wetland and
grassland decreased in area, with the wetland area decreasing the fastest (−0.51%). Construction land
increased the fastest (14.92%), followed by unused land and farmland (6.65% and 4.50%, respectively).
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4.3.2. Transfer Matrix of Land Use

From 2000 to 2005 (Figure 7a), 18.44% of grassland was converted to other land types,
among which the largest area was converted to forest land (9.60%), followed by wetland (6.11%).
Wetland transformation was more obvious, with 49.20% of the total wetland area converted to other
uses. Water body, farmland, and construction land all turned out to be grassland to varying degrees,
construction land being the most (73.21% of it being turned into grassland). Among the three natural
ecosystems, forest land showed the largest difference between the transferred out area and the
transferred in area in 2000–2005, and the difference was 255.38 km2.

From 2005 to 2010 (Figure 7b), the trend in the conversion of various land use types was basically
the same as that from 2000 to 2005, and the area transferred out was mainly grassland, but there was a
decrease in the proportional area of the various land use types that were transferred out. Compared with
the period of 2000–2005, the situation regarding the transfer of construction land changed a substantially.

From 2010 to 2015 (Figure 7c), the situation regarding land use changes changed substantially.
The proportion of grassland transformed into other land use types increased to 23.60%. The area of
wetland converted into other land use types was 1801.88 km2, of which 39.87% was converted into
grassland. The transfer of farmland, water body, construction land, and unused land was relatively
complex, and a relatively high proportion of the areas of these land use types was converted to other
land use types. The difference in the farmland conversion trend was the most obvious, with a reversal
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from 2005 to 2010. A total of 39.46% of the farmland was converted to construction land, accounting for
an area of 100.55 km2.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 21 
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Distribution of land use conversion during 2010–2015; (d): Distribution of land use conversion during 
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the wetlands are converted into grasslands. Other annotations also indicate such a transformation 
relationship. 

4.4. Analysis of the Effects of LUCC on Landscape Pattern 

4.4.1. Temporal Changes of the Overall Landscape Pattern 

Figure 7. Distribution of land use conversion in the Zoige Plateau. (a): Distribution of land use conversion
during 2000–2005; (b): Distribution of land use conversion during 2005–2010; (c): Distribution of land
use conversion during 2010–2015; (d): Distribution of land use conversion during 2000–2015. In the
legend, W stands for wetland, G for grassland, Fo for forest land, Wb for water body, Fa for farmland,
C for construction land and U for unused land, respectively. WG means that the wetlands are converted
into grasslands. Other annotations also indicate such a transformation relationship.

From 2000 to 2015 (Figure 7d), the transferred out area of grassland was mainly converted into
forest land and wetland, accounting for 12.51% and 7.14% of the grassland area, respectively. A total of
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57.05% of the wetlands were transferred out, with 39.22% and 15.60% converted into grassland and
forest land. The transferred out area of wetland was larger than the transferred in area, thus reducing the
total area of wetland by more than 250.00 km2. The conversion of farmland, water body, construction
land, and unused land was generally consistent with that from 2010 to 2015, and the transferred
in area was larger than the transferred out area, resulting in an increase in the four land use types,
among which construction land was the most obvious.

