
remote sensing  

Article

Potential of Night-Time Lights to Measure
Regional Inequality

Kinga Ivan 1, Iulian-Horia Holobâcă 1, József Benedek 1,2,* and Ibolya Török 1
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Abstract: Night-time lights satellite images provide a new opportunity to measure regional inequality
in real-time by developing the Night Light Development Index (NLDI). The NLDI was extracted
using the Gini coefficient approach based on population and night light spatial distribution in
Romania. Night-time light data were calculated using a grid with a 0.15 km2 area, based on Defense
Meteorological Satellite Program (DMSP) /Operational Linescan System (OLS satellite imagery for
the 1992–2013 period and based on the National Polar-orbiting Partnership–Visible Infrared Imaging
Radiometer Suite (NPP-VIIRS) satellite imagery for the 2014–2018 period. Two population density
grids were created at the level of equal cells (0.15 km2) using ArcGIS and PostgreSQL software,
and census data from 1992 and 2011. Subsequently, based on this data and using the Gini index
approach, the Night Light Development Index (NLDI) was calculated within the MATLAB software.
The NLDI was obtained for 42 administrative counties (nomenclature of territorial units for statistics
level 3 (NUTS-3 units)) for the 1992–2018 period. The statistical relationship between the NLDI and
the socio-economic, demographic, and geographic variables highlighted a strong indirect relationship
with local tax income and gross domestic product (GDP) per capita. The polynomial model proved
to be better in estimating income based on the NLDI and R2 coefficients showed a significant
improvement in total variation explained compared to the linear regression model. The NLDI
calculated on the basis of night-time lights satellite images proved to be a good proxy for measuring
regional inequalities. Therefore, it can play a crucial role in monitoring the progress made in the
implementation of Sustainable Development Goal 10 (reduced inequalities).

Keywords: sustainable development goals (SDG); regional inequality; night-time lights (NTL); Night
Light Development Index

1. Introduction

At the United Nations (UN) Sustainable Development Summit held in September 2015, the leaders
of 193 UN member states expressed their adherence to the 17 Sustainable Development Goals (SDGs)
of the 2030 Agenda which, as a global action plan, aims at reducing poverty, fighting inequalities and
injustice, and protecting the environment by 2030 [1]. In monitoring progress towards these goals,
Earth observation (EO) solutions play an important role in providing information where national data
are not available or are costly [2–7].

Night-time lights (NTL) satellite images have also been used in a variety of other studies,
such as gross domestic product (GDP) estimation [8–13], economic decline detection [14,15],
ship detection [16], light pollution detection [17–19], urban expansion monitoring [20–23], human
well-being measurement [24], built-up area mapping [25,26], modeling of electricity consumption
dynamics [27–31], and fire detection [32].
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The adoption of the 2030 Agenda with its 17 Sustainable Development Goals (SDGs) created
a framework for a radical change in the use of geospatial and EO solutions: 60% of the 169 SDG-related
targets and 232 indicators can be directly monitored with EO solutions [4]. SDG 10 aims at reducing
inequalities, which include, among other actions, empirical evidence production and monitoring the
evolution of inequalities within and among countries. The monitoring of the latter is not difficult
for most countries where national accounts and national statistical offices have been established [33].
The difficulties are related to the measurement of sub-national regional inequalities, with two shortcuts:
scarce statistical data and a considerable time delay in calculating regional GDPs. Our study links
statistical and geospatial frameworks for improved monitoring and reporting on SDG 10. At the same
time, to our knowledge, this is the first attempt to introduce EO solutions in measuring SDG 10 at the
sub-national level.

We chose Romania as the study area for three reasons: it is one of the most unequal countries
of the European Union (EU) [34–40]; these regional inequalities have been generated in the last
20 years [41–43]; and the country has started an economic development process from a low level,
making it very suitable for the application of night-time light data from satellite imagery [44]. However,
the results are not limited to the area of study, as will be shown in the following parts of the article.

