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Abstract: The visual-inertial integrated navigation system (VINS) has been extensively studied over
the past decades to provide accurate and low-cost positioning solutions for autonomous systems.
Satisfactory performance can be obtained in an ideal scenario with sufficient and static environment
features. However, there are usually numerous dynamic objects in deep urban areas, and these
moving objects can severely distort the feature-tracking process which is critical to the feature-based
VINS. One well-known method that mitigates the effects of dynamic objects is to detect vehicles
using deep neural networks and remove the features belonging to surrounding vehicles. However,
excessive feature exclusion can severely distort the geometry of feature distribution, leading to limited
visual measurements. Instead of directly eliminating the features from dynamic objects, this study
proposes to adopt the visual measurement model based on the quality of feature tracking to improve
the performance of the VINS. First, a self-tuning covariance estimation approach is proposed to model
the uncertainty of each feature measurement by integrating two parts: (1) the geometry of feature
distribution (GFD); (2) the quality of feature tracking. Second, an adaptive M-estimator is proposed to
correct the measurement residual model to further mitigate the effects of outlier measurements, like
the dynamic features. Different from the conventional M-estimator, the proposed method effectively
alleviates the reliance on the excessive parameterization of the M-estimator. Experiments were
conducted in typical urban areas of Hong Kong with numerous dynamic objects. The results show
that the proposed method could effectively mitigate the effects of dynamic objects and improved
accuracy of the VINS is obtained when compared with the conventional VINS method.

Keywords: visual-inertial integrated navigation system (VINS); dynamic objects; adaptive tuning;
positioning; autonomous systems; urban canyons

1. Introduction

In recent years, the visual-inertial integrated navigation system (VINS) has had important
applications in various fields due to its cost-efficiency, for example, unmanned aerial vehicles (UAV) [1,2],
augmented reality (AR) [3] and autonomous ground vehicle (AGV) positioning [4–6]. There were
significant achievements from research on the VINS, such as the VINS-Mono [6], visual-inertial direct
sparse odometry (VI-DSO) [7] and semi-direct visual odometry (SVO) [8]. These existing methods have
good performances in an ideal environment with sufficient texture information and static environmental
features. In other words, the VINS relies heavily on the assumption that the surrounding features
are static. However, the performance of the VINS can be significantly impaired in dynamic outdoor
scenarios as motion blur of images damages the quality of features tracking [9]. As shown in Figure 1,
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there are numerous dynamic objects, such as vehicles and pedestrians, in a typical urban scenario. As
a result, pose estimation from the VINS can significantly drift or even fail due to degraded feature
tracking caused by dynamic objects [10], such as moving vehicles and pedestrians. Our previous
study in [11] evaluated the performance of a state-of-the-art VINS method, the VINS-Mono [6], in
diverse urban canyons with numerous dynamic objects. The results show [11] that dynamic objects
are one of the major reasons why the performance of the VINS is degraded in urban areas. Major
directions of researches on mitigating the effects of dynamic objects on the accuracy of the VINS include:
(1) dynamic object detection [12] based on motion tracking; (2) moving object detection and removal
based on deep learning [13]; (3) mitigating the effects of dynamic objects using robust methods.
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The motion tracking-based methods [14,15] are proposed to mitigate the effects of the dynamic
objects by detecting and remodel their features belonging to dynamic objects. Generally, the principle
is to identify the features or pixels that are associated with moving objects. A pixel-wise segmentation
motion approach was introduced in [15], which proposed an online RGB-D data-based motion removal
method. It proposes to filter out data related to moving objects. However, one of the major limitations
is that large parallax can degrade the performance of foreground segmentation and cause motion
tracking failure. Similar researches are conducted in [16–18] where an RGB-D camera was used for
dynamic object detection and tracking. However, the maximum ranging of the RGB-D camera is
limited (usually between 8 and 10 m [19]) which is not satisfactory for outdoor applications such as
UAVs and high-speed AGVs. Moreover, the motion tracking-based method to detect the dynamic
object relies heavily on the accuracy of vehicle egomotion estimation [20,21], which is a major challenge.

The straightforward method to mitigate the effects of dynamic objects is to detect and remove the
features of the dynamic objects from visual simultaneous localization and mapping (SLAM) [22,23].
Due to the excessive dynamic objects in complex environments, a detect-SLAM system [24] is proposed
to integrate SLAM with a deep neural network to detect moving objects and remove the unreliable
features from moving objects. The DynaSLAM system [25] introduces the convolutional neural
network (CNN) to segment the images so that features belonging to the dynamic objects are rejected.
Alternatively, an SSD detector [26] is presented to detect moving objects with a priori knowledge and a
selection tracking algorithm is proposed to remove dynamic objects. In addition, an ML-RANSAC
algorithm [23] was proposed to distinguish moving objects from stationary objects and classify the
outliers belonging to moving objects. Although numerous researches were conducted on object
detection [27–29], there are still many challenges for dynamic object detection. Many object detection
systems based on deep learning, such as the state-of-the-art YOLO [29] and FPN [30], can detect objects
(vehicles, trucks and pedestrians), but cannot determine the movement status of these objects (static or
dynamic). More important, these existing methods tend to remove the features from dynamic objects.
However, the performance of the VINS relies heavily on the number of features [10] and the geometry
of feature distribution (GFD) [31]. Excessive exclusion of dynamic feature points (DFPs) can severely
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degrade the quality of the feature tracking process. Therefore, removing all the DFPs is not acceptable
in urban canyons.

