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Abstract: After more than 10 years in orbit, the SMOS team has started a new reprocessing campaign
for the SMOS measurements, which includes the changes in calibration and image reconstruction that
have been made to the Level 1 Operational Processor (L1OP) during the past few years. The current
L1 processor, version v620, was used for the second mission reprocessing in 2014. The new version,
v724, is the one run in the third mission reprocessing and will become the new operational processor.
The present paper explains the major changes applied and analyses the quality of the data with
different metrics. The results have been obtained with numerous individual tests that have confirmed
the benefits of the evolutions and an end-to-end processing campaign involving three years of data
used to assess the improvements of the SMOS measurements quantitatively.

Keywords: SMOS; calibration; radiometry; reprocessing

1. Introduction

The Soil Moisture and Ocean Salinity (SMOS) mission is the second Earth Explorer mission
of the European Space Agency (ESA). The satellite was launched in November 2009 and has been
continuously operating ever since, with an excellent health status. Data acquisition is in the order
of 99.88%, and processing performance is above 99%. As such, the ESA has continuously provided
nominal and near-real-time data for the past 10 years since the end of the commissioning phase.

Remote Sens. 2020, 12, 1645; doi:10.3390/rs12101645 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-7626-7033
https://orcid.org/0000-0001-5598-7955
https://orcid.org/0000-0002-6380-3754
http://dx.doi.org/10.3390/rs12101645
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/10/1645?type=check_update&version=2


Remote Sens. 2020, 12, 1645 2 of 24

The original objectives of soil moisture [1] and sea surface salinity [2] have been complemented with
new applications, such as to thin sea-ice thickness, severe winds over ocean and freeze/thaw soil state
products [3]. The satellite contains a single payload, the MIRAS (Microwave Imaging Radiometer using
Aperture Synthesis), the first ever space-based L-band interferometric radiometer [4]. Even though
interferometric radiometers have long been used by radio-astronomers, having such an instrument
space-based for earth observation missions has presented several challenges. More than ten years after
launch, the SMOS team continues to improve the calibration and the image reconstruction processes.
As a result of this, new processor versions are developed, and when the changes in quality are
considered important, the SMOS team prepares for a new reprocessing. Currently, SMOS is preparing
the third mission reprocessing with the L1OP v724. The Methods section provides an overview of the
changes involved in the new version with respect to the v620 operational version used in the second
mission reprocessing. The Results section assesses the end-to-end improvements of the data.

2. Methods

In this section, we present the improvements that were applied to the v620 processing baseline
to form the new v724 processing baseline. A high-level overview of the SMOS Level 1 processing
baseline is presented in Figure 1.
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Figure 1. High-level architecture of the SMOS Operational processing baseline.

The improvements in the new L1OP were applied to the calibration process and the image
reconstruction processing. The improvements for these two categories are presented below in
separate sub-sections.

2.1. Changes in Calibration

Calibration is a process where raw MIRAS data, including, e.g., cross-correlations between all
the pairs formed by the 72 MIRAS receivers, counts of the receivers’ total power detectors, and noise
injection radiometer pulse lengths, are turned into radiometric observables like antenna temperatures
and power levels. The calibration of the MIRAS instrument as a whole is a complex process including
several steps. An overview of the calibration process can be found, e.g., in [5].

For the v724 processing baseline, five main improvements were done in this calibration process.
They are improvements related to the following:

- Noise injection radiometer (NIR) calibration strategy.
- NIR antenna losses.
- Power measurement system (PMS) sensitivity factors.
- PMS heater correction.
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- Thermal latency of the temperature sensor in NIR antennas.

In the following sub-sections, we describe these updates in detail.

2.1.1. NIR Calibration

Analysis of the second mission reprocessing led to the following conclusion: the calibration of the
NIR parameters, the noise injection temperature (Tna) and the level of the noise injection (Tnr) [6] were
introducing a bias in the stability of the measurements. This was evident when looking at the bias of
the measurements over a large portion of the Pacific open ocean with respect to the ocean forward
model [7]. The comparison of those biases showed a large negative correlation with the variation
in the main NIR calibration parameter, Tna. Figure 2 shows such a comparison for X polarisation
measurements in ascending orbits.
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A computation of the correlation factor between the two variables is provided in Table 1.

Table 1. Correlation factor between brightness temperature bias as computed over the ocean and NIR
calibration parameter Tna.

Polarization Ascending Descending

X polarisation −0.97 −0.88

Y polarisation −0.96 −0.74

This high (negative) correlation factor between bias and the NIR calibration parameter suggests
that the NIR variations present in NIR calibration parameter Tna are not real, but artefacts established
by some non-ideality in the instrument model, and, further, that the NIR unit reference temperature
Tna is extremely stable.

NIR calibration is performed during external manoeuvres, during which the instrument points
upwards to the cold sky [5]. During this process, the temperature of the NIR antennas’ patches
gets colder and outside the nominal temperature range of the instrument. Clearly, the current
NIR instrument model, and especially its thermal parametrization, is not able to account for such
circumstances. This realisation introduced two main changes to the SMOS calibration. On one hand,
starting in 2014, SMOS NIR calibration manoeuvre has been done keeping the Sun at approximately
10 degrees above the antenna plane to avoid getting in a thermal range different from the one during
science measurements. On the other hand, the NIR parameters Tna and Tnr were set to a fixed value
for the third mission reprocessing. These changes have improved the stability of the measurements.
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2.1.2. Antenna Losses

In SMOS, the NIR antenna losses are divided between the antenna patch (L1) and the feeding
circuits in the innermost part of the antenna (L2) as shown in Figure 3. They are at different physical
temperatures. The innermost part of the antenna (Tp6) is within the thermal control, whereas the
antenna patch is more exposed to the temperature fluctuations of outer space (Tp7).
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NIR antenna patch losses have been the most challenging problem in SMOS calibration as both L1

and L2 are outside the radiometer’s internal calibration loop. A wrong characterisation of the antenna
losses introduces variations in the measurements. These variations are related to the variations in the
physical temperature of the antenna.