The literature on regional inequalities focused until recently on local tax income from household
surveys and GDP per capita from national accounts, as a complex measure of economic development
highlighting inter-regional differentials worldwide [34,45–53] or applying case studies in a Romanian
context [34–36,42].

However, the above-mentioned economic indicators used to measure regional inequalities have
several limitations, such that GDP is measured directly only at the national level, while at the
regional level it is calculated indirectly with a two-year delay compared to the national one [3,54].
Compared to traditional statistical data, night-time lights satellite images have a number of advantages:
regional inequality can be calculated locally in real time (instead of waiting two years for the indirect
calculations from national accounts); they have higher temporal resolution; and they can be obtained
free of charge. Lately, some studies have focused on the use of night-time light data in measuring
regional inequalities [54–59]. Xu [56] used population density and night-time lights (NTL) satellite
images to measure regional inequality of public services at four different scales in China (national,
economic regions, provinces, and prefectural cities) and their changes between 2005 and 2010. Zhou [54]
analyzed the socio-economic inequality at the subnational level in China, calculating three inequality
indices based on the methodology used to calculate the Gini coefficient, the Theil index, and the Lorenz
asymmetry coefficient. They found that the Gini and Theil indices at the provincial level were lower
than the indices obtained at the county level, and thus obtained a positive statistical correlation between
Visible Infrared Imaging Radiometer Suite (VIIRS) night-time radiance and GDP and population.

Although in the last decades a series of studies have dealt with the issue of regional inequalities,
there is a large research gap focusing on subnational scales. The purpose of our study is to measure
regional inequality in Romania, for the 1992–2018 period, at the county level (NUTS 3 units),
using night-time lights (NTL) satellite images, in order to monitor progress in the direction of
SDG 10 (reduced inequalities).

2. Study Area and Data

2.1. Study Area

In this study, we analyzed regional inequalities at the county level (NUTS-3) in Romania.
Romania is divided into 42 administrative counties (NUTS-3, 41 counties and the Municipality of
Bucharest), which are grouped into eight development regions (NUTS-2) used in particular to coordinate
regional development projects. The counties are divided into 3181 territorial administrative units
(local administrative units (LAU1)): 103 municipalities, 217 cities/towns, and 2861 communes (Figure 1).
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Figure 1. Administrative organization of Romania.

2.2. Data Collection

2.2.1. DMSP Night-Time Light Data

The Defense Meteorological Satellite Program (DMSP) satellite images were collected by the
National Oceanic and Atmospheric Administration (NOAA). They are available free of charge for the
1992–2013 period and have a spatial resolution of 30 arc s (1 km) (Table 1).

Table 1. Description of the data used in this study.

Data Data Description Year

DMSP-OLS NTL annual product–stable light composite 1992, 2008, 2012, 2013
DMSP-OLS NTL annual product–average light composite 1992, 2008, 2012, 2013
NPP-VIIRS DNB annual product–“vcm-orm-ntl” 2016

NPP-VIIRS DNB monthly product–“vcmslcfg” 2014, 2018
(April, May, June, July, August, September)

DMSP-OLS satellites orbit the Earth and record the intensity of light using OLS sensors. The light
intensity measured by the DMSP-OLS satellites ranges from 0 to 63. Digital number: 0 corresponds
to non-illuminated areas, and the 63 values correspond to the strongly illuminated areas (Figure 2).
The DMSP images for Romania were extracted from the NOAA/NGDC database Version 4 DMSP-OLS
Night-time Lights Time Series [60]. Abbreviations: DMSP, Defense Meteorological Satellite Program;
OLS, Operational Linescan System; NTL, night-time lights; NPP, National Polar-orbiting Partnership;
VIIRS, Visible Infrared Imaging Radiometer Suite; DNB, day/night band.