Instead of directly removing all the detected DFPs from visual SLAM, adaptively estimating
the covariance of visual measurements to further de-weight the effects of DFPs for visual SLAM
attracts lots of attention [32,33]. The adaptive covariance estimation was proposed in [32] to enhance
the resilience against dynamic objects in cooperative visual SLAM. However, instant information
communication with low latency is required which is usually not available for commercial level
applications. Recently, the state-of-the-art method, the switchable constraints [34] was proposed, which
can probabilistically detect and de-weight the outlier measurements from factor graph optimization
(FGO) and improved performance was obtained. However, it relies heavily on the accuracy of the initial
guess of prior switchable constraints [34]. Moreover, it requires redundancy of healthy measurements.
In other words, the switchable constraints can deliver decent performance only when the number of
healthy measurements significantly exceeds the outlier measurements. In addition, each feature can
derive a switchable constraint factor in FGO which can cause an unacceptable computational load
in the VINS subsequently. Recently, the dynamic covariance estimation (DCE) [35] algorithm was
proposed to mitigate the effects of GNSS (global navigation satellite systems) outlier measurements
and significantly improved accuracy is obtained with real-time performance. The uncertainty of GNSS
measurements and the state are estimated simultaneously. However, the method relies heavily on
the initial guess about the states to calculate reliable residuals [35]. Similar work was done in [36].
Moreover, the M-estimator algorithm [37] is applied to further enhance robustness against GNSS
outliers in [36]. The principle of the M-estimator in FGO is to embed an additional robust function in
the standard error function, such as Cauchy [38] and Huber [38] functions. However, the performance
of the applied M-estimator relies heavily on tuning its parameters. In other words, the parameters of
the M-estimator have to be carefully tuned based on the scenarios to obtain expected performance.
Similarly, the M-estimator is also used to resist the outlier measurements in the VINS. In [6], the tightly
coupled integration of the visual-inertial system is designed for state estimation of autonomous drones
and an M-estimator was used to increase the robustness of the VINS. However, the improvement of the
performance of the VINS through the M-estimator is limited in dynamic scenarios. Similar research
was extended in [39,40] and the same framework was used. The M-estimator was applied to increase
the robustness of the standard error function and improved performance was obtained. However, the
performance of the M-estimator is still limited by parameter tuning.

In fact, the principle of visual and global navigation satellite systems (GNSS) is similar in
positioning, both requiring referenced positioning from visual measurements or receptions of satellites.
The references for visual-based positioning are the tracked features and the ones for GNSS positioning
are the pseudorange measurements from satellites, which can be seen in Figure 2. The major difference
is that the VINS requires abundant feature tracking as the pose of features is unknown. However,
the GNSS only requires a minimum of five satellites to achieve the positioning of the GNSS receiver
and the positions of satellites are known. Interestingly, similar positioning problems can also be seen
in the GNSS which is based on signals received from multiple satellites [41]. The non-line-of-sight
(NLOS) receptions are similar to the dynamic feature points (DFPs) in the VINS as both are the
unhealthy (outlier) measurements. As shown in Figure 2, the satellite is blocked by the building,
leading to the NLOS (red satellites) receptions which are similar to the DFP (the red one on the
right side of Figure 2). Excluding all NLOS satellites will severely distort the geometry distribution
of satellites in deep urban areas and even cause a lack of satellites for further positioning. In our
latest research [42] on GNSS positioning, both the NLOS and line-of-sight (LOS) measurements are
utilized by giving them different weightings and improved positioning performance was obtained.
Therefore, we believe that remodeling outlier measurement is preferable. Interestingly, our previous
work in [11] extensively evaluated the performance of the VINS in urban canyons and we find out
that the positioning error is closely related to the quality of feature tracking with almost a linear
relationship [11]. Moreover, our recent work [43] shows that the excessive exclusion of DFPs can distort
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the geometry of feature distribution, which can degrade the performance of the VINS. Inspired by the
work in [35,36] and our findings in [11,43], this study proposes to estimate the sensor model of visual
measurements (tracked feature) online based on the quality of feature tracking. First, a self-tuning
covariance estimation approach is proposed to model the uncertainty of the feature measurement by
integrating two parts: (1) the geometry of feature distribution (GFD); (2) the quality of feature tracking.
Second, an adaptive M-estimator is proposed to correct the measurement residual model to further
mitigate the effects of the outlier measurements, such as the dynamic features. Unlike conventional
M-estimator, the proposed method effectively relax the reliance on the excessive parameterization of
the M-estimator.
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The rest of this study is organized as follows: In Section 2, an overview of the proposed method
is given; then the framework of the VINS is described in Section 3. Next, the online sensor model
estimation is presented in Section 4. The experiment result is shown in Section 5. Finally, a conclusion
is drawn.

2. Overview of the Proposed Adaptive VINS

The structure of the proposed method is shown in Figure 3. The inputs of the system consist
of two parts: the inertial measurement unit (IMU) and the monocular camera. The IMU provides
acceleration and angular velocity measurements at a high frequency. The monocular camera provides
raw images. In the modeling stage, due to the high data frequency of the IMU, multiple IMU
measurements are obtained between two consecutive frames. To reduce the computational loads,
the IMU pre-integration [44] is employed to derive the motion between the consecutive frames.
Then the pre-integration factor is obtained. In addition, the features are extracted and tracking for
visual modeling is performed. To adaptively estimate the uncertainty of feature measurements, two
parameters are considered in this study. The geometry of feature distribution is derived from feature
extraction. The number of times of the features being tracked is derived from the feature tracking.
Both are used in the proposed adaptive covariance estimation, which can remodel the uncertainty
of visual measurements. Then the standard reprojection factor is obtained based on the adaptive
covariance estimation. In addition, the quality of feature tracking is associated with the parameters
of the adaptive M-estimator, which can increase the robustness of the standard reprojection factor
against outlier measurements with the additional robust function. Then the robust reprojection factor
is obtained. Finally, the pre-integration factor and robust reprojection factor are integrated into an FGO.
The optimization result can correct the bias of IMU measurements in turn. In short, the contributions
of this study are listed as follows:

(1) This study proposes a self-tuning covariance estimation approach to model the uncertainty of
each feature measurement by integrating two parts: (1) the geometry of feature distribution
(GFD); (2) the quality of feature tracking;
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(2) This study proposes an adaptive M-estimator to correct the measurement residual model to further
mitigate the effects of outlier measurements, like the dynamic features. The proposed adaptive
M-estimator effectively relaxed the drawback of manual parameterization [36] of M-estimator;

(3) This study employs challenging datasets collected in dynamic urban canyons of Hong Kong to
validate the effectiveness of the proposed method in mitigating the effects of dynamic objects.
improved performance is achieved compared with the state-of-the-art VINS solution [6].
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aided by adaptive covariance estimation and M-estimator.

