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Abstract: Accurate crop planting area information is of significance for understanding regional food
security and agricultural development planning. While increasing numbers of medium resolution
satellite imagery and improved classification algorithms have been used for crop mapping, limited
efforts have been made in feature selection, despite its vital impacts on crop classification. Furthermore,
different crop types have their unique spectral and phenology characteristics; however, the different
features of individual crop types have not been well understood and considered in previous studies of
crop mapping. Here, we examined an optimized strategy to integrate specific features of individual
crop types for mapping an improved crop type layer in the Sanjiang Plain, a new food bowl in
China, by using all Sentinel-2 time series images in 2018. First, an automatic spectro-temporal feature
selection (ASTFS) method was used to obtain optimal features for individual crops (rice, corn, and
soybean), including sorting all features by the global separability indices for each crop and removing
redundant features by accuracy changes when adding new features. Second, the ASTFS-based
optimized feature sets for individual crops were used to produce three crop probability maps with
the Random Forest classifier. Third, the probability maps were then composited into the final crop
layer by considering the probability of each crop at every pixel. The resultant crop layer showed an
improved accuracy (overall accuracy = 93.94%, Kappa coefficient = 0.92) than the other classifications
without such a feature optimizing process. Our results indicate the potential of the ASTFS method for
improving regional crop mapping.

Keywords: crop mapping; feature selection; spectro-temporal feature; separability index; Sentinel-2;
Random Forest

1. Introduction

Information about crop planting area and spatial distribution is of significance for understanding
regional crop production and food security [1,2]. Remote sensing has been increasingly used
for crop acreage surveys, given increasing data availability and improved spatial, temporal, and
spectral resolutions [1,3,4], together with advances in machine learning classifiers [5,6] and sampling
technologies [7,8]. While increasing data and emerging algorithms have provided unprecedented
opportunities for crop mapping, feature selection deserves more attention, as improved feature selection
can certainly contribute to improvement in computing efficiency and map accuracy [9–11].

Unique spectral characteristics in certain phenological phases of crops are critical for the
identification of different crops [12–14]. Crop mapping based on multi-temporal information
outperforms that based on a single temporal image. Multi-temporal remote sensing based on a
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single spectral feature is mainly to analyze the time series profiles of a certain spectral feature, to find
the key phenological phases that are easy to extract specific crops from other crops. Then, thresholds of
the spectral feature for distinguishing the specific crops are determined to identify crop types [15–17].
Foerster et al. [18] extracted crop planting pattern information in the northeastern part of Germany by
constructing a normalized difference vegetation index (NDVI) time series from TM/ETM+ images and
analyzing the spectral mean and standard deviation values of various crops in each critical phenological
phase. Liu et al. [19] combined NDVI and normalized difference water index (NDWI) to construct a
new index, normalized difference vegetation–water index (NDVWI), when studying the distribution
of crop types in the Heihe River Basin. Based on the multi-temporal NDVWI images, variation of local
crop distribution information was obtained. However, for areas with more complex planting structure,
especially in the presence of crops with similar spectral characteristics, it is difficult to extract various
crops with a single spectral feature at the same time [20,21]. For example, corn and soybean in many
regions tend to have similar spectral and phenological characteristics. In addition, most studies directly
input all available time series images in a certain period into the classifier as temporal features. This
simple stacking of time series images may mask some subtle but potentially important phenological
features. At the same time, direct classification using all temporal features increases computation
complexity and reduces classification accuracy, so-called the “curse of dimensionality” [22,23].

Increasing studies focus on the classification of multiple crops by using multi-temporal and
multi-spectral features. Zhong et al. [21] extracted spatial distribution information of corn and soybean
in Doniphan County, Kansas, USA based on spectral bands, normalized difference tillage index (NDTI),
normalized difference senescent vegetation index (NDSVI), and enhanced vegetation index (EVI).
Huang et al. [24] extracted soybean, corn, rice, and other main crops in Heilongjiang Province by
combining NDVI, EVI, wide dynamic range vegetation index (WDRVI), land surface water index
(LSWI), and normalized difference snow index (NDSI) with time series images covering the main
growth period of crops. However, spectral features in these studies are mostly selected based on the
researchers’ empirical knowledge, and these spectral features may not fully reflect the phenological
phases of specific crops. Moreover, few automatic spectro-temporal optimization schemes have been
proposed to capture the phenological phases of crops comprehensively.

The redundant information in the spectro-temporal feature set may be generated by the high
correlation between features, which could not only decrease the classification accuracy, but also
increase the computation complexity and time cost [14,25]. In recent years, some studies have focused
on spectro-temporal feature selection for land cover classification. Hu et al. [26,27] proposed a
phenology-based spectral and temporal feature selection (PSTFS) method, which used MODIS time
series images to extract the optimal classification features of corn in Heilongjiang Province, China
and produced a corn map in 2011. The PSTFS method balanced feature separability and information
redundancy and selected 34 optimal spectro-temporal features for corn identification. Although
this method has shown promising crop classification ability, it can only identify a single crop type,
rather than obtaining a crop layer with multi-classes. Also, the correlation threshold was set by prior
knowledge and could not be directly applied to other areas. Additionally, the spatial resolution of
MODIS might not be sufficient to obtain spatial details of agricultural landscape in Northeast China.