2.2.2. NPP-VIIRS Night-Time Light Imagery

The NPP-VIIRS satellite images were collected by the National Oceanic and Atmospheric
Administration and National Aeronautics and Space Administration (NASA). The Suomi National
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Polar-orbiting Partnership (NPP) satellite records light intensity using VIIRS (Visible Infrared Imaging
Radiometer Suite) sensors, which collect data in 22 different spectral bands, one of which is the DNB
(day/night band). These data are available at an annual scale for 2015 and 2016, and a monthly scale
for the 2012–2019 period; their resolution is 15 arc-s (approximately 500 m). In this study, we used
Version 1 VIIRS Day/Night Band Night-time Lights suite produced by the Earth Observations Group
(EOG) at NOAA/NCEI (National Centers for Environmental Information) [61]. From the annual data
we used the "vcm-orm-ntl" layer (VIIRS Cloud Mask–Outlier Removed–Night-time Lights) for 2016,
which contains cloud-free average emitted radiance expressed in nW/cm2/sr; these data were subject to
an outlier removal process to filter out fires and other ephemeral lights. As regards monthly data, there
are two configurations of the NPP-VIIRS composites: “vcmcfg”—data contaminated by stray light are
removed, and “vcmslcfg”—data contaminated by stray light are corrected [59]. Thus, for 2014 and 2018,
the averaging pixel brightness was calculated based on the monthly data (“vcmslcfg”) corresponding to
the summer months (May–September), and two composite VIIRS night-time light images resulted. We
used the summer months (May-September) because there were no areas covered in snow in Romania
during this period.
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Figure 2. Spatial distribution of night-time light in Romania, 1992 and 2018.

The night-time light data were extracted using the ArcGIS 10.1 software, at the level of equal cells
of 0.15 m2, based on DMSP/OLS satellite images for 1992–2013 and NPP-VIIRS satellite images for
2014–2018. The DMSP and the NPP-VIIRS data were aggregated on a spatial grid of 0.15 km2 using
the Zonal Statistics tool in ArcGIS software. With this tool, a mean statistic was calculated for each
grid cell of 0.15 km2 (earlier defined) based on values from NTL data. The NLDI was calculated using
the MATLAB software for 41 counties for the 1992–2018 period. The geographical variables (altitude,
latitude, and longitude) were deviated from DEM SRTM (Digital Elevation Model - Shuttle Radar
Topography Mission) by 90 m.

2.2.3. Demographic and Economic Data

The data on the population of villages, cities/towns, and municipalities (LAU2) were taken from
the 1992 and 2011 population census [62]. These data were aggregated on equal grid networks of
0.15 km2; two population density grids were created with the ArcGIS and PostgreSQL software
and later used to calculate the NLDI. In the absence of other sources of population data at the local
level, the population density grid obtained for 1992 was used to calculate the NLDI for 1992, and the
population density grid resulted for 2011 was used to calculate the NLDI for 2008, 2012, 2013, 2014,
2016, and 2018. The population and migration data at the county level for each year were obtained
from the National Institute of Statistics [63].
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The data on GDP per capita at the county level were extracted from the Eurostat database [64] for
the 2008–2016 period, and from the National Institute of Statistics [63] for 1995 (since it was the closest
year to 1992 available). The local tax income data at the county level were obtained from the Ministry
of Regional Development and Public Administration (MRDPA) [65,66] (Table 2).

Table 2. Data descriptives. GDP, gross domestic product.