The details about the proposed method are given in the following sections.

3. Tightly Coupled Monocular-based Visual-inertial Integration based on Factor
Graph Optimization

3.1. System States

The objective of FGO is to minimize the residuals derived from multiple sensor measurements [45].
In this study, the residuals include the one from the IMU measurements and the one from visual
measurements. The state vector considered in this study is defined as follows:

χ =
[
x1, x2, . . . , xn, xb

c , λ1, λ2, . . . λM
]

(1)

xk =
[
Pw

bk
, Vw

bk
, qw

bk
, ba,k, bg,k

]
, kε[1, n] (2)

xb
c =

[
Pb

c , qb
c

]
(3)

where the superscript w is the world frame and the subscript bk is the body frame (same as the IMU
frame) while the kth image is captured. xk is the IMU state at the kth image. It contains the position
(Pw

bk
), the velocity (Vw

bk
) and the orientation that is represented by quaternion (qw

bk
) in the world frame

and the acceleration bias (ba,k) and the gyroscope bias (bg,k) in the IMU body frame. n is the total
number of keyframes utilized for optimization and M is the total number of features considered. λl is
the inverse depth of the lth feature observed for the first time, l∈ (1, M). xb

c is the extrinsic parameter
that transforms the camera frame into the IMU frame. To guarantee the computation efficiency, we
only utilize the measurements inside a sliding window (which can be seen in Figure 4) to estimate the
states. The images inside in the sliding window are between the frames bk and bk+n, with the time
of tk and tk+n, respectively. Regarding the implementation of the VINS, we refer to the framework
proposed in [6].
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3.2. IMU Measurement Modeling

This section presents the modeling of IMU measurements. The IMU measurements are given in
the body frame, which is affected by the additive noise and bias of acceleration and gyroscope. The
raw accelerometer and gyroscope measurements at a given time t are expressed as follows:

ât = at + Rt
wgw + bat + na (4)

ω̂t = ωt + bωt + nω (5)

where ât and ω̂t denote the raw measurements of the IMU, at andωt are the expected measurements

of acceleration and angular velocity, gw =
[

0 0 g
]T

denotes the gravity vector in the world frame,
Rt

w denotes the rotation matrix that encodes the transformation the world frame into the body frame
at time t, bat and bωt denote the acceleration bias and gyroscope bias and na and nω are the additive
noise, which is assumed to be Gaussian white noise, na ∼ N

(
0, σ2

a

)
and nω ∼ N

(
0, σ2

ω

)
. The values of

na and nω are determined based on the specifications of the applied IMU sensor.
The IMU measurements can be employed to constrain the motion between two epochs using the

standard IMU mechanism [46], which can work efficiently in the filtering-based sensor fusion, such as
the extended Kalman filter (EKF) [47]. However, the standard IMU mechanism [46] can cause a high
computation load in sensor fusion using FGO, due to the high frequency of the IMU measurements.
Therefore, we employ the state-of-the-art IMU pre-integration technique [44] to integrate the IMU
measurements, which can significantly alleviate the high computation load in FGO and the accuracy is
guaranteed, by integrating multiple IMU measurements into a single factor in FGO. There are several
inertial measurements in the time interval t ∈ [tk, tk+1] between the two consecutive frames bk and bk+1.
With the given bias estimation, the IMU pre-integration is integrated in the bk frame as follows [6]:

α
bk
bk+1

=
x

t∈[tk,tk+1]

Rbk
t (ât − bat)dt2 (6)

β
bk
bk+1

=

∫
t∈[tk,tk+1]

Rbk
t (ât − bat)dt (7)

γ
bk
bk+1

=

∫
t∈[tk,tk+1]

1
2

Ω(ω̂t − bωt)γ
bk
t dt (8)

Ω(ω) =


0 −ωz ωy ωx

ωz 0 −ωx ωy

−ωy ωx 0 ωz

ωx ωy ωz 0

 (9)
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where αbk
bk+1

, βbk
bk+1

and γbk
bk+1

are the pre-integration terms between the frames bk and bk+1, which

represent the changes of position, velocity and orientation, respectively. Rbk
t is the rotation matrix

that transforms the body frame at time t into the reference frame bk. In fact, this is one of the major
differences from the IMU mechanism, as the pre-integration is performed in the body frame bk and the
IMU mechanism is conducted concerning the world frame. γbk

t is a quaternion that transforms the
body frame at time t into the reference frame bk. ωx, ωy and ωz denote the angular velocities in the
body frame.