This paper proposes an automatic spectro-temporal feature selection (ASTFS) method for improved
crop mapping based on Sentinel-2 time series images in 2018 and the Google Earth Engine (GEE)
platform. First, we obtained optimal classification feature sets of rice, corn, and soybean, respectively, in
Sanjiang Plain; second, probability maps for individual crops (rice, corn, and soybean) were generated
and synthesized into the final crop type layer. The final crop type map was compared with two maps
without such an optimizing process of feature selection: (1) “Crop layer without feature sorting and
optimization” and (2) “crop layer with feature sorting but without optimization”. The commonly used
confusion matrix approach was used to evaluate the classification accuracy of the three classification
maps based on 1996 ground object validation samples, which were kept apart from the training samples
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to assess accuracy. The ASTFS method was implemented on a local machine. The GEE platform was
used for pre-processing Sentinel-2 images and generating the crop type map.

2. Materials and Methods

2.1. Study Area

The study area, Sanjiang Plain, is located in the eastern part of Heilongjiang Province, which
is the most northeastern province of China, and is formed by the alluviation of Heilongjiang River,
Songhua River, and Wusuli River. The Sanjiang Plain is centered between about 44◦N and 49◦N and
129◦E and 136◦E (Figure 1). The Sanjiang Plain is an important commodity grain base in China, with
an annual output of approximate 15 million tons of grain. The per capita cropland area and per capita
grain output are more than four times the national average. The scale of agricultural production
here is huge, and the degree of agricultural mechanization is the highest in China. The major crops
in the Sanjiang Plain are rice, corn, and soybean. The mixed distribution of the three crops poses a
challenge for the precise classification of crops. The plain has an average elevation of 50–60 m, annual
average temperature of 1–4 ◦C, and average temperature in July of 21–22 ◦C, which is suitable for crop
growth [28]. The annual precipitation in Sanjiang Plain is 500–650 mm and the precipitation is mainly
concentrated from June to October [29]. The three crops are sown and harvested only once a year in
the area due to the limited light time and low accumulated temperature. Crop calendars for the three
major crops in the Sanjiang Plain are shown in Figure 2.
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Figure 1. The location of the study area and distribution of the ground truth sampling data.
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Figure 2. Crop calendars for the three major crops (corn, rice, and soybean) in the Sanjiang Plain [30,31].
We divided a month into three parts (e.g., early April (E), middle April (M), and late April (L)). Rice: 1,
sowing; 2, seeding/flooding; 3, transplanting; 4, reviving; 5, tillering; 6, booting; 7, heading; 8, milk
stage; 9, mature; and 10, harvest; Corn: 1, sowing; 2, seeding/three leaves; 3, seven leaves; 4, stem
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elongation; 5, heading; 6, milk stage; 7, mature; and 8, harvest; Soybean: 1, sowing; 2, seeding; 3, the
third true leaf; 4, flowing; 5, pod setting; 6, mature; and 7, harvest.

2.2. Data

2.2.1. Sentinel-2 Data and Derived Spectral Indices

Sentinel-2 satellite data were used in this study. The Sentinel-2 mission consists of two satellites,
Sentinel-2A and Sentinel-2B. Both satellites carry MSI (multispectral imager) sensors, which contain
13 multispectral bands. The revisit period for a single satellite is 10 days, and the revisit period for
two satellites is 5 days (https://sentinel.esa.int/web/sentinel/missions/sentinel-2). For our study, we
collected 2451 Sentinel-2 satellite images from the GEE platform covering the Sanjiang Plain from April
to October in 2018. In the other months, the Sanjiang Plain was covered by snow, and those images
from November to March were not used in this study [30]. Due to the unavailability of the surface
reflectance (SR) data in the GEE platform, we used the top of atmosphere (TOA) reflectance. Although
the SR data are more convincing than the TOA reflectance data, the reliability of the TOA data for land
cover classification has been proven in previous studies. For example, Emelyanova et al. [32] compared
the classification results between using TOA reflectance data and SR data, and found that these two
datasets had similar performances. Other studies [33–38] also used TOA reflectance data to perform
classification and got the same conclusion. Therefore, the classification result could be used to evaluate
the performance of the newly proposed feature selection method in the absence of SR data. To minimize
the atmospheric effect, we only selected three bands of Sentinel-2, including band 8 (near infrared,
NIR), band 11 (short-wave infrared, SWIR), and band 12 (SWIR), with wavelength ranging from 833 to
2202 nm, considering that short wavelength bands are more susceptible to atmosphere [1]. According
to the quality assurance band of Sentinel-2, we removed the effects of clouds in the imagery [34]. Then,
the median values of the TOA reflectance in every month were calculated to generate monthly time
series images for the 11 bands.