Mean Standard Deviation

GDP
per

capita

Local
tax

income

Net
migration

rate Population

GDP
per

capita

Local
tax

income

Net
migration

rate Population

1992 * * −2.0 550,638 1992 * * 3.4 309,804.9
2008 10,935.7 751.1 −0.2 536,718.3 2008 4887.1 457.9 5.4 308,976.7
2012 12,173.8 802.7 −0.4 533,377.7 2012 5102.5 447.9 5.8 308,994.3
2013 12,226.2 883.1 −0.5 532,377.4 2013 5278 451.7 5.7 308,117.2
2014 12,690.5 908.9 −0.4 530,946 2014 5585.5 469.8 6.1 304,972.3
2016 14,540.5 1068.2 −1.0 529,430 2016 6363.7 520.2 6.5 305,148
2018 * 1200.8 −1.8 528,038.2 2018 * 554.5 5.7 309,051.3

Minimum Maximum

GDP
per

capita

Local
tax

income

Net
migration

rate Population

GDP
per

capita

Local
tax

income

Net
migration

rate Population

1992 * * −9.4 235,196 1992 * * 6.9 2,191,176
2008 5900 340.4 −5.8 232,279 2008 33,000 2724 31.4 2,158,816
2012 7000 389.0 −6.1 230,600 2012 36,400 2739.7 34.4 2,151,758
2013 6800 438.9 −7.0 230,226 2013 37,700 2768.5 31.8 2,140,816
2014 7000 436.4 −4.9 229,563 2014 39,400 2861.5 35.2 2,110,752
2016 8100 519.3 −6.4 228,492 2016 45,600 3131.2 37.7 2,102,675
2018 * 559.3 −10.3 226,879 2018 * 3402.6 29.1 2,121,794

3. Methodology

Earth observation allowed us to calculate the Night Light Development Index (NLDI) which
we used to measure regional inequality. This index is calculated based on the methodology for the
calculation of the Gini coefficient, commonly used to measure regional inequality [43,48,53,67].

In this study, we intended to measure regional inequalities in Romania using the Night Light
Development Index (NLDI), which can be regarded as a proxy variable in highlighting inter-regional
differentials [54]. The Gini coefficient is one of the most commonly used indices worldwide for
measuring income inequalities among individuals or households in a country. It ranges from 0 to
10, 0 representing perfect equality and 10 perfect inequality. Using the Gini coefficient approach,
first we calculated the Night Light Development Index (NLDI) at county level based on data on
the spatial distribution of the population and the aggregate night-time light, both at the grid level.
Next, we determined the Night Light Inequality Index (NLII) at the national level, based on the Night
Light Development Index (NLDI) values at the county level, using the Gini coefficient methodology.
The values of the NLII range from 0 to 10, where 0 indicates perfect equality and 10 perfect inequality.
The large volume of data required the automation of the NLDI calculation; to this end, a script was
developed in MATLAB, and later we integrated therein the gini.m script created by Lengwiler [68].
Gini.m calculates the Gini coefficient (NLDI in our case) and the Lorenz curve using vectors of equal
length and values greater than or equal to 0. NLDI values range from 0 to 1, the highly developed
counties have low NLDI values and the least developed counties have high NLDI values [55].
The Lorenz curve is the graphical representation of the distribution and it is a straight line in the case
of perfect equality (Figure 3).

NLDI = A/(A + B) (1)
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because A + B = 0.5 (since the axes scale from 0 to 1).

NLDI = 1 − 2B (2)

where NLDI is the Night Light Development Index; A is the area between the perfect equality line and
the Lorenz curve; B is the area under the Lorenz curve.
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The NLDI is determined using the calculated area between the Lorenz curve and the axes (B).
This area is calculated by computing the average of the left and right Riemann-like sums (rrapezoidal
rule). These are called Riemann-like sums because they are calculated in points given by population
values and not on a uniform grid (Figure 3).

This area calculation method is commonly used in mathematical analysis to approximate a definite
integral. The values of the f function over an interval are approximated by the average of the values at
the left and right extremities. A simple calculation involves using the trapezoidal area formula:

A =
1
2

* h (b1 + b2) (3)

where h is the height of the trapeze; b1 and b2 are parallel sides.