The IMU pre-integration between the two consecutive frames uses bk as the reference frame.
Based on the information, the position, the velocity and the orientation in the world frame can be
derived as follows:

Pw
bk+1

=
(
Pw

bk
+ Vw

bk
∆tk −

1
2

gw∆t2
k

)
+ Rw

bk
αbk

bk+1
(10)

Vw
bk+1

=
(
Vw

bk
− gw∆tk

)
+ Rw

bk
βbk

bk+1
(11)

γ
bk
bk+1

= qbk
w ⊗ qw

bk+1
(12)

The symbol ⊗ means multiplication between two quaternions. According to the two states
(Pw

bk+1
and Pw

bk
) of bk and bk+1, the residual for IMU pre-integration measurements in the two consecutive

frames bk and bk+1 can be defined as follows [6]:

rB(Ẑ
bk
bk+1

,χ) =



δα
bk
bk+1

δβ
bk
bk+1

δθ
bk
bk+1

δba

δbω


=



Rbk
w (Pw

bk+1
− Pw

bk
+ 1

2 gw∆t2
k −Vw

bk
∆tk) − α

bk
bk+1

Rbk
w (Vw

bk+1
+ gw∆tk −Vw

bk
) − βbk

bk+1

2
[
qw−1

bk
⊗ qw

bk+1
⊗ (γbk

bk+1
)
−1]

xyz
ba,bk+1

− ba,bk

bω,bk+1
− bω,bk


(13)

where the variable Ẑ
bk
bk+1

represents the observation measurements of the IMU between the frames
bk and bk+1. The operator [.]xyz is used for extracting the vector part of the quaternion q for the

orientation difference. ∆θbk
bk+1

represents the orientation constraint between the frames bk and bk+1.

δαbk
bk+1

represents the derived position constraint between the frames bk and bk+1. δβbk
bk+1

denotes the
velocity constraint.δba and δbω denote the accelerometer and gyroscope biases constraints, respectively.[
α

bk
bk+1

,βbk
bk+1

,γbk
bk+1

]
represents the pre-integration measurements between the frames bk and bk+1. When

the estimation of bias changes, the IMU measurements will be repropagated based on the new
bias estimation.

3.3. Visual Measurement Modeling

This section presents the modeling of visual measurement. The direct raw measurement from
the camera is the raw image at a given epoch t. Similar to the work in [6], we formulate the visual
measurement residual based on a reprojection error. For a given new image, the features are detected
using the Shi–Tomasi [48] corner detection algorithm. Meanwhile, the Kanade–Lucas–Tomasi (KLT)
sparse optical flow algorithm [49] is employed to track the features. The derivation of the reprojection
error relies heavily on the quality of feature tracking. To guarantee that enough features are detected
in a frame of the image, new corner features are also detected [48]. During the feature tracking, only
certain images, the keyframes, are employed to perform the feature tracking to improve efficiency. The
keyframes are chosen based on two criteria: (1) The first one is the average parallax criteria: if the
average parallax of the tracked features between the current frame and the latest keyframe override a
certain threshold, the current frame is treated as a new keyframe. (2) if the number of tracked features
inside the current image is smaller than a certain threshold, this frame is regarded as a new keyframe.
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Figure 5 shows the feature tracking process where n denotes the total number of keyframes inside
the sliding window. The lth feature is first, observed in the ith image. Zci

l (û
ci
l , v̂ci

l ) represents first

observation of the lth feature in the ith image. Z
c j

l (û
c j

l , v̂
c j

l ) denotes the observation of the same feature
in the jth image. We can see from Figure 5 that the feature is tracked for several times. In other words,
the features are seen in several image fames.
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The traditional reprojection residual is defined in the image plane, which is not suitable for most
camera models. In this study, following the work in [6], the residual is defined on a unit sphere, which
is applicable for almost all the camera models. The unit vector for observation of the lth feature in the
jth image that is projected into the unit sphere, p̂

c j

l , is calculated as follows [6]:

p̂
c j

l =
[

I1 I2
]T
·π−1

c

 û
c j

l
v̂

c j

l

 (14)

where
[

I1 I2
]T

are two arbitrarily selected orthogonal bases on the tangent plane corresponding
to the feature observation. π−1

c is the back-projection function, which turns a pixel location into a
unit vector using the camera’s intrinsic parameters. To formulate the residual corresponding to the
measurement p̂

c j

l , the expected observation p
c j

l is needed. The direct method is to derive p
c j

l based
on the current state χ. To make full use of the feature-tracking process which provides continuous
geometry constraints, we derive p

c j

l based on the keyframe i. For the sake of clearer explanation, we
divide the formulation into the following steps:

Step 1: obtain feature l from the pixel position in image i to the body frame (IMU frame) as follows:

S1 = Rb
c

1
λl
π−1

c

([
ûci

l
v̂ci

l

])
+ Pb

c (15)

Rb
c and Pb

c represent the rotation matrix and the translation matrix from the camera frame to the body
frame. Then the pixel location (ûci

l , v̂ci
l ) in the ith image is transformed into the body frame.

Step 2: obtain feature l in the ith image from the body frame to the world frame and then translate
the feature to the jth image in the world frame as follows:

S2 = Rw
bi
(S1) + Pw

bi
− Pw

b j
(16)

Rw
bi

and Pw
bi

are the rotation matrix and the translation matrix which transforms the lth feature detected
in the ith image from the body frame to the world frame. Pw

b j
encodes the transformation matrix which

transforms the lth feature detected in the jth image frame from the body frame to the world frame.
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Step 3: obtain feature l in the jth image from the world frame to the body frame and then transform
the feature into the camera frame as follows:

S3 = R
b j
w (S2) − Pb

c (17)

p
c j

l = Rc
b(S3) (18)

R
b j
w represents the rotation matrix which transforms the same feature in the jth image from the

world frame to the b j frame. p
c j

l denotes the predicted feature measurement on the unit sphere by
transforming its first observation in the ith image to the jth image. Rc

b is the rotation matrix that encodes
the transformation from the body frame of IMU to the camera frame. Pb

c is the transformation matrix
that transforms the camera frame to the body frame of IMU. The Rc

b and Pb
c compose the extrinsic

parameters of camera and IMU.
Step 4: therefore, the residual for the lth feature measurement in keyframe j is defined as follows:

rC (Ẑ
c j

l ,χ) =
[

I1 I2
]T

.(p̂
c j

l −
p

c j

l

‖ p
c j

l ‖
) (19)

rC(∗) represents the residual of the lth feature measurement in the jth image. Ẑ
c j

l denotes the observation
measurement of the lth feature in the jth image. Be noted that the degree of freedom of the feature has

two dimensions and therefore the residual is projected in the tangent plane. P̂
c j

l denotes the unit vector
for the observation of the lth feature in the jth frame.