Here, eight vegetation indices (NDWI, NDVI, NDTI, NDSVI, NDSI, LSWI, GCVI (green chlorophyll
vegetation index), and EVI) were calculated, and three bands (bands 8, 11, and 12) were selected every
month, with a total of 77 features in the seven months. These vegetation indices and bands were selected
following previous crop mapping studies, which proved those them good at classifying rice, corn, and
soybean. Hu et al. [27] extracted the distribution of rice, corn, and soybean in Heilongjiang Province,
China, using EVI, LSWI, NDSVI, and NDVI. Wang et al. [39,40] confirmed that the near-infrared band
and short-wave infrared band had the potential to improve the identification accuracy of rice, corn,
and soybean in Gansu Province, China. Zhong et al. [21] achieved efficient corn and soybean mapping
with NDTI, EVI, and NDSVI in Doniphan County, Kansas. We chose the index NDSI because it often
snows in Heilongjiang Province. GCVI has proven to reflect the level of chlorophyll content [41].
The NDVI index contributed the majority of the most significant features to crop mapping and the
NDWI contributed to improving crop mapping [42]. The calculation formulas, associated properties,
and references of each index are shown in Table 1. The central wavelength, bandwidth, and spatial
resolution of each band used are shown in Table 2.

2.2.2. Ground Truth Data for Algorithm Training and Result Validation

The ground truth data used in this study were collected from the Sanjiang Plain from July to
August 2018, including rice, corn, soybean, and other land cover types like forest, water, built-up land,
and others. The distribution of the sample points is shown in Figure 1. The numbers of sample points
of rice, corn, soybean, and others were 1232, 1060, 506, and 1252, respectively. The numbers of training
sample for rice, corn, soybean, and others were 612, 568, 256, and 618, respectively. The numbers of
validation sample for rice, corn, soybean, and others were 620, 492, 250, and 634, respectively.

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
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Table 1. A summary of vegetation indices in classification feature set, including their spectral regions,
computational formulas, associated vegetation properties, and references.

Spectral
Region

Vegetation
Index Formula Commonly Related to Associated

Reference

Visible-NIR NDWI B3−B8
B3+B8

Vegetation phenology,
vegetation photosynthetic

activity, land cover
[43]

NIR-Visible NDVI B8−B4
B8+B4

Vegetation growth status,
vegetation coverage [44]

SWIR–SWIR NDTI B11−B12
B11+B12

Non-photosynthetic
components, residue cover [21]

Visible-SWIR NDSVI B11−B4
B11+B4

Vegetation status, water
content, residue cover [21]

Visible-SWIR NDSI B3−B11
B3+B11

Snow cover [45]

NIR–SWIR LSWI B8−B11
B8+B11

Water content, residue cover [20]

NIR-Visible GCVI B8
B3
− 1 Chlorophyll content [41]

Visible-NIR EVI 2.5× B8−B4
B2+6×B4+7.5+B2+1

Vegetation status, canopy
structure [46]

Table 2. A summary of bands in classification feature set, including their central wavelength, bandwidth,
and spatial resolutions.

Sentinel-2A Sentinel-2B

Band
Number

Central Wavelength
(nm)

Bandwidth
(nm)

Central
Wavelength (nm)

Bandwidth
(nm)

Spatial
Resolution (m)

8 832.8 106 833.0 106 10
11 1613.7 91 1610.4 94 20
12 2202.4 175 2185.7 185 20

2.3. The Automatic Spectro-Temporal Feature Selection (ASTFS) Method

2.3.1. The Pairwise Separability Index (SIij)

Somers and Asner [47] proposed the separability index (SI), which is defined as the ratio of
inter-class spectral variability to intra-class spectral variability. Inter-class variability and intra-class
variability are used to measure whether the feature set can distinguish different land use types
effectively, and the feature set that makes the most internally consistent of a class and the biggest
difference between different classes is the optimal feature set [26]. In addition, the SI does not require
that the research object conform to normal distribution and there is no limit on the range, which
gives it a wider application scope than the Jeffries–Matusita (JM)distance [48], another commonly
used separability measurement. According to the motivation mentioned above, this study used SIij to
calculate the degree of separability of the major crops (rice, corn, and soybean) in the Sanjiang Plain.
The formula is as follows:

SIi j(p, q) =

∣∣∣µi − µ j
∣∣∣

1.96×
(
σi + σ j

) (1)

p = {EVI, GCVI, LSWI, NDSI, NDSVI, NDTI, NDVI, NDWI, band 8, band 11, band 12}
q = {Apr., May, June, July, Aug., Sept., Oct.}

where p represents a band or an index (a total of 11 in this study); q refers to a time point (a total of
7 in this study); µi and µ j represent the mean spectral values of the samples of band or vegetation index
p on date q for the class i (for example, rice) and class j (for example, corn), respectively; and σi and σ j
represent the standard deviation of the spectral values of the sample points of band or vegetation index
p on date q for the class i and the class j, respectively. The absolute value of the difference between
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µi and µ j (
∣∣∣µi − µ j

∣∣∣) can reflect the spectral difference between different classes, the sum of σi and σ j
(σi + σ j) can reflect the degree of dispersion and concentration of the spectrum within class i and class
j. Based on Formula (1), it can be seen that larger

∣∣∣µi − µ j
∣∣∣ and smaller

(
σi + σ j

)
will produce a higher

SIij value. The higher the SIij is, the higher the separability of the two types of ground objects will be.
This research calculated the SI of four land cover classes of 11 vegetation indices or bands on seven
time periods, with a total of 462 pairwise SIs.