The basic equation for the antenna temperature retrieval at NIR is

TA = −L1L2TNAη+ L1L2[LNCLALDA(TU − Tt2) − Tt1], (1)

where TA is the antenna temperature as measured by the NIR, L1 is the antenna patch loss, L2 is the
intermediate layer antenna loss, η is the NIR pulse length, Lnc, LA and LDA are losses of different
sections of the cables connecting the antenna to the receiver, TU is the load noise temperature and Tt1
and Tt2 are

Tt1 =
L1 − 1
L1L2

Tp7 +
L2 − 1

L2
Tp6, (2)

Tt2 =
(LNC − 1)

LNCLALDA
Tp3 +

(LA − 1)
LALDA

TCab +
(LDA − 1)

LDA
TpU, (3)

and TNA is the value measured during calibration, and corresponds to

TNA =
−TA,cal + L1L2

[
LNCLALDA

(
TU,cal − Tt2,cal

)
− Tt1,cal

]
ηL1L2

, (4)

where “X,cal” indicates the value of parameter “X” obtained during the calibration against the cold sky.
Now, if we analyse the equation as a function of the L1 uncertainty using error propagation, we get

∆TA
∆L1

=
∂TA
∂L1

+
∂TA
∂Tt1

∂Tt1
∂L1

+
∂TA
∂TNA

∂TNA
∂L1

, (5)
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and finally

∆TA =
∆L1

L1

 L1L2[TLD − Tt1] − TA

L1L2
[
TLD,cal − Tt1,cal

]
− TA,cal

(
Tp7,cal − TA,cal

)
−

(
Tp7 − TA

), (6)

where
TLD = LNCLALDA(TU − Tt2), (7)

This equation, as given, is difficult to interpret, but by making some realistic numerical simulations,
we realised that in a scenario where the calibration was obtained at a Tp7 of 295 K, errors in the L1

antenna patch loss would propagate to TA at a different rate depending on the Tp7 during measurement.
Figure 4 shows how an error in the antenna losses characterisation will introduce an error in the
antenna temperature that will be a function of the temperature of the antenna patch (Tp7).
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for simulated scenarios with different temperatures, when the calibration of the NIR was obtained at a
temperature of Tp7 = 295 K.

Therefore, errors in the antenna loss characterisation should be correlated with the variations of
the antenna physical temperature, which is exactly what has been observed in SMOS.

Initially, just after launch, the on-ground characterisation values for L1 and L2 were used. Later,
during SMOS’s first mission reprocessing, an antenna thermal model was introduced to correct for
variations observed during NIR external calibration manoeuvres. However, the antenna thermal model
was quickly abandoned, as the instrument became more stable following the initial months in orbit.
For the second mission reprocessing, the team derived a method to calibrate the antenna losses in
orbit [8]. Antenna losses were measured every 15 days, and, since the values were stable, the average
value was used for the entire reprocessing. This correction was key to improve the stability of the
data in the second mission reprocessing. The calibration procedure could only measure the antenna
losses for whole of the antenna patch and the inner part of the antenna (L1 and L2 losses respectively).
But the antenna patch and the innermost part of the antenna in SMOS suffer different temperature
excursions. Introducing the correct split in the total antenna loss between L1 and L2 is key for obtaining
good instrument stability. This split was obtained by assessing the brightness temperature variations
over the ocean against an ocean forward model for Stokes-1 measurements and applying the same
antenna loss value at the H and V polarisations.
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In the third mission reprocessing, it became evident that a different split was necessary for H and
V polarisation, as the antenna has different patch for each polarisation. The exercise was then repeated
for each of the two polarisations [9]. Figure 5 shows the variations in the brightness temperature biases
over ocean as a function of the physical temperature differences between the antenna patch and the
innermost part of the antenna, when the L1 antenna loss has been set to 0 dB. The plots show a clear
slope in the data, which can account for the antenna losses. NIR-CA H pol L1 antenna loss was set to
0.27 dB, and V polarisation L1 was set to 0.14 dB. L2 values were set to the difference between the total
loss as measured by calibration and the corresponding L1 values (L2 equals 0.19 for H and 0.30 for
V polarisation for NIR-CA; the other two NIR units are not used to derive the antenna temperature,
but their values can be found in [9]).

1 
 

 

Figure 5. Variations of brightness temperature biases over the ocean as a function of temperature
variations between the antenna patch and the innermost part of the antenna, for H polarisation (left)
and V polarisation (right).