3.4. Marginalization

Each feature measurement corresponds to a factor in FGO. Therefore, the computational complexity
will increase dramatically over time. The straightforward way is to remove part of the old states
and their associated measurements. However, this will fail to make use of historical data. To reduce
the computational loads and guarantee the accuracy, the marginalization is used. The process of
marginalization is to marginalize some older visual measurements. During the system optimization,
some of the unsatisfactory IMU states and features are marginalized from the sliding window into
a prior factor. Two strategies were proposed [6] to select marginalized measurements. Firstly, if the
second latest frame is a keyframe, it will be kept in the sliding window and meanwhile, the oldest
frame is marginalized out with its corresponding measurements. Conversely, if the second latest
frame is a non-keyframe, the visual measurements will be left out and the IMU measurements that
are connected to this non-keyframe are kept, which can maintain the sparsity of the system. The
marginalization is carried out by the Schur complement [50]. A new prior is constructed based on all
marginalized measurements related to the removed state and the residual for the prior factor can be
derived accordingly.

3.5. Visual-Inertia Optimization

The objective of the FGO is to minimize the sum of prior and the Mahalanobis norm of all
measurement residuals to obtain a maximum posterior estimation. Based on the derived residuals
from three parts: (1) residual from IMU pre-integration, (2) residual from the visual measurement and
(3) residual from marginalization, the objective function of the system can be formulated as follows:

min
χ

‖ rp −Hpχ ‖
2 +

∑
‖

kεB

rB(Ẑ
bk
bk+1

,χ) ‖
2

P
bk
bk+1

+
∑
(l, j)εC

‖ rC(Ẑ
c j

l ,χ) ‖
2

P
cj
l

 (20)
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where
{
rp, Hp

}
is the prior information from the marginalization operation, which encodes marginalized

information (see the states inside the dashed rectangle of Figure 4). The variable rB(.) is the residual
term for IMU pre-integration (see Equation (13)). The variable rC(.) is the residual term for visual
re-projection (see Equation (19)). B denotes the set of all IMU measurements and C is the set of features
that were observed at least twice in the current sliding window. Pbk

bk+1
denotes the information matrix

for IMU pre-integration. P
c j

l denotes the information matrix for visual re-projection, which represents

the uncertainty of feature measurements. In [6], P
c j

l is fixed and is correlated with the focal length. The
information matrix is the inverse of the covariance matrix. The fixed information matrix can work well
in an ideal scenario. Unfortunately, the positioning result will be significantly misled by unmodeled
outliers. Therefore, in the next section, we propose an online sensor model to adaptively model the
uncertainty of visual measurements.

4. Online Sensor Model Estimation

According to our previous work in [11], the result shows that the dynamic feature points from
dynamic objects are one of the major factors which degrade the performance of the VINS in the urban
areas. In addition, the positioning error is highly correlated with the quality of feature tracking. We
propose to mitigate the effects of dynamic objects by adaptively estimating the uncertainty of visual
measurements based on the quality of feature tracking from two aspects, the adaptive covariance
estimation and the adaptive M-estimator in the remainder of this section.

4.1. Adaptive Covariance Estimation

Based on our findings in [11], we propose to correlate the uncertainty of a given visual measurement
with two parts: (1) the quality of feature tracking which is determined by the number of times that the
feature is tracked (NTFT). The more times we see the same feature, the better is the feature quality;
(2) the geometry distribution factor (g f ,t) which is determined by the geometry of feature distribution

(GFD). Assuming that a set of tracked features at a given epoch t from the jth image are denoted by F j
t

as follows:
F j

t =
{
f j
t,1, f j

t,2, . . . , f j
t,m

}
(21)

where m represents the number of features in the jth image. Each feature f j
t, l is represented by

f j
t, l =

{
ut,l, vt,l, N f ,t,l,

}
. ut,l and vt,l denote the pixel position of the feature in the image. N f ,t,l denotes

the number of times that feature l is tracked.
Each feature corresponds to a landmark that constrains the pose of the camera in the VINS.

Different geometry distribution of features can result in the different performance of state estimation of
the system. The ideal condition is that all tracked features are uniformly distributed surrounding the
center of the camera. Unfortunately, this is usually not available due to the complex environmental
conditions in urban canyons. In other words, the distribution of features relies strongly on the
distributions of surrounding objects, such as buildings, vehicles and others. Figure 6 shows the
geometry distribution of the features in two different cases. Figure 6a shows a decent geometry
distribution of features where the features distribute over the whole image. Figure 6b shows a case
where a majority of the features located in the middle of the figure.

As shown in Figure 2, feature-based VINS positioning is similar to satellite-based GNSS positioning.
The precision of GNSS positioning is highly related to the geometry distribution of satellites concerning
the position of the GNSS receiver. The quality of the distribution is described using 3D position
dilution of precision (PDOP) [46]. Inspired by this fact, we adopt a similar idea from GNSS positioning
to describe the quality of geometry distribution of features, g f ,t.
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Firstly, with the given estimated initial guess about the position of the camera and the detected
features using standard state initialization [51], the observation matrix correlating the positions of both
the camera and the 3D position of feature is derived as follows:

H =


(x1 − x)λ1 (y1 − y)λ1 (z1 − z)λ1

(x2 − x)λ2 (y2 − y)λ2 (z2 − z)λ2
...