4.4. Analysis of the Effects of LUCC on Landscape Pattern

4.4.1. Temporal Changes of the Overall Landscape Pattern

The whole landscape of the Zoige Plateau demonstrated a trend of fragmentation,
increasing landscape diversity, and homogenization. The results of indices NP, LFI, and PD showed
an overall decreasing trend from 2000 to 2015, but showed an increasing trend from 2005 to 2015
(Figure 8a), indicating that the overall landscape fragmentation increased from 2005 to 2015. In terms
of shape category indices (Figure 8b), all the results of LSI, FRAC_MN, and PAFRAC showed an overall
trend of decline, meaning that the overall landscape shape in this region tended to be regular and
the heterogeneity became smaller. A trend of smaller FRAC_MN indicated that the landscape was
increasingly affected by human activities. Most of the indices of accumulation and dispersion category
showed an overall increase (Figure 8c), meaning that the overall landscape distribution in this area
was scattered and the degree of fragmentation became larger. The diversity indices both showed an
increasing trend, showing that the landscape in this region tended to be uniform, and the difference
between the dominant landscape elements and other landscape elements decreased (Figure 8d).
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Figure 8. Temporal changes of 15 different landscape pattern indices of landscape scale. (a) Landscape
pattern indices of the area category; (b) landscape pattern indices of the shape category; (c) landscape
pattern indices of the accumulation and dispersion category; (d) Landscape pattern indices of the
diversity category. Many of the landscape pattern indices results in the graphs have been processed to
facilitate the display of change trends. For example, the values of NP were reduced 10,000-fold.
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4.4.2. Effects of LUCC on the Landscape Pattern

We analyzed the impact of LUCC on different types of landscape characteristics (area, shape, and
accumulation and dispersion) combined with the impact on different landscape pattern index results.
The results are shown in Table 5 and Figure 9. The results indicated a significant correlation between
the seven land use types and indices of area type at different levels in the study area, mainly due to
the chaotic changes in the area of the seven land use types at different stages of the period studied.
Among them, the change in the area of unused land had the largest impact on the index of area type,
with a correlation coefficient of 0.962 (p < 0.001). This result was consistent in that the unused land had
the stronger correlation in the LFI (p < 0.01) (Figure 9). Except for construction land, changes in other
land use types could significantly affect the overall landscape shape pattern, among which grassland
had the largest impact, with a correlation coefficient of 0.993 (p < 0.001). This was also consistent
with the result that grassland was the most important land use type causing changes in PAFRAC and
FRAC_MN (Figure 9). The change of forest land was mildly significant (p < 0.10) with the aggregation
indices and land use type. The changes of both water body (p < 0.01) and unused land (p < 0.001)
showed a strong correlation with the changes of landscape area and shape. These results were also
consistent with the effect of water body and unused land on the different landscape pattern indices of
area and shape (Figure 9). Although the water body (with a proportional area of only about 1.35% on
average) and unused land occupied a small area, they were subject to changes to a large extent during
the research stage, which had significant impacts on the landscape pattern.

Table 5. Results of effects of LUCC on the different categories of the landscape pattern indices.

Category Grassland Farmland Forest
Land

Unused
Land

Construction
Land Wetland Water

Body

Area 0.706 * 0.820 *** 0.873 ** 0.962 *** 0.621 * 0.766 ** 0.768 **
Shape 0.993 *** 0.608 * 0.966 *** 0.919 *** 0.386 0.863 *** 0.816 **

Accumulation
and dispersion 0.153 −0.274 −0.360 # −0.285 0.023 −0.190 −0.230

*** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10
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which grassland had the largest impact (0.998, p < 0.001), followed by cultivated land (0.953, p < 0.001) 

Figure 9. Correlation results between the landscape pattern indices of the class scale and the
corresponding landscape scale results. The ordinate represents 13 landscape pattern indices results of
the landscape scale, and the abscissa represents landscape pattern indices results of different land use
type. Different colors indicate the correlation results between the 13 landscape pattern indices rate of the
class scale and the corresponding landscape scale results. *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10.
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4.4.3. Effects of LUCC on the Landscape Pattern at Different Time Periods

