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Abstract: The near-real-time satellite-derived precipitation estimates are attractive for a wide
range of applications like extreme precipitation monitoring and natural hazard warning. Recently,
a gauge-adjusted near-real-time GSMaP precipitation estimate (GSMaP_Gauge_NRT) was produced
to improve the quality of the original GSMaP_NRT. In this study, efforts were taken to investigate and
validate the performance of the GSMaP_Gauge_NRT using gauge observations over Mainland China.
The analyses indicated that GSMaP_NRT generally overestimated the gauge precipitation in China.
After calibration, the GSMaP_Gauge_NRT effectively reduced this bias and was more consistent with
gauge observations. Results also showed that the correction scheme of GSMaP_Gauge_NRT mainly
acted on hit events and could hardly make up the miss events of the satellite precipitation estimates.
Finally, we extended the evaluation to the global scale for a broader view of GSMaP_Gauge_NRT.
The global comparisons exhibited that the GSMaP_Gauge_NRT was in good agreement with the
GSMaP_Gauge product. In conclusion, the GSMaP_Gauge_NRT had better performance than the
GSMaP_NRT and was a more reliable near-real-time satellite precipitation product.
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1. Introduction

Reliable precipitation estimates are crucial because of their role in flood monitoring, crop
yield, and water resource management [1–3]. However, in many regions of Earth, like the oceans,
deserts, and mountains, ground-based observing networks from gauges and radars are sparse or
even nonexistent, which restricts our understanding of global water cycle and local hydrological
processes [4–6]. The recent development of precipitation-retrieval techniques from satellite-based
remote sensing makes it possible of measuring precipitation on the global scale. The remote sensing of
precipitation combines the advantage of the frequency sampling of infrared (IR) sensors derived from
geostationary (GEO) satellites and the superior accuracy (but poor sampling) of passive microwave
(PMW) sensors carried onboard the low earth orbiting (LEO) satellites, in an effort to produce
precipitation data with extensive spatial coverage and fine resolutions [7–9].

To date, various satellite precipitation missions have been implemented and their products
have been made available to the public. Previous satellite precipitation missions include the
NASA’s Tropical Rainfall Measuring Mission (TRMM [10]), NOAA’s Climate Prediction Center (CPC)
morphing technique (CMORPH [11]), JAXA’s Global Satellite Mapping of Precipitation (GSMaP [12]),
the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN [13]), the Climate Hazard Group InfraRed Precipitation (CHIRP [14]), and the successor
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of TRMM: Global Precipitation Measurement (GPM [3]). These satellite precipitation missions and
products have benefitted the hydrology and meteorology community in relevant researches and
applications. However, more recent studies have found that satellite precipitation products contain
considerable errors due to the indirect retrieval methods of remote sensing [15–23]. One of the most
effective strategies to diminish these errors is combining ground-based data to adjust the satellite
precipitation products. For example, the 3B42 product is one of the most popular gauge-adjusted
satellite precipitation products at the TRMM era, which incorporates the monthly Global Precipitation
Climatology Centre (GPCC) gauge data to increase the accuracy of its original satellite-only 3B42RT
product. Today, numerous studies have demonstrated that the 3B42 shows substantial improvement
than the 3B42RT, with lower bias and better detection skills [24–28]. However, the 3B42 data is not
available in real-time, and researchers must wait ~2.5 months after observation time, while the delay of
pure satellite-derived 3B42RT is only 8 h [29]. Obviously, traditional gauge-adjusted schemes depend
on the time availability of gauge data. Nevertheless, collecting and processing gauge data in real-time
is not possible on a global scale, especially in underdeveloped countries and areas, which delay the
availability of satellite precipitation products. The question of the availability exists widely in the
gauge-adjusted satellite precipitation products. For example, if someone want to use PERSIANN-CDR
or GSMaP_Gauge data, they must wait ~3 months or ~3 days after observation, respectively [21,30].