2.1.3. PMS Sensitivities

The sensitivity of the power measurement system (PMS) gain to physical temperature variations
was first characterised by the receiver supplier and later verified on-ground at instrument level during
the test in thermal vacuum conditions at the Large Space Simulator (LSS) at ESTEC [10], and then again
during special calibration events in the SMOS commissioning phase [11]. The latter values have been
used until now for adjusting the temperature sensitivity. However, a recent analysis of the variations
of the PMS gain through the years showed that the pre-launch PMS sensitivities provide for a more
natural behaviour of the PMS gain’s aging with time. Figure 6 shows PMS behaviour for receiver
LICEF C10 (LICEF stands for lightweight cost-effective front end). As it is seen, using the pre-launch
sensitivities provides the best cancellation of the PMS gain oscillations due to physical temperature
swings. Similar results are seen in other receivers. For the third mission reprocessing, PMS sensitivities’
pre-launch values were used again.

2.1.4. PMS Heater Correction

A known problem in the SMOS instrument, which was detected during the thermal tests at the
LSS chamber, was PMS offsets jumps following the instrument heater switching from on to off and
vice versa. A correction was introduced early in the mission to mitigate this effect, which consisted of a
delayed voltage offset with respect to the heater status transition, but the problems were still noticeable,
particularly for a few receivers [11].
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as measured during the calibration event at the physical temperature during the calibration event.
The cyan line and black line show the PMS gain transported to 21 degrees Celsius using the second
mission reprocessing and pre-launch PMS sensitivities, respectively.

A more careful analysis showed that the jumps related to the heater status do not correspond to a
simple delayed offset, but that the behaviour follows a double exponential [9]. Figure 7 shows the
PMS voltages for a calibration event, where a constant noise from an internal warm load source was
introduced at the receivers.
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Figure 7. PMS voltages for LICEF C-03 when a constant noise source is introduced. In green, the status
of the heater is depicted. Red crosses for the PMS voltage indicate that the heater is on and blue crosses
show when the heater is off.

Based on this analysis, the correction applied, ∆V, was set to

∆VON = αONi(Vi −Vmax)
(
1− e

−t
τON_1i

)
+ βONi(Vi −Vmax)

(
1− e

−t
τON_2i

)
, (8)

∆VOFF = αOFFi(Vi −Vmax)e
−t

τOFF_1i + βOFFi(Vi −Vmax)e
−t

τOFF_2i , (9)

where Vi is the current PMS value without correction for each of the 72 receivers, in volts. Vmax is
the maximum measurable PMS, set to a value of 2.5V. α, β, τON and τOFF are fixed constants for each
receiver that empirically determine the double exponential behaviour, and t is the number of epochs
since the corresponding transition of the heater status (on to off, or vice versa).

The validation of this correction was performed by means of a relative comparison of the antenna
temperature of one receiver to the average of all receivers. Figure 8 shows the behaviour for L1OP
v620 (delay heater correction) and for L1OP v724 (double exponential heater correction). The new
correction clearly reduces the obvious PMS offset jumps due to the heater status.
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Figure 8. Difference between the antenna temperature measurement of receiver LCF_C_03, with respect
to the average of all receivers, when applying the v620 delayed offset heater correction (a) and when
applying the new v724 double exponential heater correction (b). The colour of the points in both plots
indicates the status of the heater: red when the heater is on and blue when it is off.

2.1.5. Antenna Patch Thermistor Correction

Another aspect that was discovered during the second mission reprocessing analysis was an
increased bias immediately following the Sun’s eclipse by the Earth, relative to the instrument.
This effect clearly pointed to another problem related to temperature variations. While the instrument
backend is kept under thermal control [McMullan et al., 2008], the antenna patches suffer large thermal
excursions. Those changes are monitored by three thermistors placed at the screw of each NIR antenna
patch (Tp7 in Figure 3) and are used in the NIR radiometric equation presented in Section 2.1.2.

The team considered that the reading of the thermistor did not properly describe the temperature of
the antenna patch and proposed a correction [12]. The correction was introduced based on the observed
thermal latency during inertial external manoeuvres. During these manoeuvres, the instrument points
at the cold sky for several minutes. However, Tp7 thermistor readings take a long time to stabilise to a
constant temperature. The thermistor reading was considered to be thermally coupled to the innermost
part of the antenna through the antenna screw, inside whose head the thermistor is mounted. As such,
the thermistor reading is not fully representative of the antenna patch region. The team decided then to
apply a correction to the thermistor reading by assuming that the temperature to which the thermistor
stabilises at the end of the external manoeuvre is the actual temperature during the entire inertial
manoeuvre. The following correction was derived:

ˆTp7 = Tp7 −
1

LP
dTp7

dt
, (10)

where ˆTp7 is the corrected thermistor temperature, Tp7 the actual thermistor reading, and LP a constant
that was estimated to be −0.0031.

The correction was then used to process the ocean brightness temperature, and the bias with
respect to the forward model was re-assessed. The impact of this correction is a clear mitigation of the
bias observed during the eclipse period. Figure 9 shows the Y polarisation brightness temperature bias
observed over the ocean with and without the Tp7 correction applied. The increased bias in the eclipse
is observed around 35N to 60N degrees in latitude during the Northern Hemisphere (NH) winter
months in the left plot.
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2.2. Changes in Image Reconstruction

Image reconstruction is a process where the calibrated MIRAS data are turned into radiometric
maps that can be projected on the Earth’s surface. For the v724 processing baseline, three main
improvements were made to this process. They are improvements related to

- Gibbs phenomena correction.
- The use of a sea-ice mask.
- Correction of the Sun’s influence in the images.

In the following sub-sections, we describe these updates in detail.