...
...

(xm − x)λm (ym − y)λm (zm − z)λm


m×3

(22)

where (x, y, z) denotes the position of the camera which can be derived from the system state (Pw
bk

)
at epoch t and (xm, ym, zm) denotes the 3D position of the mth feature during epoch t. Based on the
derivation of PDOP, the Q matrix can be derived as follows:

Q = (HTH)
−1

(23)

where Q is a 3 × 3 matrix as follows:

Q =


σ2

x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z

 (24)

where the σ2
x, σ2

y and σ2
z denote the uncertainty associated with the geometry distribution. Smaller

g f ,t means that the features are more decentralized which can lead to better VINS estimation and vice
versa. Therefore, g f ,t is calculated as follows:

g f ,t =
√
σ2

x + σ2
y + σ2

z (25)

Therefore, the adaptive information matrix (Σ
c j

l ) is derived as follows:

Σ
c j

l = P
c j

l N f ,t,l·
1

g f ,t
·s (26)
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with P
c j

l =

 Fc
1.5 0
0 Fc

1.5

 (27)

where P
c j

l represents the original information matrix from [6], the constant 1.5 denotes the standard
deviation of pixels. The Fc is the focal length of the virtual camera and the value is set to 460 in the
framework [6]. The parameter of focal length describes the undistorted image. s is the scaling factor
which is experimentally determined and Fc denotes the focal length of the given camera. Note that the
covariance and the information matrix are mutually inversed.

4.2. Adaptive M-Estimator

The objective of the FGO is to minimize the summation of the residual function (20) to approach
the optimal state set χ. Unfortunately, the nonlinear function (20) is always a non-convex problem
that has multiple sub-optimal, the local minimums phenomenon. The outlier measurements, which
dominate the overall residual, can easily lead to local minimum estimation. Instead of de-weighting the
outlier measurement by tuning the covariance matrix, the M-estimator [52] is a promising technique
that enhances the resilience of the optimizer by using an additional robust function. However, the
M-estimator relies heavily on parameter tuning. Figure 7 shows the state-of-the-art Huber-based
M-estimator with different parameters based on (27). The curvature of the M-estimator relies heavily on
different k values, which is related to the robustness of M-estimator. The smaller variable k (black curve
in Figure 7) could lead to a smoother curve of Huber function. As a result, the smoother curve can be
more robust in mitigating the effects of outlier measurements. However, a k with a too-small value can
lead to an extremely small gradient of the error function (20), making it difficult for the optimizer to
approach the optimal state. The research in [35,36] shows that extensive parameter tuning is required
to obtain satisfactory performance using the M-estimator.

ρ(r) =
{ 1

2 r2, |r| ≤ k
k (|r| − 1

2 k), otherwise
(28)

where r denotes the residual measurement, k denotes the parameter that needs to be tuned and ρ(∗)
represents the robust Huber function.
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Different from the offline tuned M-estimator [53] and the residual-based M-estimator [38] which
relies on the initial guess about the state estimation, an adaptive M-estimator based on the Huber
function by correlating the parameters of the M-estimator with the NTFT is proposed in this study,
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which could correct the visual residual model to further mitigate the effects of dynamic feature points.
The parameter of the Huber function is estimated as follows at the given epoch t:

ρ(rC(Ẑ
cj

l ,χ), N f ,t,l) =


1
2 (rC(Ẑ

cj

l ,χ))
2
,
∣∣∣∣ rC(Ẑ

c j

l ,χ)
∣∣∣∣ ≤ kt

kt(
∣∣∣∣rC(Ẑ

cj

l ,χ)
∣∣∣∣− 1

2 kt), Otherwise
(29)

kt = Ms N f ,t,l (30)

where rC(Ẑ
cj

l ,χ) is the visual residual of feature l in the jth image, kt is the parameter of the Huber
function and Ms is a scaling factor correlating N f ,t,l and kt which is pre-determined. Therefore, an
adaptive M-estimator is derived as (28).

4.3. Visual-Inertia Optimization with Online Sensor Model

Based on the VINS system derived in Section 3 and the online sensor model in Sections 4.1 and 4.2,
the new objective function is as follows:

min
χ

‖ rp −Hpχ
2
‖ +

∑
kεB

‖ rB(Ẑ
bk
bk+1

,χ) ‖
2

P
bk
bk+1

+
∑
(l, j)εC

‖ ρ(rC(Ẑ
c j

l ,χ), N f ,t,l) ‖
2

Σ
cj
l

 (31)

where ρ(∗) is the proposed adaptive M-estimator based on Huber function. The variable Σ
c j

l denotes the

adaptive information matrix based on Equation (26). Similar to Equation (20), the
{
rp, Hp

}
denotes the

prior information from the marginalization operation. rB(.) is the residual term for IMU pre-integration.
The rC(.) is the visual residual term. The detailed information of the residual terms is presented in
Sections 3.2 and 3.3. The major difference with the Equation (20) is the robust Huber function ρ(∗) and
the adaptive information matrix Σ

c j

l , which are derived in Sections 4.1 and 4.2.