The effects of land use types at different time periods on the overall landscape pattern were also
analyzed. The analysis results are shown in Table 6. From 2000 to 2005, except for water body, all land
use types had a significant impact on the changes in the landscape pattern at this stage, among which
grassland had the largest impact (0.998, p < 0.001), followed by cultivated land (0.953, p < 0.001) and
construction land (0.940, p < 0.001). Water body had the greatest dynamic attitude in this period,
but it did not have a great impact on the overall landscape pattern, which indicated that the overall
landscape pattern responded comprehensively to changes in all land uses. At this stage, the area of the
seven land use types changed substantially, but the influence of the changes in the area of water body
was not obvious in the shape, aggregation, and dispersion indices. From 2005 to 2010, the changes in
the landscape pattern were mainly affected by the changes in grassland (p < 0.001), farmland (p < 0.05),
forest land (p < 0.05), and construction land (p < 0.05). From 2010 to 2015, there was no obvious
correlation between changes in the landscape pattern and land use changes. Over the 15-year study
period, the influence of farmland, unused land, and construction land was stronger than that of the
other land use types, which was also related to the land reclamation projects over this period. It was
apparent that land use types occupying a relatively small area could play an important role in changes
of the overall landscape pattern.

Table 6. Results of the response of the landscape pattern indexes at different time periods.

Grassland Farmland Forest
Land

Unused
Land

Construction
Land Wetland Water

Body

2000–2005 0.998 *** 0.953 *** 0.561 * 0.727 ** 0.940 *** 0.788 ** 0.268
2005–2010 0.842 *** −0.613 * −0.587 * 0.030 −0.570 * 0.428 0.288
2010–2015 0.328 −0.011 −0.325 −0.286 0.164 0.086 −0.222
2000–2015 0.363 0.959 *** 0.158 0.833 *** 0.752 ** 0.681 ** 0.154

*** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10

5. Discussion

(1) The applicability of the object-oriented method based on Landsat 8 OLI for the extraction of
land use information in the Zoige Plateau was assessed. Grassland, forest land, and wetland were
the three main land use types in this area, and the distribution of these three land use types was
relatively concentrated in patches. Therefore, object-oriented analysis could substantially reduce
the “salt-and-pepper” noise caused by pixel-based classification. In addition, the shapes of wetland,
farmland, and construction land were relatively regular, but showed differences. Based on the
object-oriented method, the shape information could be distinguished so as to better classify these
three types. Therefore, the land use information for the Zoige Plateau was very accurate, with an
overall accuracy of 93.2% and a Kappa coefficient of 0.889, which were higher than in the existing
research [53,54]. In addition, many previous studies used visual interpretation to obtain land use
information in this region [31,32,34,41], which was time-consuming and laborious, so this study also
made a contribution to the automatic acquisition of land use information correctly in this region.
However, both SVM and KNN classifications showed lower user accuracy for forest land in this study.
The forest land in this area was generally distributed on the mountains with higher elevations, and
distributed in belts, which was similar to the distribution shape of wetlands. In addition, the color
of wetland was a combination of green vegetation and water, and the forest land was affected by
elevation and slope, resulting in no representative difference in color. Both of these two reasons
could lead to forest land being misclassified as wetland and water body. The altitude and slope of
the object had not been taken into account in the process of the object-oriented method in our study.
Therefore, some other ancillary data such as DEM, slope, and aspect could be used and may improve
the classification accuracy [17]. Furthermore, the automation and intelligence of image segmentation,
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scale optimization, and feature space optimization in object–oriented classification would be useful in
future studies [17,55].