2.2.1. Gibbs-2 Algorithm

The so-called Gibbs-2 algorithm is an evolution of the Gibbs-1 algorithm applied to SMOS
measurements since its launch. Originally, the Gibbs correction aimed to reduce the Gibbs artefacts that
appeared in the image following large BT transitions between land and ocean (or sky and Earth) due
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to limited coverage in the visibility domain. Soon after, the team realised that the correction not only
reduces the Gibbs artefacts but also a floor error induced in the retrieved images due to dissimilarities
in the antenna patterns and the aliasing [13,14]. Gibbs-1 correction reduces this so-called floor error
by removing a constant brightness temperature (BT) in the reconstruction process, which reduces the
visibility values before inversion, and adding it back at the end of the inversion process. In Gibbs-2,
the process has evolved to include the use of an artificial scene as close as possible to the observed
one. This artificial scene, Va, uses a Fresnel model over the ocean and a constant value (250 K) over
land. Figure 10 shows an example of the artificial scene as used in the image reconstruction processor.
The visibilities of this artificial scene are computed using an SMOS instrument model:

Va = GTa, (11)

where Ta represents the modelled BT of the artificial scene, G is the instrument model, and Va are the
visibilities derived from the Ta scene.
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Then, the image reconstruction algorithm is applied over the following differential linear problem:

V −Va = G(T − Ta), (12)

yielding to the following retrieved BT:

Tr = U∗ZJ+(V −Va) + Ta, (13)

where U is the Fourier transform operator, Z is the zero-padding operator beyond the SMOS frequency
coverage, J = GU*Z is the image reconstruction operator used in the SMOS processor and J+ is the
pseudo-inverse of J [15].

2.2.2. Sea-Ice Mask

The calculation of the artificial scene used in the Gibbs-2 algorithm described above is based on the
use of a fixed global land–ocean mask. In fact, we identify the land and ocean pixels within the field of
view and assign a constant value over land and the Fresnel forward model over ocean. To improve the
accuracy of the artificial scene in seasonal sea-ice growth, we have developed an operational strategy
to measure the sea-ice extension from the actual SMOS measurements and apply this extension to the
artificial scene. Measurements are collected for 10 days, then a mask of the percentage of sea ice over
the ocean is derived and this mask is used in the Gibbs-2 algorithm with a constant value of 250 K
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(same as for land pixels), as can be seen in Figure 11. In the third mission reprocessing data, the mask
computation will be aligned with the data that is applied. However, in nominal operations, the mask
will be applied, typically with a 12-day delay from the moment it first started estimating the extension.
Errors derived from this 12-day delay were analysed and resulted to be much lower than those present
when not applying the correction at all.
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Figure 11. Mask showing the extensions of land/ice pixels versus ocean pixels, as derived from January
2010 SMOS BT measurements.

Figure 11 shows that the sea ice detected by SMOS BT measurements goes beyond the
continental surfaces.

2.2.3. Super-Sampled Sun Correction

L-band observations of the Sun disk showed that its BT emissivity is not spatially homogeneous [16].
Sunspots tend to have much larger BT emissions than other Sun regions. The Sun correction applied
to SMOS during the second mission reprocessing considered the Sun as a point source. The team
considered this correction to be insufficient and derived a new method to correct for the Sun BT
emissions to take into account those spatial inhomogeneities Figure 12.
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The so-called super-sampled Sun correction applied in L1OP v724 estimates the BT of multiple
spots within the Sun disk, minimising the differences between the simulated signal and the BT
observations in an area around the Sun and in the Sun tails [17].

VSun =
∑

iV1kiTi, (14)

where VSun are the visibilities of the Sun as a function of the 1K visibilities (V1ki) computed for each of
the sub-sample points’ times and Ti corresponds to the BT estimated for each of those points from the
following equation:

F−1(V −VG2)1 −
〈
F−1(V −VG2)0

〉
F−1(V −VG2) j −

〈
F−1(V −VG2)0

〉
F−1(V −VG2)n∗ −

〈
F−1(V −VG2)0

〉
. . .
T0

wnPOS
. . .
T0
w


=



F−1(V1K1)1 F−1(V1Ki)1 F−1(V1KnPOS)1
F−1(V1K1)n∗ F−1(V1Ki)n∗ F−1(V1KnPOS)n∗

1/w
. . .
0

1/w

. . .
1/w

0
. . .

0
. . .

1/w
1/w


[Ti] (15)

where:

• F−1(V −VG2)1 is the inverse Fourier transform of the difference between the measured visibilities
and the Gibbs-2 synthetic visibilities;

•

〈
F−1(V −VG2)0

〉
represents the average value over the clean ‘o’ pixels surrounding the sun disc

and is calculated as the average of the inverse Fourier transform of the difference between the
measured visibilities and the Gibbs-2 synthetic visibilities.

• T0 is the first estimate of the Sun temperature, obtained assuming the Sun as a point source.
• w is a weight to be finely tuned to get the best compromise in condition number versus sensitivity

(for now fixed at 106).
• nPOS is the number of over-sampled points, fixed to 37 in the L1OP.
• 1,.., j,..,n is the number of points polluted by the solar radiation, including the disc of the sun and

the tails.
• V1K1, . . . , V1KnPOS are the system response functions calculated over the over-sampled grid.
• F−1(V1Ki)n∗ is the inverse Fourier transform of V1K1 calculated over the polluted pixel.
• Ti is the set of estimated temperatures for the 37 points of the sun disc. It has been shown in [17]

that the solution to this problem is explicit.