In some cases, the real-time availability precipitation data is more critical for applications like
rainstorm monitoring and flash flood warning, and it does not seem practical to use the traditionally
delayed gauge-adjusted satellite precipitation products [31,32]. Thus, it is important to reduce the
error of satellite precipitation estimates as much as possible without jeopardizing its near-real-time
availability. To this end, a climatological calibration algorithm (CCA) was proposed in the TRMM
Multisatellite Precipitation Analysis (TMPA) real-time system. This method utilizes climatological
gauge information to alleviate errors and keep the timeliness of 3B42RT itself [9]. Yong et al. [31]
initially investigated the performance of CCA in the 3B42RT precipitation estimates over two different
basins of China using a local dense rain gauge. The author found that the systematic errors in 3B42RT
were minimized overall after the CCA calibration. Nevertheless, the author also highlighted that the
performance of calibrated precipitation became worse in high-latitude areas, or areas beyond the 40◦

latitude belts. In addition, from a global map view of error analysis, Yong et al. [9] demonstrated that
the CCA calibrated 3B42RT precipitation has large bias in mountainous regions (especially over the
Tibetan Plateau). Theoretically, the CCA is used in the GPM near-real-time runs of the Integrated
Multisatellite Retrievals for GPM (IMERG) algorithm. However, considering the unstable performance
of CCA, the developers of the IMERG algorithm are re-evaluating the CCA calibration. Meantime, the
IMERG near-real-time products do not currently have climatological calibration.

As the Japanese counterpart of IMERG, the GSMaP is another mainstream satellite precipitation
product at GPM era, which was produced by reliable physical models and by distributing hourly global
precipitation map with 0.1◦ × 0.1◦ resolution [20,33,34]. To satisfy different application requirements,
there are two main groups of GSMaP products: Near-real-time and standard products. As the name
implies, the near-real-time product is intended to provide available satellite precipitation quickly, while
the standard product applies more PMW/IR sources to create relative accurate precipitation estimates.
Correspondingly, the near-real-time product has about a 3-h delay, and the standard product has a
large latency of about 3 d. To reduce bias on the satellite-derived GSMaP products, gauge-adjusted
GSMaP products are developed using ground-gauge measurement as a calibrator. The gauge-calibrated
product of standard GSMaP_MVK is GSMaP_Gauge, which adjusted by daily CPC gauge data. Many
studies have assessed and compared the performances of GSMaP_Gauge over the last few years and
have shown that GSMaP_Gauge is a satisfactory gauge-adjusted satellite precipitation estimation
around the world, especially over East Asia [34–38].

Recently, in the GSMaP project, the GSMaP_Gauge_NRT was produced by a GSMaP algorithm
team, aiming to improve the accuracy of near-real-time product of GSMaP (i.e., GSMaP_NRT) and
maintain its timeliness. Section 2.2 describes the calibration procedure of GSMaP_Gauge_NRT in detail.



Remote Sens. 2020, 12, 141 3 of 17

Thus, it is crucial to understand the performance of new GSMaP_Gauge_NRT product timely. In the
official document of GSMaP, the GSMaP developers eagerly encouraged people to evaluate and validate
the GSMaP_Gauge_NRT in different regions. Therefore, in this study, we systematically assessed
the performance of the GSMaP_Gauge_NRT precipitation estimates and the original uncalibrated
GSMaP_NRT over the Mainland China. The rest of this paper is organized as follows. In Section 2, we
describe the study area, the precipitation data and the error metrics. Then, a presentation of results
and discussion in this study are provided in Sections 3 and 4, respectively. Finally, the summary and
conclusions are given in Section 5.

2. Materials and Methods

2.1. Study Area

China, which covers an area of about 9.6 million km2, is located in the eastern Asia. The terrain of
China is complex and varied, with flat plains and hills in the east and high mountains and plateaus in
the west. The elevation of China has an overall descending tendency from west to the east. Specially,
the world’s “Third Pole”, the Tibetan Plateau (TP), is situated in southwest China. Generally, the climate
on the China features hot and rainy summers and cold and dry winters due to the effects of monsoon
system and topography. In addition, the annual precipitation in China varies greatly, with an obvious
gradient from southeast to northwest, except for some parts of northwestern Xinjiang. Over southeast
China, a huge amount of water vapor from the Pacific Ocean is brought by the Asian monsoon in the
summer, producing abundant precipitation (exceeding 800 mm/year). Over the inland areas of western
China, which are far from the ocean, monsoon precipitation becomes negligible and the continental
climate dominates (with annual precipitation less than 400 mm). Considering the diverse climate in
China, following Yong et al. [39], we separated mainland China into four representative climate regions
based on the annual precipitation (Figure 1a): (1) The humid region, mainly covering the southeast
of China and dominated by the subtropical monsoon with the average annual precipitation (AAP)
above 800 mm; (2) the semi-humid region (AAP between 400–800 mm), including northeast China,
North China, and southeast parts of TP; (3) the semi-arid region (AAP of 200–400 mm), which consists
of two parts, one region extending from the southwest TP into the North Inner Mongolia with a narrow
strip, and another region located in the Ili river valley; (4) the arid region (AAP < 200 mm), a main
desert areas in China, including the most of Xinjiang and western part of Inner Mongolia.
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Figure 1. (a) Distribution of station density used in this study. Four climate regions ( 1O– 4O: Humid,
semi-humid, semi-arid, arid) are outlined in Mainland China. (b–d) Daily mean precipitation
over Mainland China during the period of September 2017–August 2019, from gauge observations,
GSMaP_NRT, and GSMaP_Gauge_NRT precipitations.
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2.2. Data Sources