1
2

∆x[ f (a) + 2 f (a + ∆x) + 2 f (a + 2∆x) + 2 f (a + 3∆x) + . . .+ f (b)] (4)

where the interval [a, b] is divided into n subintervals, each of length: ∆x = (b − a)/n. The points in the
partition will then be: a, a + ∆x, a + 2 ∆x, . . . .a + (n − 1) ∆x, b.

Using the Gini coefficient approach, the Night Light Inequality Index (NLII) was determined at the
county level based on the Night Light Development Index (NLDI) values. In addition, we compared
the evolution of the NLII for 1992–2018 with the official household income Gini index measured and
published by Eurostat [64] in order to check the robustness of the NLII.

A large part of the literature on regional inequalities is focused on income and GDP per capita,
as a complex measure of economic development highlighting inter-regional differentials worldwide.
In order to validate the NLDI, we performed a correlation and regression analysis using the income
data available at the county level.
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Using typical regression notations/notions, we can specify the relation between income and the
NLDI as follows:

ˆIncome = a + b ∗ NLDI + ε (5)

where Y represents the dependent variable (in our case the estimated income); X represents the
independent variable (representing the NLDI); ε is the residual variable; a, b, c are regression
parameters estimated by applying the regression function, based on data series used to define
two variables.

In order to find the best fitting (trend) line, we tested both the exponential function model
(Equation (6)) and the polynomial model (Equation (7)). By substituting our variables, we ended up
with the following equations:

ˆIncome = a ∗ e (−b∗NLDI) + c (6)

ˆIncome = a + b ∗ NLDI + c ∗ NLDI2 (7)

where the NLDI represents the Nigh Light Development Index; a, b, c are regression parameters.
The classic measure of fit in a linear regression model is the R2 and its adjusted counterpart,

R2a, which shows the validity of the chosen model for explaining the variation of Y (the percentage
of income estimation explained by the NLDI). Adjusted R2 (R2a) is a coefficient of determination
corrected with degrees of freedom that has the same meaning as R2.

Evaluation of the regression function’s capacity to estimate income is often based on the relative
error (RE) or residuals (the difference between the observed y values and the predicted y values)
and relative root mean square error (RRMSE). The lower the absolute value of the RE, the better the
model fitting. Similarly, a lower RRMSE (which is derived from RE and the analyzed units) indicates
an increased accuracy of the regression function (better fit of the model).

The Akaike information criterion (AIC) is a useful tool for the selection of models. It is based
on the likelihood function and ranks regression models according to a score, where a lower value
represents better results. The AIC is computed as:

AIC = −2L + 2k (8)

where L represents the value attributed to likelihood and k is the number of estimated parameters.
Hence, the smaller the value of the information criterion, the better the model.

The annual NLDI values were related to socio-economic variables (GDP, income), demographic
variables (total population, net migration rate), and geographical factors (altitude, geographical
position) using multiple regression.

Multiple regression also allows us to determine the overall model fit (variation explained) and
the relative contribution of each of the predictors to the total variation explained. We used the SPSS
software to calculate the regression parameters. The enter regression method was used at a 95%
confidence level.

ˆNLDI = a + b1 ∗ Alt + b2 ∗ Long + b3 ∗ Lat + b4 ∗ Income + b5 ∗ GDP + b6 ∗ NMR + b7 ∗ Pop + ε (9)

where a is the intercept; b1, b2 . . . b7 are the unstandardized coefficients; ε is error; NLDI represents
the Nigh Light Development Index; Alt is altitude, Long is longitude; Lat is latitude; Income is local
tax income; GDP—is gross domestic product per capita; NMR is net migration rate; Pop is population.

4. Results and Discussion

Figures showing the NLDI (Figure 4) illustrate the existing economic development inequalities.
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For classification of the NLDI, we used the natural breaks (Jenks) classification method which
aims to ensure natural grouping in the data by minimizing variance between classes and maximizing
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variance across them [33]. The analysis conducted on the NLDI values for each year taken into
consideration shows a downward trend until the economic crisis, followed by a short increase. All this
illustrates a growing polarization between the most and least developed counties.