2.3.2. The Global Separability Index (SIglobal)

In this study, six pairwise indices composed of four types of ground objects were firstly calculated.
However, SIij can only be used to calculate the pairwise separability between two types of ground
objects and cannot reflect the overall separability between the four land cover classes in this study.
In order to solve this problem, we extended the SIij to SIglobal [26]. The formula is as follows:

SIglobal(p, q) = average
(
SIi j
)

(2)

where p refers to a band or vegetation index (a total of 11 in this study), q represents a time point (a total
of 7 in this study), SIij is the pairwise SI calculated by Formula (1). We chose the average of the SIs of
all crop pairs as SIglobal for each feature because it comprehensively reflects the separability of each
crop pair. The SIglobal of the 77 features was represented by three two-dimensional matrices of spectral
series (eight spectral indices and three spectral bands) and time series (seven time points). The colors
within these matrices reflect the overall level of each spectral and temporal feature to differentiate
crops. In this study, three SIglobal matrices were calculated for individual crop types (corn, rice, and
soybean) in Sanjiang Plain.

2.3.3. Feature Optimization

According to Section 2.3.2, we can achieve a sorted spectro-temporal feature set in which features
are sorted from high global separability to low. However, selecting classification features simply with
high global separability would not obtain optimal classification results. There may be a high degree
of correlation between several features with high global separability, which will limit classification
accuracy and increase computational complexity. After removing redundant classification features,
we can achieve the same or even higher classification accuracy with fewer classification features and
computational cost. Therefore, we adopted the ASTFS method to obtain an optimal feature set by
balancing the features’ separability and correlation.

A clear and complete workflow of the ASTFS method for selecting the optimal features for crop
classification is presented in Figure 3, which shows a feature optimization process for a single crop.
In this study, we needed to use the process three times for rice, corn, and soybean, respectively, to obtain
individual optimal feature sets. In Figure 3, the “feature set” contains all classification features in order
of separability, with a total of 77. The “feature subset” is input into the Random Forest (RF) classifier in
every iteration. The “optimal feature set” is the result of feature optimization. (1) First, the SIij values
for all pairs of classes are calculated. (2) The SIglobal values for a certain crop are calculated based on
SIij from the previous step and a full SIglobal matrix is generated. (3) Generate a sorted feature set based
on the SIglobal values. (4) According to the order, add a new feature from the feature set into the feature
subset. The feature subset, including the feature with the maximum SIglobal value, is first inputted into
the RF classifier and outputs a classification accuracy. (5) If the overall accuracy of this classification is
higher than any previous overall accuracies after the addition of a new feature, retain the new feature
in the feature subset. Otherwise, remove the new feature from the feature subset. (6) If there are any
remaining new features in the feature set, add a new feature from feature set to the feature subset and
continue to repeat steps (4) through (5) until all new features in the feature set are inputted into RF
classifier. The final optimal feature set is the output of the workflow. Based on this workflow, we
obtained three optimal feature sets for rice, corn, and soybean, respectively.
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2.4. Crop Probability Maps Based on Optimized Feature Selection and Random Forest Classifier

As a natural nonlinear classifier, the Random Forest (RF) classifier uses multiple trees to train and
predict samples, first proposed by Breiman [49]. A prominent advantage of the RF classifier is that it
is less prone to overfitting and are more tolerant of noise and outliers [50]. The RF classifier mainly
includes the following important parameters: (1) The number of trees in the forest. In theory, the more
trees there are, the better the classification results, but at the same time, the classification time will
increase. Therefore, we need to find a reasonable number of trees. Studies have shown that when the
number of trees is more than 400, the OOB (out-of-bag) error of each classification situation tends to be
stable [51]. In order to ensure the classification accuracy and reduce the computation time as much as
possible, we set the number of trees to 500. (2) The total number of features, which was 77 in this study.
(3) The maximum of features allowed in a decision tree in an RF algorithm. Generally, we took the
square root of the total number of features as its value. In addition, in order to get better classification
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results, we set the recursive times to none and bootstrap (whether there is a sample returned) to true.
The RF classifier for each crop was trained by using about half of the ground truth samples described
in Section 2.2.2.