2.2.1. Rain Gauge Data

A gridded precipitation product (0.25◦ × 0.25◦) of the China Gauge-Based Daily Precipitation
Analysis (CGDPA) was used as the ground reference dataset. This dataset was produced and is routinely
operated by the National Meteorological Information Center (NMIC) of the China Meteorological
Administration (CMA). Based on amassing ~2400 gauge stations across Mainland China, the NMIC
uses a modified interpolation method of climatology-based optimal interpolation (OI) proposed by
Xie et al. [40] to yield the daily gridded CGDPA product. All the gauge data inputted in the CGDPA are
manually recorded by bucket rain gauges and must pass a strict quality control procedure including the
extreme values’ check, internal consistency check, and spatial consistency check [41]. The validation
reports of Shen and Xiong [42] demonstrated that the CGDPA is a more reliable precipitation product
than other existing surface observation datasets over Mainland China, and the authors recommended it
as a reliable ground-based data to various meteorological and hydrological applications. At present, the
CGDPA is available as the official gridded daily precipitation dataset in the CMA website and can be
downloaded from http://data.cma.cn/site/index.html. Considering the ease of access and high-quality
of CGDPA, a large number of studies have used the CGDPA to assess the satellite precipitation products
over China [39,43–45]. Figure 1a shows the number of gauge stations in each 0.25◦ grid box of CGDPA.
Clearly, about 80% of the gauges are located in the eastern China with low elevations, while relatively
sparse gauges are distributed over the western mountains and deserts, especially over the TP.

2.2.2. GSMaP Near-Real-Time Precipitation Products

As one of Japanese GPM projects, GSMaP was implemented under the Japanese Precipitation
Measuring Mission (PMM) science team with the target of providing a global precipitation map with
high precision and high resolution [34]. The GSMaP algorithm uses various of PMW/IR sensors to
produce the “best” precipitation estimates through several steps. First, several PMW radiometers
carried by different satellites, such as the GPM microwave imager (GMI), TRMM microwave imager
(TMI), special sensor microwave imager/sounder (SSMIS), advanced microwave scanning radiometer
2 (AMSR2), advanced microwave sounding unit-A (AMSU-A), and microwave humidity sounder
(MHS), are used to retrieve quantitative precipitation estimates [33,46]. Then, it uses the cloud motion
vector derived from successive geo-IR images to propagate the precipitation area for filling the gaps
between PMW-based estimates, which is similar to CMORPH. In addition, a Kalman filter model is
applied to modify precipitation rates after propagation. Finally, the forward and backward propagated
precipitation estimates are weighted and combined to produce the standard GSMaP_MVK product. At
the beginning of design, the GSMaP algorithm developers did not consider near-real-time operation
and data availability. To meet this demand, a near-real-time product of the GSMaP (GSMaP_NRT)
with resolutions of 0.1◦ and 1 h was developed. Different from GSMaP_MVK, the GSMaP_NRT only
employs forward cloud movement to hold operability in near-real-time. The emergence of GSMaP_NRT
product attracts a lot of data users, owing to its short latency (~3 h after observation). To reduce the
bias in the GSMaP_NRT product, a new algorithm introducing gauge information to GSMaP_NRT
(i.e., GSMaP_Gauge_NRT) is currently under development. In the GSMaP_Gauge_NRT product, a
precipitation error parameters model was created based on the historical database of GSMaP_Gauge.
Then, these parameters were used to adjust the GSMaP_NRT estimation in near-real-time to improve
the precision of GSMaP_NRT. Considering that the GSMaP_Gauge_NRT product does not use the
gauge measurement directly, this makes the GSMaP_Gauge_NRT independent of the ground gauge
observations. Recently, the latest GSMaP algorithm upgraded to version 7, and its near-real-time
products were made available after 17 January 2017. In this study, the GSMaP_Gauge_NRT product
and the uncalibrated GSMaP_NRT product were investigated over a complete two-year period
(from September 2017 to August 2019). Both satellite precipitations were aggregated into daily
amounts, with a 0.25◦ × 0.25◦ resolution corresponding to the gauge data.