Counties with a higher development level and an implicitly lower value of the NLDI are
concentrated in the Bucharest capital area, the southern and north-western parts of the historical region
of Transylvania (Sibiu (SB), Bras, ov (BV), Cluj (CJ) counties), and the western border region (Timis, county
(TM)) along with areas close to the Black Sea Coast (Constanta county (CT)). These counties have
the highest level of human capital and foreign direct investments, and the best accessibility and
productivity in Romania [35–40].

In contrast, the lowest levels of economic development reflected through the NLDI can be found
in the northern, eastern, and south-western parts of Romania (Figure 4), which are among the poorest
regions of the EU.

Even though the geographical position and proximity are important factors in development, we
cannot unambiguously identify a duality of development between the west and the east or the north
and the south, the country being similar to a mosaic of rich and poor areas, reflecting high regional
inequalities (Table 3).

Table 3. Pearson correlation coefficient between Night Light Development Index (NLDI) and
analyzed variables.

Year Altitude X_Long Y_Lat
Local
Tax

Income

GDP
/Capita

Positive Net
Migration

Rate

Negative Net
Migration

Rate
Population

1992 0.105 −0.162 0.120 ** −0.747 * −0.131 −0.277 −0.669 *
2008 0.088 −0.085 0.247 −0.864 * −0.840 * −0.743 * −0.044 −0.666 *
2012 0.102 −0.055 0.222 −0.862 * −0.840 * −0.748 * 0.308 −0.637 *
2013 0.093 −0.077 0.170 −0.858 * −0.824 * −0.560 * 0.306 −0.670 *
2014 0.288 −0.120 0.470 * −0.827 * −0.797 * −0.689 * 0.205 −0.553 *
2016 0.304 −0.118 0.474 * −0.831 * −0.806 * −0.741 * 0.110 −0.573 *

* Significant correlations; ** no data.

The spatial distribution of NLDI values are influenced by a number of factors such as
socio-economic variables, demographic variables, and geographical factors. The Pearson correlation
coefficient was calculated (Table 3) to highlight the relationship between the NLDI and these factors.

The correlation analysis indicates the preservation of the value and the sign of the relationship
between the NLDI and the parameters, in all the years subject to analysis. Thus, the relationship is
inverse in terms of development indicators, as the NLDI is higher in the counties with a lower local tax
income and GDP per capita. Similar results at the subnational scale in China were obtained by Xu [56]
and Zhou [54] using VIIRS night-time radiance. In the case of demographic variables, the NLDI has
an indirect relationship with the county population and the positive net migration rate, and a direct
relationship with negative net migration rate. There is nothing unusual in these findings: higher levels
of economic development are generally related to the positive market effects generated by a larger
population concentration. These areas are also attractive for migration due to the higher number of jobs,
higher wages, and good quality of life. All these generate positive migration balances. The relationship
between the NLDI and the geographical factors indicates higher NLDI values in the counties with
a higher average altitude, and an increase of the NLDI values from south to north and from east
to west. However, the very low correlation values show that there is no spatial clustering for these
parameters (Figure 4).

The results show statistically significant correlations with the variables that reflect the development
level and the demographic variables, and non-significant correlations with the geographical variables;
except for 2014 and 2016, where we can see a statistically significant direct relationship with latitude.
A possible explanation would be the different resolution of the satellite images (VIIRS compared to
DMSP), but also an increase of economic development between the north and the south especially after
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the economic crisis (Figure 4). The relatively small correlation value (0.47) indicates that there is not
a very clear differentiation of the development level in the north-south direction, due to the presence
of less developed areas in the southwestern part of the country.

Given the low values of the Pearson correlation coefficients for the geographical factors, we further
analyzed their relative contribution to the estimation of the NLDI using multiple linear regression.
The regression was calculated for the most recent year (2016) for which there is complete data (Table 4).
Multiple regression analysis explains ≈80% of the total variability (adjusted R2 = 0.798) of the NLDI
for the year under study.