2.5. Final Crop Layer Based on the Combination of Three Crop Probability Maps

According to the obtained individual optimal feature sets of rice, corn, and soybean, we can input
them into the RF classifier to make the probability maps. By compositing these three probability maps,
we can obtain the final crop type map. Each pixel value in the final crop type map corresponds to one
pixel in each of the three probability maps. By comparing the probabilities of the three pixels, if the
pixel corresponding to the crop with the maximum probability has a probability value greater than
50%, it will be retained in the final crop type map. Otherwise, the pixel would be marked as “others”.

2.6. Accuracy Assessment and Comparison with Results from Unoptimized Features

In this study, the confusion matrix was used to validate the accuracy of all classification results
based on 1996 ground object validation samples, which were kept apart from the training samples.
The overall accuracy, producer’s accuracy, and user’s accuracy in the confusion matrix are important
parameters for the accuracy assessment of classification results. The reliability of classification results
is described from three different perspectives, which are most commonly used in land classification
studies [52,53].

In order to represent the advantages of the ASTFS method in improving classification accuracy
and efficiency, we also compared the classification result using optimal feature sets with two additional
classifications using different input features as a part of accuracy assessment. The respective input
feature sets of the two classifications are as follows: (1) All of the 77 spectro-temporal features
(11 spectral indices or spectral bands multiplied 7 time points) for each of the three crops without
feature optimization (“crop layer without feature sorting and optimization”), and (2) the same number
of features with maximum global separability values as the number of optimal features (“crop layer
with feature sorting but without optimization”). We made accuracy comparisons from two levels,
accuracy comparisons for each crop (Section 3.2) and an overall accuracy comparison (Section 3.3) for
three crops. The three classification feature sets were inputted into same Random Forest classifiers
with the same parameter settings, classified with the same training dataset, and assessed with the same
validation dataset.

3. Results

3.1. Spectro-Temporal Feature Analyses of Major Crops (Corn, Rice, and Soybean)

Figure 4 shows the average spectral curves of rice (black solid line), corn (black dotted line),
soybean (black dashed line), and other ground objects (colored lines) in different spectral indices
or bands, where the horizontal axes represent the months of crop growth in Sanjiang Plain (from
April to October), and the vertical axes represent the vegetation indices or bands. Each spectral index
corresponds to a certain physical and biological property of vegetation, and their regularity over
time reflects the seasonal rhythms of crops [54,55]. It can be seen from Figure 4 that the spectral
characteristics of corn, rice, and soybean in different vegetation indices or bands and at different time
points are different, which also confirms the necessity of multi-spectral and multi-temporal images for
crop identification.

As can be seen from Figure 4, there are strong similarities in the vegetation indices or band
values of corn and soybean in many spectro-temporal features (for example, EVI from April to July,
GCVI from April to August). This is because the corn and soybean in the Sanjiang Plain have similar
growth processes and spectral characteristics, which greatly increases the difficulty of separating corn
and soybean. However, band 8 in August, band 11 in July and August, and band 12 in July and
August show potential to differentiate corn and soybean. Rice fields undergo sowing, flooding, and
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transplanting stages from about the end of April to the end of May (Figure 2), and the rice fields are
covered by water during these three stages. Using this unique characteristic of rice, it is relatively easy
to separate rice from other land covers.

 

 

 
  Figure 4. Time series profiles of major crops (corn, rice, and soybean) and other land cover classes

(forest, water, built-up land, and others) for 11 vegetation indices and three bands. Panels from (a) to
(k) represent EVI, GCVI, LSWI, NDSI, NDSVI, NDTI, NDVI, NDWI, band 8, band 11, and band 12,
respectively. The horizontal and vertical axes refer to the month of year and the spectral index or band
values, respectively.

3.2. Feature Optimization Based on the ASTFS Method

The global separability indices for rice, corn, and soybean are shown in Figure 5 as the three
global separability matrices. The horizontal axes represent seven temporal intervals from April to
October, and the vertical axes represent 11 spectral indices and bands. The different colors of grids
in these matrices represent the different values of the global separability index SIglobal. The colors
of these grids vary from blue to red, which correspond to the values of SIglobal from low to high.
Through the three global separability matrices in Figure 5, we obtained the importance ranking of all
spectro-temporal features. It is clear from the three global separability matrices that the contribution of
each spectro-temporal feature in classification is different. The classification accuracy will be reduced
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when the spectro-temporal feature with poor global separability is involved in the classification, which
reflects the importance of feature selection optimization.

In terms of separating rice from other land cover classes, as shown in Figure 5a, the three spectral
indices LSWI, NDSI, and NDSVI are the most important spectral features, and the three months April,
May, and June are the most important temporal features. In the process of separating corn from other
land cover classes, as shown in Figure 5b, the two vegetation indices LSWI and NDTI are the most
important spectral features, and the two months May and June are the most important temporal
features. In the process of separating soybean from other land cover classes, as shown in Figure 5c, the
spectral index LSWI and the two bands 11 and 12 are the most important spectral features, and the
three months May, June, and August are the most important temporal features.