http://data.cma.cn/site/index.html
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2.3. Methods

In this study, we conducted the assessment and comparison of GSMaP precipitation based
on continuous statistical metrics and contingency table metrics. The continuous metrics included
correlation coefficient (CC), mean error (ME), root mean squared error (RMSE), and relative bias
(BIAS), which are widely used to quantitatively represent the degree of agreement and the error
between satellite precipitation and gauge observations. These continuous metrics were calculated by
the following equation:

CC =

∑n
i=1

(
Gi −G

)(
Si − S

)
√∑n

i=1

(
Gi −G

)2
·

√∑n
i=1

(
Si − S

)2
(1)

ME =
1
n

n∑
i=1

(Si −Gi) (2)

RMSE =

√√
1
n

n∑
i=1

(Si −Gi)
2 (3)

BIAS =

∑n
i=1(Si −Gi)∑n

i=1 Gi
× 100% (4)

where Si and Gi are the precipitation values from satellite estimation and gauge data, respectively;
correspondingly, S and G are their mean precipitation, and n is the number of samples.

In addition, three contingency table metrics were adopted to evaluate the capability of satellite
precipitation in the detection of precipitation events. These categorical metrics were the probability
of detection (POD), false alarm ratio (FAR), and critical success index (CSI). POD is usually used to
represent the fraction of precipitation events that correctly detected by satellite among all the actual
precipitation events. FAR denotes the ratio of false alarm by satellite among the total satellite detected
events. The CSI, combining the correct hit, false alarm, and missed event, is a more comprehensive
score. The formulas of these contingency table metrics are listed below:

POD =
H

H + M
(5)

FAR =
F

H + F
(6)

CSI =
H

H + M + F
(7)

where H, M, and F are the numbers of different precipitation events: Hit (both satellite estimates and
gauge observations detect rain), miss (observed rain that is not detected by satellite), false (rain detected
but not observed). Here, a commonly used threshold of 1.0 mm/day was set to define the rain/no rain
event, as suggested by many previous studies [47–50].

For more detailed description of above continuous statistical metrics and contingency table
metrics, readers can refer to Yong et al. [25] and Lu et al. [30]. We need to point out that all metrics were
calculated in the 0.25◦ × 0.25◦ grid boxes with at least one gauge in order to ensure more convincing
results (gauge distribution shows in Figure 1a). However, we also calculated metric value in every
grid box to enable a visualization when presenting continuous spatial distribution (Figure 2).
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detection (POD).

3. Results

3.1. Daily Mean Precipitation

Figure 1b–d displays the spatial distributions of two-year daily mean precipitation for GSMaP
and CGDPA precipitation products. Generally speaking, the spatial distributions of GSMaP and
CGDPA precipitations were similar, showing a downward gradient from the southeast China to the
northwest China. However, a pronounced difference in the precipitation amount was found between
the gauge observations and GSMaP satellite precipitation products. For example, compared with
the CGDPA, the GSMaP_NRT tended to underestimate the gauge observations in the southeast and
overestimated them in the northwest. Impressively, the GSMaP_NRT significantly overestimated the
gauge precipitation in the Sichuan province due to the indirect retrieval of satellite precipitation. After
the parameterized gauge calibration, the errors in GSMaP_NRT were effectively suppressed, and the
GSMaP_Gauge_NRT had a more reliable performance than the GSMaP_NRT in capturing the spatial
patterns of precipitation over China. Therefore, the GSMaP_Gauge_NRT combined historical gauge
information to reduce biases, making it consistent with the ground measurements. This suggests
that the parameterized adjustment procedures can effectively enhance the quality of the original
GSMaP_NRT satellite precipitation estimates.
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3.2. Comparison and Validation of GSMaP_NRT and GSMaP_Gauge_NRT Products