5. Experimental Results

5.1. Experimental Setup

To validate the effectiveness of the proposed method, two experiments were conducted in typical
urban canyons of Hong Kong. The experiment setup is shown in the left side of Figure 8. An Xsens
MTi 10 IMU was employed to collect raw IMU measurements at a frequency of 200 Hz. A monocular
camera (BFLY-U3-23S6C-C) was employed to collect color images at a frequency of 10 Hz. In addition,
the NovAtel SPAN-CPT, a GNSS (GPS, GLONASS and BeiDou) RTK/INS (with fiber-optic gyroscopes)
integrated navigation system, was used to provide the ground truth of positioning. The gyro bias
in-run stability of the FOG was 1 degree per hour and its random walk was 0.067 degree per hour. The
baseline between the rover and the GNSS base station was about 7 km. All the data were collected
and synchronized based on the time stamp provided by the robot operation system (ROS) [54]. The
coordinate systems between all the sensors were calibrated before the experiments. Figure 8a,b shows
the two evaluated urban canyons. The tested Urban Canyon 1 contains mainly static environmental
structures and limited dynamic objects. The tested Urban Canyon 2 was significantly more challenging
with numerous dynamic objects and complex environmental structures. More important, the dataset in
Urban Canyon 2 was collected during the evening period with unstable and challenging illumination
condition where was interesting to see how the proposed method can work.
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To verify the performance of the proposed method, several methods were compared.

(1) VINS: the original VINS solution from [6].
(2) VINS–AC: VINS-aided by adaptive covariance estimation proposed in Section 4.1.

a. VINS-Adaptive covariance (g f ,t): only consider g f ,t during covariance estimation

b. VINS-Adaptive covariance (g f ,t, N f ,t,l): consider both g f ,t and N f ,t,l during
covariance estimation.

(3) VINS–AC–ME: VINS-aided by adaptive covariance estimation proposed in Section 4.1 and
adaptive M-estimator in Section 4.2.

Regarding the accuracy evaluation of the listed four methods above, we make use of the popular
EVO toolkit [55], which was extensively used for the evaluation of SLAM algorithms. The parameters
used in the experiments are shown in Table 1. The window size n was set to 11 frames in the
optimization, which includes 10 keyframes and 1 newest frame. Fc was the focal length and both of
the s and Ms are the scaling factor.

Table 1. Parameter values used in this study.

Parameters Value Parameters Value

Fc 460 ba 0.001 m/s2
s 0.02 bω 0.0001 rad/s

Ms 0.02 na 0.1 m/s2
n 11 nω 0.01 m/s

5.2. Evaluation of the Dataset Collected in Urban Canyon 1

An experiment in Urban Canyon 1 was firstly conducted to validate the performance of the
proposed method. The positioning results for the listed four methods are shown in Table 2. The
mean error was defined by the RPE (relative pose error) in the EVO toolkit [55]. The mean error of
the VINS was 0.33 m, with the maximum error reaching 1.84 m. Be noted that this was original the
performance based on the work in [6]. With the geometry distribution of features (g f ,t) considered in
the adaptive covariance, the positioning error decreases to 0.32 m. The positioning error was slightly
improved by 3.03%, which was calculated by the division of improvement and the error of original
VINS. Furthermore, with the help of the number of feature-tracking times (N f ,t,l) in the adaptive
covariance estimation, the mean error decreases to 0.30 m, with an improvement of 9.09%. With the
help of the adaptive M-estimator, the mean error stays at 0.30 m, with the maximum error decreasing
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to 1.44 m. The positioning error of the proposed method (VINS–AC–ME) was slightly mitigated by
9.09%. The fifth row shows the percentage of drift which is calculated by the formulation as follows:

|Pvins − PGT |

D
% (32)

where Pvins denotes the pose estimation finally epoch from VINS and PGT denotes the pose estimation
at the last epoch from the ground truth. D denotes the total driving distance. The percentage evaluates
the accumulated drift of VINS at the final epoch. Different from the relative positioning error (RPE),
the “% drift per distance” relies heavily on drift direction. As the following Figure 9 shows that the
proposed method VINS–AC–ME drifts significantly, while the mean error decreases to 0.3 m from 0.33
m. The result shows that the proposed method can help to improve the performance of VINS even in
the evaluated Urban Canyon 1 with limited dynamic objects.

Table 2. Positioning performance comparisons of listed methods in Urban Canyon 1.

All Data VINS [6] VINS–AC (gf,t) VINS–AC (gf,t, Nf,t,l) VINS–AC–ME

Mean error 0.33 m 0.32 m 0.30 m 0.30 m
Std 0.31 m 0.30 m 0.30 m 0.29 m

Max error 1.84 m 1.35 m 1.70 m 1.44 m
% drift per meters 2.16% 1.85% 2.69% 2.71%

Improvement - 3.03% 9.09% 9.09%
Percentage of Outliers 8.6% 8.6% 8.6% 8.6%
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The trajectories of the listed methods and the reference trajectory are shown in Figure 9. The
total length of the trajectory was 1186.081 m. Overall, the trajectory of the VINS–AC–ME (see blue
curve) was the one closest to the reference trajectory (see black curve). The relative positioning error
throughout the test is shown in Figure 10. The accuracy of the proposed method was slightly improved
with the help of the proposed online sensor model adaption. This was because the static feature points
dominate the visual measurements in urban canyons. However, the proposed method can obtain
slightly improved performance in the evaluated Urban Canyon 1.
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Figure 10. Relative positioning errors of tested methods in Urban Canyon 1.

The last row of Table 2 shows the percentage of outlier features, which was calculated by the
division of the total number of outlier features and the total number of the tracked features throughout
the evaluated dataset. During the calculation, we classify the outlier measurement based on the N f ,t,l.
One feature was identified as an outlier measurement if the variable N f ,t,l was less than 10. Be noted
that this value was only used for evaluation purposes and was not used in the model adaption of
visual measurements. Based on this rule, 8.6% of the features were outlier measurements.

5.3. Evaluation of the Data Collected in Urban Canyon 2

To challenge the performance of the proposed method, we conduct the other experiment in Urban
Canyon 2 with numerous dynamic objects and the data were collected at night (see Figure 8b). In this
experiment, the number of DFPs was far more than that in Urban Canyon 1, with a percentage of 19.6%
which can be seen in Table 3. Therefore, we believe that Urban Canyon 2 was more challenging for our
proposed online sensor model compared to the evaluated Urban Canyon 1.