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 20 

 

grids vary from blue to red, which correspond to the values of SIglobal from low to high. Through the 
three global separability matrices in Figure 5, we obtained the importance ranking of all spectro-
temporal features. It is clear from the three global separability matrices that the contribution of each 
spectro-temporal feature in classification is different. The classification accuracy will be reduced 
when the spectro-temporal feature with poor global separability is involved in the classification, 
which reflects the importance of feature selection optimization.  

In terms of separating rice from other land cover classes, as shown in Figure 5a, the three spectral 
indices LSWI, NDSI, and NDSVI are the most important spectral features, and the three months April, 
May, and June are the most important temporal features. In the process of separating corn from other 
land cover classes, as shown in Figure 5b, the two vegetation indices LSWI and NDTI are the most 
important spectral features, and the two months May and June are the most important temporal 
features. In the process of separating soybean from other land cover classes, as shown in Figure 5c, 
the spectral index LSWI and the two bands 11 and 12 are the most important spectral features, and 
the three months May, June, and August are the most important temporal features.  

  

 
Figure 5. SIglobal pattern for identifying rice alone (a), corn alone (b), and soybean alone (c). 

The importance ranking of all spectro-temporal features for rice, corn, and soybean can be 
obtained based on the matrices. However, we could not input all available classification features to 
map crop type because the feature sets contained redundant or correlated information. Therefore, we 
removed the redundant features to reduce the curse of dimensionality in the classification (Figure 3). 
Finally, we obtained 22 optimal features for rice, 13 optimal features for corn, and 11 optimal features 
for soybean (Table 3).  

Figure 5. SIglobal pattern for identifying rice alone (a), corn alone (b), and soybean alone (c).

The importance ranking of all spectro-temporal features for rice, corn, and soybean can be obtained
based on the matrices. However, we could not input all available classification features to map crop
type because the feature sets contained redundant or correlated information. Therefore, we removed
the redundant features to reduce the curse of dimensionality in the classification (Figure 3). Finally,
we obtained 22 optimal features for rice, 13 optimal features for corn, and 11 optimal features for
soybean (Table 3).
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Table 3. Individual optimal features for rice, corn, and soybean selected by the ASTFS method.

Crop Type Optimal Features

Rice

NDSI, May; NDSI, June; LSWI, May; NDSVI, June; band 11, June; LSWI, June; NDSI, Apr.;
band 11, Apr.; band 12, June; band 11, July; NDSI, Aug.; NDTI, May; NDSI, Sept.; band 12,

June; band 8, May; NDWI, Apr.; NDVI, Apr.; NDWI, June; band 8, Oct.; band8, Sept.; NDWI,
Sept.; GCVI, Sept.

Corn LSWI, May; LSWI, June; NDTI, May; band 12, June; LSWI, Apr.; NDTI, Apr.; NDTI, Aug.;
NDSI, June; EVI, Aug.; band 11, Aug.; band 8, Aug.; band 12, Aug.; band 11, July

Soybean
LSWI, May; band 11, Aug.; band 12, Aug.; band 11, July; band 12, June;

NDSI, Aug.; band 12, July; band 8, Aug.; NDTI, Apr.; LSWI, Apr.;
band 11, May

According to the classification accuracies generated by the feature selection process, classification
accuracy curves of individual optimal feature sets for rice, corn, and soybean were plotted (Figure 6a,c,e).
In order to compare with the classification accuracy of optimal features, we compared classification
accuracy for each crop, and classification accuracy curves of individual unoptimized feature sets
(including all features in order of separability) for rice, corn, and soybean were also plotted (Figure 6b,d,f).
The horizontal axes of the graphs in Figure 6 represent the number of classification features, while
the vertical axes represent the overall accuracy of each classification. From Figure 6a,c,e, we can see
that after removing redundant information, the classification accuracy improved as the number of
classification features increased. Although we sorted all features according to their global separability
from high to low, with the increase in the number of classification features, the classification accuracy
did not increase in Figure 6b,d,f, but declined to a certain extent under the trend of overall increase.
This is because there is redundant and correlated information between classification features. When
information redundancy between features damages accuracy more than its contribution to accuracy,
features redundancy is caused, which is called the "curse of dimensionality" [22,23]. The ASTFS
method removes the redundant and correlated information contained in the feature set. By using the
optimal classification features, the overall accuracies of individual rice, corn, and soybean probability
maps were 99.15%, 96.69%, and 97.75%, respectively, which are the maximum in the three results.
With the same number of features with maximum SIglobal values as the number of optimal features
(the red triangles in Figure 6b,d,f), the classification accuracies only reached 98.25%, 91.33%, and
96.74%. Using all of the features of rice, corn, and soybean, their classification accuracies were 98.85%,
96.29%, and 96.89%. This just confirms the "curse of dimensionality" phenomenon mentioned above:
Simply stacking many classification features will not improve the classification accuracy, but will cause
information redundancy and reduce the classification accuracy.
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3.3. Crop Mapping Based on Optimized Feature Selection and Accuracy Assessment

Based on the optimal feature sets for rice, corn, and soybean, as well as the Random Forest
classifier, we generated the rice, corn, and soybean probability maps (Figure 7a–c). The final crop layer
was generated by combining these three probability maps (Figure 8). Each pixel value in the final crop
layer corresponds to the crop type with the maximum probability value. Figure 8 shows that crops are
mainly located in the plain areas, excluding Wanda Mountain in the east, Changbai Mountain in the
southwest, and Qinghei Mountain in the northwest of the Sanjiang Plain, which is consistent with the
actual situation.