Figure 2 shows the spatial maps of CC, RMSE, and POD, which were computed from two GSMaP
products against gauge observations over the Mainland China at the 0.25◦ × 0.25◦ resolution grid.
Generally speaking, the spatial distributions of GSMaP_Gauge_NRT exhibited a great improvement
compared to that of the GSMaP_NRT, with higher CC, lower RMSE, and slightly better POD values.
Over Mainland China, the CC increased from 0.58 with GSMaP_NRT to 0.67 with GSMaP_Gauge_NRT
and the RMSE dropped from 9.11 mm to 7.07, besides a small change of POD between GSMaP_NRT
(0.69) and GSMaP_Gauge_NRT (0.70). With respect to the spatial performance of error metrics, both
GSMaP_NRT and GSMaP_Gauge_NRT products exhibited similar features. That is, worse values
of CC and POD occurred in the northwest and improved toward the southeast, while higher RMSE
existed in the southeast. This phenomenon was reasonable because the RMSE value increased with
increasing precipitation amounts, and southeastern China has more precipitation than other areas in
China. Distributions of CC, RMSE, and POD indicate that GSMaP_Gauge_NRT performs better than
GSMaP_NRT over Mainland China, suggesting that the calibration in near-real-time can effectively
reduce the error and improve detectability of GSMaP_NRT.

We further inquired about the temporal behavior and the seasonal statistics of the GSMaP_NRT and
GSMaP_Gauge_NRT products over Mainland China. In order to ensure a more accurate comparison,
only those grids that contained at least one gauge were taken to compute the statistical indices. Figure 3
depicts the monthly precipitation and monthly variations of statistical metrics from gauges and
GSMaP precipitation products by calculating at daily scale. Table 1 summarizes the seasonal statistics
including spring (March–May), summer (June–August), autumn (September–November), and winter
(December–February). It can be see that both GSMaP_NRT and GSMaP_Gauge_NRT products can
generally capture the intra-annual and seasonal variation patterns of precipitation over China, with
the rainy summer and dry winter (Figure 3a). The GSMaP_NRT showed much more precipitation
than gauge observations in most months, and the GSMaP_Gauge_NRT reduced this overestimation,
which was more consistent with gauge observations. The time series of statistical indices clearly show
that the GSMaP_Gauge_NRT outperforms GSMaP_NRT with higher correlation, lower error, and
better detection (Figure 3b–d). This further confirms that the calibration in the GSMaP_Gauge_NRT
can substantially improve the quality of the original GSMaP_NRT precipitation product. However,
it is worth noting that the BIAS was increased in some months. This issue may be due to the fact
that the overestimation and underestimation at different regions could cancel each other out when
calculating the BIAS value. Focusing on the curves of CC and RMSE, we can conclude that the
GSMaP_Gauge_NRT had better agreement with gauge observations than the GSMaP_NRT products
over China. In addition, we note that the performance of satellite precipitation productions showed
obvious seasonally dependent variations, with better statistical indices in summer and worse in winter
(Table 1). Taking CC as an example, the value of CC decreased from 0.62 in summer to 0.41 in winter
for GSMaP_NRT and from 0.67 to 0.58 for GSMaP_Gauge_NRT. During the winter months, the snow
brought by the westerly winds was the main form of precipitation in the north and west regions of
China. However, the complex radiative properties of ice particles and snowflakes restricted the retrieval
capability of microwave radiation. On the one hand, the low-frequency channels of PMW sensors
contain limited snow detection information, but account for most of PMW channels and are traditionally
used to retrieve rain drops. On the other hand, more snow-related high-frequency channels will be
seriously interfered in the snow-covered background surfaces, which often present a similar passive
microwave signature as the falling snow [51]. Therefore, measuring solid precipitation and snow
is a challenging task for the satellite precipitation retrievals, which was pointed by many previous
studies [15,23,25,52]. The GSMaP_Gauge_NRT product can combine the gauge information to reduce
the precipitation error of GSMaP_NRT in winter, showing more consistency with gauge observations.
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over grid boxes with at least one gauge in Mainland China: (b) Correlation coefficient (CC), (c) root
mean square error (RMSE), (d) relative bias (BIAS), and (e) probablility of detection (POD).