This correction succeeds in better reducing the residuals of solar radiations, as shown in Figure 13.
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Figure 13 shows that the new super-sampled Sun correction reduces the variations in the
measurements along the Sun tails and within the Sun alias disk.

2.2.4. Sun Correction in the Back

SMOS measurements showed that the radiation coming from the Sun is observed even in the case
the Sun is behind the antenna plane, through the antenna back-lobes [18].

The team considered that it was important to correct for this foreign source radiation and applied
the Sun correction algorithm described in [19] and later modified in [20], even in the case the Sun was
behind the antenna. Figure 14 shows the bias observed in the data before and after the extension of the
Sun correction in the back.
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3. Results and Discussion

The changes applied in the v724 version of the processor have been analysed using a dedicated
end-to-end processing campaign that involved 3 years of data. The results presented hereafter
show the improvement of the data quality in different metrics, such as reduction of the spatial
biases, improvement of stability, reduction of land–sea contamination biases for certain polarisations,
better match to in-situ measurements and reduction of the χ2 in the soil moisture retrievals.

3.1. Orbital and Seasonal Stability

The quality of the stability of the measurements is established by comparison with the ocean
forward model. In this case, one of the metrics used by the SMOS team is the one provided by the
Hovmoller plots showing the biases observed in the Pacific open ocean in time and latitude. This metric
allows us to assess both the orbital stability (variation along the vertical axis) and the seasonal stability
(variation along the horizontal axis). The analysis is done independently per polarisation and separately
for ascending and descending passes.

Figure 15 shows an example of the stability of the measurements in the second mission
reprocessing [21] and the expected behaviour for the third mission reprocessing, for both X and
Y polarisations. Descending orbits suffer the most from larger instrument thermal dynamics and are
always more prone to measurement instabilities.
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Figure 15 shows that both the orbital and seasonal instabilities have been reduced in the third
mission reprocessing. A further metric to assess the improvement in stability is the standard deviation
of these Hovmoller plots. The values in Table 2 show an important reduction of the instabilities.

Table 2. Mean bias for the v620 data (second mission reprocessing) and the 724 data (third mission
reprocessing), computed in the Pacific region between latitudes 45S and 10N.

Orbit Pass Polarization Second Mission
Reprocessing

Third Mission
Reprocessing

Ascending X 1.73 K 0.57 K

Y 1.41 K 0.35 K

Descending X 1.67 K 0.56 K

Y 1.37 K 0.52 K

3.2. Spatial Biases

Spatial biases have been one of the largest challenges in the SMOS image reconstruction process [21,
22]. The Level 2 Ocean Salinity Processor uses the ocean target transformation (OTT) technique to
reduce them [23,24], but this technique only works well in scenes whose brightness temperature is
roughly stable, such as measurements in the open ocean. Near the coastlines, or for any measurement
over land, the technique does not work properly. Therefore, it is of utmost importance that the spatial
biases are minimised at the image reconstruction level. The changes introduced in the v724 processor
have considerably reduced the spatial biases in the extended alias-free field of view.

Figure 16 shows the spatial biases for X and Y polarisation. A very important aspect to note in the
spatial bias improvement in Y polarisation is the reduction of a negative gradient from top to bottom
of the OTT image.
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3.3. Land–Sea Contamination

Another critical aspect of the SMOS radiometric measurements is the land–sea contamination.
This refers to the increase in the bias that occurs in the ocean measurements near land masses and
vice versa. The adjustments in calibration and the new Gibbs-2 image reconstruction technique have
achieved a significant improvement in land–sea contamination, even though this is still substantially
present in the third mission reprocessing. Figure 17 shows the biases, over ocean, in the global maps
for one particular month of data (June 2016) for the four polarisations for the second [21] and third
mission reprocessing. The improvements are most noticeable in Y polarisation and in the fourth Stokes
parameter. On the other hand, the contamination in Tx has changed but remains at similar levels,
and similarly for the third Stokes parameter.

In must be noted that the Level 2 Ocean Salinity Processor includes an empirical correction of
the land–sea contamination. Being able to reduce the original bias is an important aspect of the L1

processor, but almost more important is that the residual bias remains constant, which can then be
corrected empirically at Level 2. For this reason, another metric assesses the variation of the land–sea
contamination bias at Level 1 by means of the standard deviation. Figure 17 shows this metric,
over ocean, for Y polarisations only. Similarly to Figure 17, the land–sea contamination variation is
substantially reduced, mainly for Y polarisation (Figure 18) and for the fourth Stokes parameter.
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3.4. Impact on Retrieved Soil Moisture and Vegetation Optical Depth (VOD)

As part of our standard metric protocol, new versions of L1 data are systematically processed
with the Level 2 soil moisture processor to assess the changes compared to the previous L1 processor
version. This assessment is made through spatial monthly maps showing the changes on retrieved
soil moisture and retrieved opacity along with χ2 changes. A second perspective is obtained through
time series of retrieved soil moisture corresponding to a collection of in-situ time series of measured
soil moisture for the two-year period 2011–2012 and provides quantitative metrics but for a limited
number of grid points.

For the purposes of this analysis, the same Level 2 Soil Moisture v650 processor has been used in
order to assess only the improvements in the L1 processor.