In order to evaluate the reliability of the resultant crop layer based on the ASTFS method, we
compared it with another two results from (1) all of the 77 spectro-temporal features for each of the
three crops without feature optimization (“crop layer without feature sorting and optimization”), and
(2) the same number of features with maximum global separability values as the optimal features
(“crop layer with feature sorting but without optimization”).

The three resultant crop type layers (crop layer with ASTFS, crop layer without feature sorting
and optimization, and crop layer with feature sorting but without optimization) were validated by
using the same ground truth samples (620 rice samples, 492 corn samples, 250 soybean samples, and
634 others samples). The comparison of overall accuracies and Kappa coefficients of the three crop type
layers are shown in Figure 9, and the confusion matrices corresponding to individual classification
results are shown in Tables 4–6. We found that the overall accuracy of the crop layer with ASTFS is
93.94% and the Kappa coefficient is 0.92, which is the maximum among the three results. For rice, the
producer’s accuracy of the crop layer with ASTFS is 98.39% and the user’s accuracy is 98.07%, which is
the maximum among the three results. Because of its unique phenological periods (e.g., flooding and
transplanting stages), rice fields have special spectral characteristics. Therefore, rice is relatively easily
distinguished from the three crops. For corn, the producer’s accuracy of the crop layer with ASTFS is
93.29% and the user’s accuracy is 92.73%, which is the maximum among the three results. For soybean,
the producer’s accuracy of the crop layer with ASTFS is 82.00% and the user’s accuracy is 96.70%,
which is the maximum among the three results. The reason why the producer’s accuracy of soybean is
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obviously lower than other accuracies in Table 4 is that some soybean fields are misclassified into corn
and others. Soybean and corn have similar spectral characteristics and similar phenological periods,
so it is difficult to distinguish between them. In addition, because the other types contain multiple
land cover classes (forest, water, buildings, and other ground objects) and heterogeneity, some samples
of rice, corn, and soybean are misclassified into others, and some others are also misclassified into the
three crops. For others, the producer’s accuracy of the crop layer with ASTFS is 94.79% and the user’s
accuracy is 90.10%, which is also the maximum among the three results. The analyses of classification
results show that the ASTFS method is an effective feature selection method.
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Table 4. Confusion matrix of crop layer with ASTFS.
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User’s accuracy (%) 98.07% 92.73% 96.70% 90.10%
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Figure 9. Comparisons of overall accuracies and Kappa coefficients of resultant (a) crop layer with
ASTFS (using 22 optimal features for rice, 13 optimal features for corn, and 11 optimal features for
soybean), (b) crop layer with feature sorting but without optimization (using 22 features for rice,
13 features for corn, and 11 features for soybean), and (c) crop layer without feature sorting and
optimization (using individual 77 features for rice, corn, and soybean).
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Table 5. Confusion matrix of crop layer with feature sorting but without optimization.

Reference Data
Classified Data

Rice Corn Soybean Others
Producer’s

Accuracy (%)

Rice 604 1 0 15 97.42%
Corn 0 412 2 78 83.74%

Soybean 0 44 180 26 72.00%
Others 19 11 7 597 94.16%

User’s accuracy (%) 96.95% 88.03% 95.24% 83.38%

Table 6. Confusion matrix of crop layer without feature sorting and optimization.

Reference Data
Classified Data

Rice Corn Soybean Others
Producer’s

Accuracy (%)

Rice 607 4 0 9 97.90%
Corn 0 457 4 31 92.89%

Soybean 0 14 195 41 78.00%
Others 14 20 5 595 93.85%

User’s accuracy (%) 97.75% 92.32% 95.59% 88.02%

4. Discussion

4.1. Different Optimal Features for Identification of Rice, Corn, and Soybean

By using the ASTFS method, higher classification accuracy can be achieved with fewer classification
features, also reducing computational complexity and time cost. In this study, we obtained three
optimal feature sets for rice, corn, and soybean, which included 22, 13, and 11 features (Table 3),
respectively. Specifically, we found that May and June are the most important phases to distinguish
rice from other land cover classes, as rice undergoes flooding, transplanting, and reviving stages and
the rice fields are covered by water in these periods. The corn and soybean fields are in the sowing
stage and seeding stage (Figure 2), with low green vegetation and bare soil background in May and
June. Differences in water content between rice fields and other types of farmlands caused their high
pairwise separability in LSWI, NDSVI, and NDSI, which are sensitive to soil water content. Corn is also
easily identified in May and June as it is in the sowing, seeding, three leaf, and seven leaf stages, while
rice is in the flooding, transplanting, and reviving stages and soybean is in the sowing and seeding
phases. In addition, the forest has higher vegetation coverage than corn in this period. In addition to
May and June, August is another important time point to identify corn and soybean. Due to the similar
spectral characteristics and phenological phases of corn and soybean, it is challenging to distinguish
them [56,57]. According to Figure 2, corn enters the mature stage before soybean in August, which is
an important phenological characteristic to distinguish corn from soybean. In the optimal features of
soybean and corn, the short-wave infrared band in August is an important feature, which agrees with
a previous study [40].