(2) The results of this study showed that, from 2000 to 2015, the area of land related to production
activities had increased greatly, while the area containing natural ecosystems had decreased to varying
degrees, among which wetland displayed the most significant change. It is commonly accepted that
both climate change and human activities are important factors in the formation and development of
wetland degradation [56]. The warmer and drier trend in this area was an indisputable fact [32,42,54,57]
that could cause wetland to become drier grassland, or even sandy land [32,42], but the effect was
relatively small [54,57–59]. Anthropogenic factors were dominant in the loss of wetland. Overgrazing,
artificial ditch drainage, land reclamation for agriculture, and peat mining led to irreversible effects on
wetland degradation [57–60]. The statistics showed that over the 15-year study period, the population
for Zoige County increased by more than 14,000 people (Figure 10). To meet the material needs of
the increasing population, there had been extensive land reclamation, drainage, and dredging of
marshland, together with the development of farmland, resulting in the degradation and reduction
of grassland and wetland with an increase of farmland and unused land. In view of the importance
of wetlands, specific political countermeasures have been carried out, such as the establishment of
nature reserves and prohibition of grazing [57]. These measures did have an effect, and the area of
wetland increased from 2010 to 2015. However, the protected areas attracted more tourists (Figure 10).
Tourism development inevitably had an impact on the natural environment, resulting in the increase
of construction land. The warming climate caused glaciers in the Qinghai–Tibetan Plateau to melt,
and retreat was a reason for an increased water body area [61]. Furthermore, relevant national
eco-environmental protection projects, including the cessation of artificial drainage and building dams
to preserve water, are playing an important role in water conservation and supply [57].
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(3) We selected a suite of commonly used landscape indices with the aim of capturing detailed
information concerning the landscape in this region. The results of indices NP, LFI, and PD of most
types of land use increased to varying degrees, among which construction land and farmland were the
most obvious during this period. The rate of change of NP of construction land was nearly 1800%
from 2010 to 2015. Furthermore, the value of LFI of construction land in each of the four years was the
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largest among the seven land use types, which suggested that construction land was the dominant type
that caused the increased fragmentation of this region. The increasing trend of SHDI and SIDI also
illustrated the aggravation of fragmentation in this area from another perspective. The values of LSI,
FRAC_MN, and PAFRAC of all seven types showed a decreased trend from 2000 to 2015, revealing a
more regular and smaller heterogeneity of landscape shape in this region. We used the correlation
analysis method to analyze the effects of land use changes on landscape patterns systematically.
Although associations in our results could not prove causality, our multi-angle analysis results suggest
that the land use types with a small area have an increasing influence on the whole landscape (Tables 5
and 6). This study concluded that the effects of land use changes on a relatively small area were
intensified over time. One previous study [34] evaluated the changes in ecosystem service values
in Zoige Plateau during 1975–2005. They found that due to the expansion of construction land and
unused land area, the ecological service value of this area was greatly affected. The value of ecosystem
services exhibited an accelerating rate of decrement. These two studies analyzed the impact of land use
change in the Zoige Plateau from the perspective of landscape pattern response and ecological service
value, respectively. Although the research time interval was different, the change trends of results of
these two studies were consistent. Accordingly, our study results also could provide a reference for
relevant local government departments to manage and regulate local land use. Although protective
measures have had some success, there is still a long way to go to protect and restore the ecosystem
functions of the natural systems in the region. How to better balance ecological conservation and
economic development is critical [62].

6. Conclusions

Our study analyzed the land use change characteristics of the Zoige Plateau during 2000–2015
and the effects on the regional landscape pattern. Our study showed that it was feasible to extract land
use information in the Zoige Plateau by combining the object-oriented method and SVM. Our study
revealed that, over the 15–year study period, the area of construction land, unused land, and farmland
increased substantially, while grassland, forest land, and wetland decreased to varying degrees,
with wetland changing the most significantly. This suggested that human activities have a great impact
on the change of land use pattern in this region. The whole landscape of the Zoige Plateau showed a
trend of fragmentation, increasing landscape diversity, and homogenization. As a whole, the effects of
unused land, farmland, and construction land on the landscape pattern were increasingly stronger
than those of the other types, among which farmland had the most significant impact (with correlation
coefficient of 0.959, p < 0.001). The changes of unused land and water also made a significant
contribution to the change of landscape in different aspects. This suggested that the effects of the
changes of land use types with a relatively small area on the overall landscape pattern of the region
were intensified over time. Our results suggest that future land use planning of this area could protect
natural resources such as wetlands and grasslands, and the impact of relatively small land use types
on the whole region should also be considered.
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