3.4.1. Spatial Maps of Retrieved Soil Moisture and Opacity

Figure 19 displays the differences in soil moisture and opacity of v724 minus v620 for the month
of June 2014, separated by ascending and descending orbit passes. The overall global change is rather
neutral, with mean differences close to 0 but with a significant variability that appears very structured
spatially. The significant changes correspond to specific areas, with contrasts between transition areas
and forest in both retrieved soil moisture and opacity. Below dense forest v724, soil moisture and
opacity tend to decrease, with patterns changing in position between ascending and descending orbits,
e.g., the North American east coast, Amazonian forest, and African Congo forest. This is probably a
signature of the Gibbs-2 correction, as the contrast of land/sea masses is not similar within the SMOS
field of view for these locations depending on the orbit pass.

The L1C v724 data generate significant changes compared to the L1C v720, and the question
whether those changes are in the right direction is addressed by the two following sections.

3.4.2. χ2 Test

χ2 is an important metric to assess the quality of the soil moisture retrievals and is used widely in
many retrieval processes. It provides a measure of the agreement (best fit) between the geophysical
modelling that resulted in the retrieved parameters and the L1 data that were used accounting for
the expected noise on the observed data. In this study, we considered rather the reduced χ2

r form,
which is χ2 divided by the number of degrees of freedom. Using χ2

r introduces a normalisation,
which is preferable as the Level 2 processor includes L1 data filtering that may result in slightly different
numbers of degrees of freedom between the two L1 datasets.

Figure 20 shows the changes of the χ2
r between v620 and v724, computed as the ratio χ2

r v724
divided by χ2

r v620 for June 2014 for ascending and descending orbits. Very similar maps are observed
at other months of the year. Ratios >> 1 (toward red colours) indicate degraded (increased) v724 χ2

r
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with respect to v620 and ratios << 1 (toward blue colours) indicate improved (decreased) v724 χ2
r with

respect to v620.
The team analysed the changes in χ2

r from v620 to v724 over land and concluded that χ2
r has

improved (reduced) significantly over most of the globe. Most exceptions are either neutral (light
blueish/reddish area) or are related to presence of radio frequency interference (RFI), especially in the
Middle East region and South Asia. All maps report a significant improvement (decrease) in v724 χ2

r
compared to v620 at global scale with distribution ratio modes marker
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negative asymmetry. Many continental areas show a deep blue colour, which indicates very significant
improvements that also appear to be very stable in time for different seasons and different years.
Similar to Figure 19, Figure 20 patterns show some differences between ascending and descending
orbits. It is important to notice the good match of these blue spatial patterns in Figure 20 with the most
significant change patterns in retrieved soil moisture and opacity reported in Figure 19; where v724
introduced the strongest changes in retrieved parameters is also where the best fit has improved the
most with reduced χ2

r . Finally, using the v724 data increases the number of successful retrievals by 2%
to 3%.
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Figure 19. Maps of averaged difference, v724–v620, over the month of June 2014 in (a) soil moisture
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VOD compared to v620.

3.4.3. In-Situ Soil Moisture

Several networks of in-situ soil moisture measurements stations (ISMN) can be used to assess
the quality of SMOS-retrieved soil moisture. SMOS coarse resolution observations and ultra-local
in-situ measurement are not necessarily fully comparable, but become useful when assessing relative
differences between two versions of processing of the same satellite data. SMOS soil moisture retrievals
obtained from L1OP v620 data and from L1OP v724 data are compared against in-situ soil moisture
time series of 250 validation sites taken from 11 in-situ soil moisture networks (Figure 21).

SMOS retrieval data and in-situ data are first co-located in space and time by taking the SMOS
grid-points closest to the stations and by pairing in time SMOS and in-situ data of less than 7.5 min to a
maximum of 30 min of absolute time difference, depending on the in-situ network temporal sampling
characteristics. We denote the SMOS and in-situ collocated time series (St, It) and the associated
difference time series (∆t = St − It).



Remote Sens. 2020, 12, 1645 20 of 24

Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 24 

 

strong negative asymmetry. Many continental areas show a deep blue colour, which indicates very 
significant improvements that also appear to be very stable in time for different seasons and different 
years. Similar to Figure 19, Figure 20 patterns show some differences between ascending and 
descending orbits. It is important to notice the good match of these blue spatial patterns in Figure 20 
with the most significant change patterns in retrieved soil moisture and opacity reported in Figure 
19; where v724 introduced the strongest changes in retrieved parameters is also where the best fit has 
improved the most with reduced ߯௥ଶ. Finally, using the v724 data increases the number of successful 
retrievals by 2% to 3%.  

 

(a) 

 

(b) 

Figure 20. Maps of averaged ߯௥ଶ ratios v724/V620 for the month of June 2014 for ascending orbit (a) 
and descending orbit (b). Blue indicates that v724 improves with lower χ2 compared to v620’. The 
markers located on the colour bar show the distribution variables, the mode is represented by 
themarker. The 68.3% and 95.4% percentiles are shown by the inner and outer markers, 
respectively. 

3.4.3. In-Situ Soil Moisture  

Several networks of in-situ soil moisture measurements stations (ISMN) can be used to assess 
the quality of SMOS-retrieved soil moisture. SMOS coarse resolution observations and ultra-local in-
situ measurement are not necessarily fully comparable, but become useful when assessing relative 
differences between two versions of processing of the same satellite data. SMOS soil moisture 
retrievals obtained from L1OP v620 data and from L1OP v724 data are compared against in-situ soil 
moisture time series of 250 validation sites taken from 11 in-situ soil moisture networks (Figure 21).  