Table 1. Seasonal statistics of GSMaP_NRT and GSMaP_Gauge_NRT against ground observations
from selected 0.25◦ grid boxes over the Mainland China.

Season Product CC ME
(mm)

BIAS
(%)

RMSE
(mm) POD FAR CSI

Annual GSMaP_NRT 0.58 0.40 15.84 9.11 0.69 0.33 0.52
GSMaP_Gauge_NRT 0.67 0.11 4.46 7.07 0.70 0.35 0.51

Spring GSMaP_NRT 0.61 0.88 34.49 8.91 0.76 0.36 0.54
GSMaP_Gauge_NRT 0.68 −0.03 −1.23 6.29 0.74 0.34 0.53

Summer GSMaP_NRT 0.62 0.33 6.48 12.26 0.76 0.26 0.60
GSMaP_Gauge_NRT 0.67 0.01 0.27 10.59 0.76 0.24 0.61

Autumn GSMaP_NRT 0.48 0.32 16.15 8.71 0.67 0.36 0.48
GSMaP_Gauge_NRT 0.65 0.39 19.41 6.12 0.72 0.45 0.45

Winter GSMaP_NRT 0.41 0.06 7.07 6.15 0.42 0.41 0.32
GSMaP_Gauge_NRT 0.58 0.07 8.33 4.56 0.43 0.45 0.32

Considering the diverse climate of China, it was rational to subdivide national-scale evaluation
into regional analyses. Figure 4 shows the scatterplots of daily GSMaP_NRT and GSMaP_Gauge_NRT



Remote Sens. 2020, 12, 141 9 of 17

against gauge observations for the selected grids over different climate regions. Clearly, over the four
climate regions, all the scatterplots show that the scatter points of GSMaP_Gauge_NRT were clustered
closer to the 1:1 line than those of GSMaP_NRT estimates, meaning that the GSMaP_Gauge_NRT was
more in agreement with gauge observations. The GSMaP_NRT estimate significantly overestimated
the gauge precipitation with BIAS range from 0.82% to 149.08% (see left column in Figure 4).
After the calibration, these biases were effectively minimized in the GSMaP_Gauge_NRT product.
Correspondingly, the CC values increased from GSMaP_NRT to GSMaP_Gauge_NRT, and the RMSE
values showed an apparent downward trend. However, in terms of the contingency table statistics,
the improvements were not obvious. This suggests that the calibration can effectively reduce the bias
but is not good at improving the skill of detecting rainy events. Additionally, Figure 4 illustrates that
the two near-real-time GSMaP products had different performances at four climate regimes, with
better agreement from gauge observations over the humid region (Figure 4a,b) and an unsatisfactory
performance over the arid region (Figure 4g,h). This was likely caused by the different retrieval skills of
rainfall types over different climate regimes. The arid region, covered with desert and high mountains,
was dominated by short-lived convective precipitation and orographic precipitation. However, the
satellite-based precipitation retrieval had difficulty coping with these two precipitation conditions.
Moreover, the light rainfall and winter snow in arid region further imposed another challenge to the
satellite-based precipitation estimates. Consequently, the satellite precipitation products usually had
an unsatisfactory performance over the arid region in China, and this is consistent with the result of
Yong et al. [39] and Chen et al. [46]. Compared to GSMaP_NRT, the GSMaP_Gauge_NRT obviously
improved the data accuracy, but it had low CC (0.36) and BIAS (35.08%) values over the arid region.
Such results indicate that the current near-real-time gage calibration algorithm of GSMaP still have
significant room for further improving the data quality over the arid region.