4.2. Implications of the ASTFS Method for Land Cover Classification

In this study, we proposed the ASTFS method and applied it to the Sanjiang Plain (about
108,900 km2) in the northeast of Heilongjiang Province of China. The ASTFS method well balanced
the relationship between spectral separability and information redundancy and generated high
classification accuracy in the resultant crop map. In this study, the resultant crop layer maps using
optimal feature sets of rice, corn, and soybean are better than that using the same number of features
with maximum SIglobal, as well as that using all the 77 spectro-temporal features. The results indicate
that there is redundant information that not only fails to improve the classification accuracy, but also
increases the computational complexity and time cost, suggesting the importance of feature selection.
The ASTFS method proposed in this study can be extended and tested in a larger area, such as Northeast
China and monsoon Asia, and also other sensors like Landsat and MODIS [55,58–60]. The improved
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regional crop type maps can provide important input data for crop growth monitoring and crop yield
forecasting [61–63].

Although the ASTFS method was used to obtain the optimal feature sets of rice, corn, and soybean
and good classification results were obtained, the method could be improved from the four aspects.
First, this study used SIij when calculating pairwise separability. Other indicators could be used to
quantify the inter-class separability as well. Second, when calculating SIglobal, this study adopted the
average values of the pairwise separability indices as SIglobal for each feature. However, other means
of calculating SIglobal, such as the minimum or maximum of the SIij, the weighted average of the SIij,
and the average of normalized SIij, could be tested to improve the ASTFS method in the future. Third,
ASTFS is currently limited to dealing with a single cropping and does not consider the identification
of double or triple cropping. In the future, the ASTFS method could consider integrating the phase
segmentation strategy [64] and more phenological metrics [65] to solve the crop identification problem
of double or triple cropping. Finally, due to the unavailability of Sentinel-2 surface reflectance (SR)
data in China before 2019 in the GEE platform, we used top of atmosphere (TOA) reflectance in this
study. In the future, with the availability of SR data in China and continuous improvements (e.g.,
inclusion of the atmospheric correction tool for Sentinel-2) of the GEE platform, the results of crop
classification and crop maps could be further improved.

5. Conclusions

While increasing numbers of medium resolution satellite imagery and improved machine learning
algorithms become available, feature selection has rarely been investigated systematically for crop
mapping. In this study, we proposed the automatic spectro-temporal feature selection (ASTFS) method
for optimal feature selection, targeting an improved crop mapping strategy. The optimal classification
feature sets of rice, corn, and soybean were obtained based on the ASTFS method, and then used for
crop type layer mapping in the Sanjiang Plain of Northeast China. We found that when rice was in
the flooding and transplanting stage in May, it was easy to separate from other land cover classes.
The important phenological phases of corn are the seeding stage, three leaves stage, seven leaves
stage, and the mature stage, and the corresponding months are May, June, and August. In particular,
the mature stage in August is an important phenological phase for distinguishing corn and soybean.
The short-wave infrared band plays an important role in distinguishing corn and soybean. These
findings are specific for the Sanjiang Plain and may be transferable to other regions with different
cropping calendars. The probability maps for the three crop types were generated based on the
individual optimal feature sets of rice, corn, and soybean, and then these three maps were composited
to generate the final crop type layer in the Sanjiang Plain according to their probability values. The crop
type layer based on the ASTFS method showed a higher accuracy (overall accuracy (OA) = 93.94%,
Kappa coefficient = 0.92) than the other two crop type maps: (1) Crop layer with feature sorting but
without optimization (OA = 89.83%, and Kappa = 0.86), and (2) crop layer without feature sorting and
optimization (OA = 92.89%, and Kappa = 0.90). With the same number of features, the classification
accuracy of the crop layer with the ASTFS method is obviously better than the crop layer with feature
sorting but without optimization. Although the classification accuracy of the crop layer with the
ASTFS method is slightly better than the crop layer without feature sorting and optimization, the latter
uses all features, which would greatly increase computational complexity and time cost. Through
comparison, we confirmed that the ASTFS method is an effective feature optimization method for the
extraction of rice, corn, and soybean in the Sanjiang Plain. The encouraging results from this study
indicate that the ASTFS method has the potential to be used for the classification of crops or general
land cover types and can be extensively applied for larger areas and using other sensors.
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