Figure 20. Maps of averaged χ2
r ratios v724/V620 for the month of June 2014 for ascending orbit (a) and

descending orbit (b). Blue indicates that v724 improves with lower χ2 compared to v620′. The markers
located on the colour bar show the distribution variables, the mode is represented by the

Remote Sens. 2020, 12, x FOR PEER REVIEW 19 of 24 

 

 

(c) 

 

(d) 

Figure 19. Maps of averaged difference, v724–v620, over the month of June 2014 in (a) soil moisture 

for ascending orbits, (b) soil moisture in descending orbits, (c) VOD in ascending orbits and (d) VOD 

in descending orbitsBlue (resp., red) indicates a decrease (resp., an increase) in V724 soil moisture, 

VOD compared to v620. 

3.4.2. χ2Test   

𝜒2 is an important metric to assess the quality of the soil moisture retrievals and is used widely 

in many retrieval processes. It provides a measure of the agreement (best fit) between the geophysical 

modelling that resulted in the retrieved parameters and the L1 data that were used accounting for 

the expected noise on the observed data. In this study, we considered rather the reduced 𝜒𝑟
2 form, 

which is χ2 divided by the number of degrees of freedom. Using 𝜒𝑟
2 introduces a normalisation, 

which is preferable as the Level 2 processor includes L1 data filtering that may result in slightly 

different numbers of degrees of freedom between the two L1 datasets.  

Figure 20 shows the changes of the 𝜒𝑟
2 between v620 and v724, computed as the ratio 𝜒𝑟

2 v724 

divided by 𝜒𝑟
2  v620 for June 2014 for ascending and descending orbits. Very similar maps are 

observed at other months of the year. Ratios >> 1 (toward red colours) indicate degraded (increased) 

v724 𝜒𝑟
2 with respect to v620 and ratios << 1 (toward blue colours) indicate improved (decreased) 

v724 𝜒𝑟
2 with respect to v620. 

The team analysed the changes in 𝜒𝑟
2 from v620 to v724 over land and concluded that 𝜒𝑟

2 has 

improved (reduced) significantly over most of the globe. Most exceptions are either neutral (light 

blueish/reddish area) or are related to presence of radio frequency interference (RFI), especially in 

the Middle East region and South Asia. All maps report a significant improvement (decrease) in v724 

𝜒𝑟
2 compared to v620 at global scale with distribution ratio modes markeralways below 1 and marker.

The 68.3% and 95.4% percentiles are shown by the inner and outer

Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 24 

 

strong negative asymmetry. Many continental areas show a deep blue colour, which indicates very 

significant improvements that also appear to be very stable in time for different seasons and different 

years. Similar to Figure 19, Figure 20 patterns show some differences between ascending and 

descending orbits. It is important to notice the good match of these blue spatial patterns in Figure 20 

with the most significant change patterns in retrieved soil moisture and opacity reported in Figure 

19; where v724 introduced the strongest changes in retrieved parameters is also where the best fit has 

improved the most with reduced 𝜒𝑟
2. Finally, using the v724 data increases the number of successful 

retrievals by 2% to 3%.  

 

(a) 

 

(b) 

Figure 20. Maps of averaged 𝜒𝑟
2 ratios v724/V620 for the month of June 2014 for ascending orbit (a) 

and descending orbit (b). Blue indicates that v724 improves with lower χ2 compared to v620’. The 

markers located on the colour bar show the distribution variables, the mode is represented by 

themarker. The 68.3% and 95.4% percentiles are shown by the inner and outer markers, 

respectively. 

3.4.3. In-Situ Soil Moisture  

Several networks of in-situ soil moisture measurements stations (ISMN) can be used to assess 

the quality of SMOS-retrieved soil moisture. SMOS coarse resolution observations and ultra-local in-

situ measurement are not necessarily fully comparable, but become useful when assessing relative 

differences between two versions of processing of the same satellite data. SMOS soil moisture 

retrievals obtained from L1OP v620 data and from L1OP v724 data are compared against in-situ soil 

moisture time series of 250 validation sites taken from 11 in-situ soil moisture networks (Figure 21).  

SMOS retrieval data and in-situ data are first co-located in space and time by taking the SMOS 

grid-points closest to the stations and by pairing in time SMOS and in-situ data of less than 7.5 

markers, respectively.

Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 24 

 

SMOS retrieval data and in-situ data are first co-located in space and time by taking the SMOS 
grid-points closest to the stations and by pairing in time SMOS and in-situ data of less than 7.5 
minutes to a maximum of 30 minutes of absolute time difference, depending on the in-situ network 
temporal sampling characteristics. We denote the SMOS and in-situ collocated time series (ܵ௧,  ௧) andܫ
the associated difference time series (Δ୲ = ܵ௧ −  .(௧ܫ

 

Figure 21. The 11 in-situ soil moisture networks and the position of their sites. The legend reports the 
network name, its associated colour and the number of the sites we considered for a total of 250 sites. 

We computed the usual statistics and their 95% confidence intervals (CI95) obtained by 
bootstrap x to assess the two processor versions. For (ܵ௧,  ௧), we computed their means and standardܫ
deviations, μୗ and	σୗ for SMOS and	μ୍ and σ୍  for in-situ data and the correlation R. For the Δ୲ 
differences, we computed the bias, the standard deviation (STDD) and the root mean square (RMSD).  

The results vary from site to site, but most of them show a better correspondence between the 
in-situ measurements and the data than the v724 processor or similar performance to the v620 
processor. This is reflected by the overall performances, which are obtained by computing the 
statistics on the concatenation of all sites’ time series (ܵ௧,  ௧), which are reported in Table 3 and Tableܫ
4 along with their graphic representation using Taylor diagrams (Figure 22).  