Theoretically, a value of satellite precipitation can be divided into four categories based on its ability
to identify rain occurrences. A hit event means that both the satellite estimate and gauge reference
detected rain, while miss precipitation suggests that a rain event was reported by gauge observation
but not detected by satellite. In contrast, false precipitation means that precipitation was detected by
satellite but not observed by gauge, and the rest part of precipitation means that that both satellite and
gauge showed no rain. Based on the different precipitation events, we further computed the intensity
distributions of daily precipitation amount to look into the error characteristics of GSMaP products
(Figure 5). The rainfall intensity was binned with logarithmic scale across the range of 1–256 mm/day,
and the daily averaged precipitation accumulation of each bin was calculated on the y-axis. The intensity
distribution, which has different error components, can reveal detailed information on the error features
at the event scale. As shown in Figure 5, the intensity distributions of total precipitation were generally
similar to those of hit precipitation, suggesting that hit event was the dominate component of total
precipitation. However, over the arid region, the false precipitation also accounted for a considerable
proportion of the total precipitation. Considering that the false precipitation will amplify the total
precipitation amount of satellite, the obvious overestimation of two near-real-time GSMaP products
over the arid region was partly caused by the false rainy events. On the other hand, compared to
GSMaP_NRT, the intensity distributions of GSMaP_Gauge_NRT were closer to the gauge observations
(first column in Figure 5), which indicates that the GSMaP_Gauge_NRT has better performance than
the GSMaP_NRT. Additionally, it can be seen that the calibration of GSMaP_Gauge_NRT mainly
changed the intensity distributions at a moderate–high rain rate. For example, the GSMaP_NRT had
more precipitation amounts than gauge observations over the semi-humid region (Figure 5e). After the
calibration, the curve of GSMaP_Gauge_NRT descended and was more consist with the gauge. In the
third column of Figure 5, it was found that the GSMaP_NRT and GSMaP_Gauge_NRT showed basically
identical intensity distributions of miss precipitation over all four climate regions. This implies that the
GSMaP_Gauge_NRT failed to correct precipitation events undetected by the satellites in the calibration
process. Therefore, the future correction efforts of incorporating different precipitation component is
recommended to improve the precision of satellite precipitation.
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3.3. Global View of GSMaP_NRT and GSMaP_Gauge_NRT

In the previous section, we compared the GSMaP_NRT with GSMaP_Gauge_NRT satellite
precipitation products over the Mainland China. The results showed that the GSMaP_Gauge_NRT
effectively reduced the error in GSMaP_NRT and was more consistent with gauge observations. To
obtain a much broader view of GSMaP_Gauge_NRT at other regions, we extended the comparison to
the global scale. Operationally, it is usually difficult to validate the satellite precipitation products on
the global scale using gauge observations, due to the fact that the ground gauge networks are sparse
or nonexistent in many regions like oceans, deserts, and mountains. In order to provide a globally
consistent evaluation, we chose the GSMaP_Gauge product as the reference data for global comparison.
Figure 6 displays the spatial difference between the two near-real-time GSMaP products and the
standard GSMaP_Gauge product. It can be seen that the GSMaP_NRT underestimated the precipitation
in the southeastern China, which was consistent with the evaluation results when using CGDPA as a
reference. The calibrated GSMaP_Gauge_NRT substantially decreased this underestimation and was
closer to the GSMaP_Gauge. Globally, the GSMaP_NRT exhibited positive bias over most parts of
the world. Most notably, along the intertropical convergence zone (ITPC) extending toward Central
America, eastern United States, southern parts of South America, and West Africa, the GSMaP_NRT
tended to overestimate precipitation. After the real-time calibration, these positive biases were
effectively reduced. Besides, compared to the GSMaP_Gauge, the GSMaP_Gauge_NRT only had slight
underestimations over most parts of world, except for the ITPC, with an overestimation (Figure 6b).
Considering that the development of GSMaP_Gauge_NRT intended to make the GSMaP near-real-time
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products as close to the GSMaP_Gauge product as possible, we believe that the parameterized gauge
calibration effectively reduced the errors in GSMaP_NRT, and that the calibrated GSMaP_Gauge_NRT
is a better product than GSMaP_NRT.
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4. Discussion

Remote sensing of precipitation provides an alternative source for precipitation data beyond
ground observations. To date, numerous studies have reported the performance of satellite precipitation
products in many areas around the world [20,53–58]. However, most of these evaluations focused
on the post-real-time products that are usually available after a few days or months [59–61]. The
near-real-time satellite precipitation products are more attractive for some application scenarios,
owing to their timeliness. To the best of our knowledge, our study is a first evaluation of the
gauge-adjusted near-real-time GSMaP precipitation estimate. The results in this study showed that the
GSMaP_Gauge_NRT has a more reliable performance than its original GSMaP_NRT over China. This
provides a positive feedback to the GSMaP algorithm team, as they expected. In the TRMM era, the
CCA was proposed to improve the accuracy of TMPA-RT. However, this climatological calibration is
not currently used in IMERG near-real-time products due to its poor performance at high latitudes
and altitudes [9,31]. In the GPM era, the GSMaP and IMERG were the most popular high-resolution
satellite precipitation products, and the GSMaP_NRT and IMERG-early were their near-real-time
products with latency periods of 3 h and 4 h, respectively. Therefore, when the CCA is applied in the
IMERG product, it is necessary to compare these two near-real-time products of GSMaP and IMERG,
and this work can be continued in the future.