Table 4. Regression coefficients.

Year Variable Unstandardized
Coefficients

Standardized
Coefficients

2016

(Constant) 0.783
GDP per capita −0.00000755 −0.450

Altitude 0.00005078 0.127
X_Long −0.00000009 −0.121
Y_Lat 0.00000023 0.273

Local tax income −0.00008564 −0.418
Net migration rate −0.00000516 −0.384

Population −0.00000011 −0.311

A clearer picture of the results of multiple regression is provided by the relative contribution of
each predictor to the total variation explained. The analysis of the standardized coefficients shows
a relatively balanced relationship between the socio-economic variables and the demographic variables
in the multiple regression results (Table 4). In general, geographical variables had a smaller contribution
to the result of the multiple regression, indicating a lower impact on the NLDI values. It should be
noted that the income and GDP variables have a greater impact in the calculation of the index than
population and net migration rate.

Table 3 shows that the NLDI correlates best with income, which indicates a high potential of the
index in estimating income at the county level. In this context, we performed a regression analysis to
identify which type of regression was best suited for income estimation. The analysis was conducted
only for the 2008–2018 period because there was no income data for 1992. In this analysis we used
several criteria to select the best model: total variation explained (R2), error (RMSE), and AIC (Table 5).

Table 5. Income fitting precision values based on NLDI at county level.

Model Metric 1 2008 2012 2013 2014 2016 2018

Linear

R2 0.746 0.743 0.736 0.683 0.691 0.617
Adjusted R2 0.740 0.737 0.729 0.675 0.683 0.607

RMSE 233,512 229,753 235,001 267,680 292,820 347,545
AIC 460,022 458,659 460,556 471,493 479,034 493,426

Polynomial
R2 0.856 0.885 0.845 0.762 0.746 0.682

RMSE 178,054 155,534 182,044 235,052 268,758 320,801
AIC 440,183 428,824 442,044 463,511 474,768 489,636

Exponential
R2 0.839 0.870 0.829 0.752 0.739 0.677

RMSE 188,374 165,788 191,394 239,688 272,340 323,133
AIC 444,915 434,187 446,252 465,152 475,880 490,245

1 Abbreviations: RMSE, root square mean error; AIC, Akaike information criterion.

The best results were obtained in the second-order (k = 2) polynomial model (Figure 5), for all the
criteria considered (Figure 5a–f). The differences are small between the polynomial model and the
exponential one, but if we consider R2, we can see a significant improvement compared to the linear
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model. If we use this model, we can see an improvement of the explained variation by 6% in 2016
and 14% in 2012, compared to linear regression. Similar results were obtained by Dai [12] who, at the
provincial scale, highlighted a higher accuracy of the polynomial model compared to the linear one.
Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Polynomial model between NLDI and income, a-f 2008–2018. 

Satellite images proved to be a good proxy in estimating economic output and regional 

inequalities at the subnational level. 

One of the main limitations of this study is the statistically insignificant relationship between the 

NLDI and the income for all 3181 LAU1 (local administrative units: communes and cities). It indicates 

a low potential of the index in estimating income and measuring inequality at the local level. This 

may result from the huge differences in population size among LAUs. Therefore, in line with the 

existing literature, our future research intends to find out the population thresholds where the 

relationship between the SOL (sum of lights) and income becomes statistically significant.  

The second limitation is related to the absence of population data at LAU2 level (villages and 

towns) for each year. The existence of this data would have helped the authors to improve the NLDI 

for each year. We will continue to improve our future research by including other datasets such as 

the annual human settlements or population-grid dataset.  

The third important limitation is due to the heterogeneity in the resolution of the satellite images 

used in the study. Until 2013 we employed lower resolution satellite images (1 kmp), while for the 

rest of the 2014–2018 period we used higher resolution satellite images (500 kmp). It is hard to 

overcome this limitation due to the unavailability of higher resolution images before 2013. 