Table 3. ߂ time series statistics and their CI95, 95% confidence intervals, given between 
parentheses. 

 Ascending orbits Descending orbits 
L1OP R bias STDD RMSD #data R bias STDD RMSD #data 

v620 
0.59 

(0.016) 
–0.031 (0.004) 

0.076 
(0.004) 

0.083 
(0.004) 

38943 
0.62 

(0.017) 
–0.034 
(0.004) 

0.078 
(0.005) 

0.085 
(0.004) 

42963 

v724 
0.63 

(0.014) 
–0.044 
(0.004) 

0.070 
(0,004) 

0.082 
(0.004) 

40108 
0.63 
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Figure 21. The 11 in-situ soil moisture networks and the position of their sites. The legend reports the
network name, its associated colour and the number of the sites we considered for a total of 250 sites.
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We computed the usual statistics and their 95% confidence intervals (CI95) obtained by bootstrap
x to assess the two processor versions. For (St, It), we computed their means and standard deviations,
µS and σS for SMOS and µI and σI for in-situ data and the correlation R. For the ∆t differences,
we computed the bias, the standard deviation (STDD) and the root mean square (RMSD).

The results vary from site to site, but most of them show a better correspondence between the
in-situ measurements and the data than the v724 processor or similar performance to the v620 processor.
This is reflected by the overall performances, which are obtained by computing the statistics on the
concatenation of all sites’ time series (St, It), which are reported in Tables 3 and 4 along with their
graphic representation using Taylor diagrams (Figure 22).
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Table 3. ∆ time series statistics and their CI95, 95% confidence intervals, given between parentheses.

Ascending Orbits Descending Orbits

L1OP R bias STDD RMSD #data R bias STDD RMSD #data

v620 0.59
(0.016)

−0.031
(0.004)

0.076
(0.004)

0.083
(0.004) 38943 0.62

(0.017)
−0.034
(0.004)

0.078
(0.005)

0.085
(0.004) 42963

v724 0.063
(0.014)

−0.044
(0.004)

0.070
(0.004)

0.082
(0.004) 40108 0.63

(0.014)
−0.038
(0.004)

0.075
(0.004)

0.084
(0.004) 44099

Table 4. SMOS and in-situ time series statistics and their CI95, 95% confidence intervals, given
between parentheses.

Ascending Orbits Descending Orbits

L1OP µS µI σS σI µS µI σS σI

v620 0.167
(0.004)

0.198
(0.004)

0.088
(0.004)

0.081
(0.005)

0.171
(0.004)

0.205
(0.004)

0.094
(0.004)

0.082
(0.005)

v724 0.155
(0.004)

0.198
(0.004)

0.081
(0.004)

0.081
(0.004)

0.167
(0.004)

0.205
(0.004)

0.091
(0.004)

0.082
(0.004)

A Taylor diagram is a convenient 2D graphical representation focusing on the statistics R,
σ and STDD, which are by nature debiased (mean-subtracted). The so-called 3D version given in
Figure 22 makes the bias information available as a colour scale. Such a diagram is a polar coordinate
representation of (σ, R). The standard deviations of series σ are used as the radius, and the correlation,
R, with respect to a common reference is converted into an angle using acos(R). It is worth noting
that the relation between the correlation and angle is highly non-linear; a 45◦ angle is already a 0.7
correlation. The reference data is always located at the x axis (correlation 1 with itself) and with a white
marker (0 bias with itself) at the position σI, the reference being the in-situ data.

Figure 22 shows the performance of the overall retrieved soil moisture time series obtained
from L1C V620 (1) and from L1C V724 (2) against the reference in-situ time series (0). Thanks to the
concatenation, a large number of points (~40,000) allow computing reliable statistics, which result in a
narrow CI95 that does not overlap for R, bias and STD making the separation of plots significant.

Compared to v620, v724 increases the correlation with respect to in-situ data and obtains an σS

closer to σI. As usual, this is more prominent for ascending morning orbits, where Level 2 retrievals
always perform better, with better thermodynamic equilibrium at the surface and a calmer ionosphere
in the mornings than in the evenings. Different RFI contamination patterns are also likely playing
a role.

These two results indicate an increase in signal-to-noise ratio for v724, generating less noisy
retrieved soil moisture and possibly better long-term stability. However, for the latter, two years
of data is probably too short, and it is necessary to wait for the full L1 and L2 10-year reprocessed
data availability. Finally, similarly to the spatial maps, using the v724 data, provides here ~1% more
successful retrievals in these time series.

4. Conclusions

The SMOS team has started a new reprocessing campaign, the third, after several improvements
have been introduced in calibration and image reconstruction. In calibration, the changes mainly affect
the NIR calibration parameters, the NIR antenna losses, the PMS sensitivities and the correction of the
thermal coupling in one important thermistor. In image reconstruction, the changes focus on reducing
the spatial biases induced by the dissimilarities of the antenna patterns, and on reducing the Sun effects
in the image, which cannot be considered as a point source at L-band. These corrections improve the
quality of the data, as indicated by several metrics that analyse spatial biases, measurement stability,
and other image reconstruction errors, as well as by comparisons against in-situ measurements and χ2
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metrics from soil moisture retrievals. This reprocessing campaign comes just after SMOS has been in
orbit for over 10 years.
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