As a preliminary assessment of the near-real-time GSMaP precipitation estimate, we performed
the validation at daily scale considering the availability of reference data. Previous studies found that
the performances of satellite precipitation products are sensitive to the spatiotemporal scale [62,63].
Such a resampling in this study may lose the potential characters of GSMaP products at their original
resolutions. However, our study mainly focused on the comparing of GSMaP_Gauge_NRT and
GSMaP_NRT. Thus, this modification of scale should not change the conclusions of our study. In the
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next work, we will investigate the performance of GSMaP_Gauge_NRT product in sub-daily or hourly
time scales.

The evaluation showed that the calibrated GSMaP_Gauge_NRT has better performance than
the original GSMaP_NRT. Thus, it is reasonable to choose the GSMaP_Gauge_NRT precipitation
product for users with their requirement of near-real-time data. Of course, more researches are needed
for knowing the application potentiality of GSMaP_Gauge_NRT. The performance of the IMERG
near-real-time products have been investigated in capturing extreme precipitation events [64,65]. The
results of these studies indicated that the IMERG has a promising potential for monitoring typhoon
rainfall. Considering the accuracy improvement of GSMaP_Gauge_NRT, further application researches,
like rainstorm monitoring and hydrological simulation, are encouraged. This will provide useful
feedbacks and insights about the GSMaP_Gauge_NRT to decision-makers and the scientific community.

5. Conclusions

Recently, the GSMaP algorithm developers proposed a parameterized gauge calibration method
to reduce the errors in GSMaP_NRT without jeopardizing its near-real-time availability. In this study,
we compared and validated the calibrated GSMaP_Gauge_NRT product with the original GSMaP_NRT
over the Mainland China, by using a high-quality ground gauge reference dataset.

Our analyses showed that the GSMaP_NRT product can well-capture spatial patterns of
precipitation across the China, but it significantly overestimates the reference precipitation with
BIAS of 15.84%. After bias adjustment, this overestimation was obviously reduced, with slight
overestimation for GSMaP_Gauge_NRT (4.46%). Correspondingly, the value of CC rose from 0.58
for GSMaP_NRT to 0.67 for GSMaP_Gauge_NRT, and the RMSE was reduced from 9.11 mm to
7.07 mm. This indicates that the parameterized calibration strategy can effectively decrease the bias
in the GSMaP_NRT, and that the calibrated GSMaP_Gauge_NRT has a better performance than the
original GSMaP_NRT.

In terms of the contingency table statistics, we found that the improvements in the contingency
table statistics were not obvious. This suggests that the calibration can effectively reduce the bias
but is not good at improving the skill of detecting precipitation events. When we decomposed
satellite precipitation into different rainy events, the results further validated that the correction
scheme mainly occurred in the hit event and could hardly make up the rainfall missed by the satellites.
Thus, we highlight that incorporation of precipitation components is of vital importance for future
calibration work.

Finally, our evaluation was extended to the global scale to examine the performance of
GSMaP_Gauge_NRT from a broader perspective. The global analysis showed that the bias in
GSMaP_ NRT was generally alleviated after gauge calibration and the calibrated GSMaP_Gauge_NRT
product was in good agreement with the GSMaP_Gauge product. Therefore, to summarize, all of
the results in this study suggest that GSMaP_Gauge_NRT can effectively reduce the uncertainties in
GSMaP_NRT after the calibration and that the GSMaP_Gauge_NRT is a more reliable near-real-time
satellite precipitation product than the original GSMaP_NRT. As a preliminary assessment of
GSMaP_Gauge_NRT product, we hope that this study provides useful information for algorithm
developers and product users. Considering the diverse nature of the world’s topography and
climate characteristics, future studies are encouraged to evaluate and validate the performance of
GSMaP_Gauge_NRT product in more regions using local density gauge networks.
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