5. Conclusions 

We demonstrated in our study that Earth observation solutions could play an important role in 

monitoring progress in the direction of SDG 10 (reduced inequalities). The NLDI calculated from 

night-time lights (NTL) satellite images proved to be a good proxy for the real time measuring of 

economic output, while the NLII calculated for the estimation of regional inequalities represents, to 

our knowledge, an absolute novum in inequality literature. The NLDI has high potential for 

estimating income and implicitly GDP, as evidenced by the high correlation coefficients. In this 

regard, the second-order polynomial model proved to be the best model in estimating income, 

compared to the linear and exponential regression model. The polynomial regression model brings 

about a significant improvement in the explained variation compared to linear regression.  

Moreover, we successfully combined geospatial information and EO (from satellite) with 

modern data processing (MATLAB, GIS), thus offering an unprecedented opportunity for the real-

time tracking of SDG 10. All these tools provided reliable information on the state of economic output 

Figure 5. Polynomial model between NLDI and income, a-f 2008–2018.

Satellite images proved to be a good proxy in estimating economic output and regional inequalities
at the subnational level.

One of the main limitations of this study is the statistically insignificant relationship between the
NLDI and the income for all 3181 LAU1 (local administrative units: communes and cities). It indicates
a low potential of the index in estimating income and measuring inequality at the local level. This may
result from the huge differences in population size among LAUs. Therefore, in line with the existing
literature, our future research intends to find out the population thresholds where the relationship
between the SOL (sum of lights) and income becomes statistically significant.

The second limitation is related to the absence of population data at LAU2 level (villages and
towns) for each year. The existence of this data would have helped the authors to improve the NLDI
for each year. We will continue to improve our future research by including other datasets such as the
annual human settlements or population-grid dataset.

The third important limitation is due to the heterogeneity in the resolution of the satellite images
used in the study. Until 2013 we employed lower resolution satellite images (1 kmp), while for the rest
of the 2014–2018 period we used higher resolution satellite images (500 kmp). It is hard to overcome
this limitation due to the unavailability of higher resolution images before 2013.

5. Conclusions

We demonstrated in our study that Earth observation solutions could play an important role
in monitoring progress in the direction of SDG 10 (reduced inequalities). The NLDI calculated from
night-time lights (NTL) satellite images proved to be a good proxy for the real time measuring of
economic output, while the NLII calculated for the estimation of regional inequalities represents,
to our knowledge, an absolute novum in inequality literature. The NLDI has high potential for
estimating income and implicitly GDP, as evidenced by the high correlation coefficients. In this regard,
the second-order polynomial model proved to be the best model in estimating income, compared to the
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linear and exponential regression model. The polynomial regression model brings about a significant
improvement in the explained variation compared to linear regression.

Moreover, we successfully combined geospatial information and EO (from satellite) with modern
data processing (MATLAB, GIS), thus offering an unprecedented opportunity for the real-time tracking
of SDG 10. All these tools provided reliable information on the state of economic output and economic
regional inequalities, as well as their change over time. We believe that this combination can be
successfully used in other spatial and national contexts where data on local tax incomes are available.
The above-mentioned combination of methods and techniques is not place-bounded since satellite
images are available for all countries. It would be very interesting to see if the relationship between
regional economic development and the night-light satellite images is maintained in countries with
advanced economies and where light pollution is reduced by modern technologies. Our future research
will continue into this direction.

The analysis of the statistical relationship between the NLDI and demographic and socio-economic
variables has shown a strong indirect relationship between the NLDI and local tax income and GDP
per capita. The lack of relationship between the NLDI and geographical variables shows an aleatory
spatial distribution of rich and poor areas. Multiple regression analysis using standardized coefficient
values reinforces previous results, with income and GDP having the largest contribution in explaining
the total variation.
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