Table 3. Positioning performance comparisons of listed methods in Urban Canyon 2.

All Data VINS [6] VINS–AC (gf,t) VINS–AC (gf,t, Nf,t,l) VINS–AC–ME

Mean error 0.79 m 0.69 m 0.64 m 0.59 m
Std 0.96 m 0.86 m 0.84 m 0.75 m

Max error 5.58 m 6.39 m 7.32 m 7.26 m
% drift per meters 2.1% 2.04% 4.10% 3.73%

Improvement - 12.66% 18.99% 25.32%
Percentage of outliers 19.6% 19.6% 19.6% 19.6%

The positioning results of the listed methods are shown in Table 3. The mean error of the original
VINS was 0.79 m, with the maximum error reaching 5.58 m. The mean error decreases to 0.69 m
with the geometry distribution of features (g f ,t) considered in the adaptive covariance. The number
of feature-tracking times (N f ,t,l) was also considered in the adaptive covariance and the mean error
decreases to 0.64 m, with an improvement of 18.99%. With the help of the adaptive M-estimator, the
mean error decreases to 0.59 m, with an improvement of 25.32%.

Similarly, the % drift per meter was also shown in the fifth row of Table 3, which was calculated
based on (31). Interestingly, we can see that the value of “% drift per meter” was even larger after
applying the proposed method (3.73%), compared with the original VINS (2.1%). This was mainly
because the drift direction of the proposed method was significantly different from the original
VINS, which can be seen in Figure 11. However, the proposed method provides more accurate
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relative positioning which can be seen by the mean error. Therefore, the VINS can provide accurate
positioning relatively in a short period. Integration of the proposed VINS, which is subjected to
drift, and the drift-free GNSS positioning is a promising solution to provide accurate and globally
reference positioning.Remote Sens. 2020, 12, x FOR PEER REVIEW 19 of 24 
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Figure 11. Trajectories of the VINS and proposed method and reference trajectory in Urban Canyon 2.

Figure 11 shows the trajectories of the listed methods and the reference trajectory. The total length
of the trajectory was about 1984.448 m. We can see that the proposed method (blue curve) is the one
closest to the reference trajectory (black curve). The details about the relative positioning error are
shown in Figure 12.
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To show the details about the improvement, four epochs are selected in Figure 12 and the
snapshots of the selected epochs are shown in Figure 13. The corresponding positioning errors are
shown in Table 4. We can see from Table 4 that the error of the VINS reaches the maximum value
of 5.59 m during epoch 260 (A). With the geometry of features distribution (g f ,t) considered in the
adaptive covariance, the error of the VINS–AC (g f ,t) decreases to 2.81 m. Moreover, the number of
feature-tracking times (N f ,t,l) was also introduced to the adaptive covariance and the error of the
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VINS–AC (g f ,t , N f ,t,l) decreases to 1.62 m, which shows that g f ,t and N f ,t,l can model the uncertainty
of each feature measurement to improve the performance of the VINS. With the help of the adaptive
M-estimator, the error of the proposed method (VINS–AC–ME) decreases to 1.02 m. A similar condition
appears during epoch 343 (B). The proposed method outperforms the VINS in positioning accuracy.
Based on the proposed adaptive covariance (26), g f ,t and N f ,t,l were used to evaluate the uncertainty
of the visual measurements and Figures 14 and 15 show that the system tends to rely on the visual
measurements during epoch 260 (A) and epoch 343 (B). However, we find out that the proposed method
leads to a large positioning error during epoch 29 (C). The error of the VINS–AC (g f ,t) increases to 6.39
m and the error of the VINS–AC (g f ,t, N f ,t,l) even increases to 7.26 m. The error of the VINS–AC–ME
was also 7.26 m. This was due to the fact that the proposed system tends to assign a higher weight to
the visual measurement, while the quality of the tracked features was poor during the epoch.
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Figure 14. (top) Geometry of feature distribution (g f ,t) on the error of the VINS–AC (g f ,t); (bottom) error
of the VINS–AC (g f ,t).

Table 4. Positioning performance comparison between listed methods on the four selected epochs in
Figure 12.

Mean Error VINS VINS–AC (gf,t) VINS–AC (gf,t, Nf,t,l) VINS–AC–ME

Epoch 260 (A) 5.59 m 2.81 m 1.62 m 1.02 m
Epoch 343 (B) 5.12 m 0.98 m 0.78 m 0.72 m
Epoch 29 (C) 0.47 m 6.39 m 7.26 m 7.26 m

Epoch 127 (D) 1.65 m 1.43 m 7.32 m 1.32 m
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Figure 15. (top) Geometry of feature distribution (g f ,t) and the number of feature tracking times (N f ,t,l)
on the error of the VINS–AC (g f ,t, N f ,t,l); (bottom) error of the VINS–AC (g f ,t, N f ,t,l).

As can be seen from Figure 13c, the feature tracked on a blurred image. Therefore, the positioning
error increases significantly during epoch 29 (C). Interestingly, the error of the VINS–AC (g f ,t, N f ,t,l)
can reach 7.32 m during epoch 127 (D), which was far larger than that of the VINS–AC (g f ,t) (1.43 m).
The error was mainly caused by other factors, such as the unstable illumination conditions. With the
help of the adaptive M-estimator, the error of the VINS–AC–ME decreases to 1.32 m, which shows that
the adaptive M-estimator can enhance the resistance to outliers.

Figure 16 shows that the adaptive M-estimator can correct the visual residual model by using an
additional robust function, especially in challenging urban canyons. The red curve denotes the visual
residual on the VINS–AC (g f ,t, N f ,t,l) and the blue curve denotes the residual on the VINS–AC–ME.
The major difference between the two methods was whether the M-estimator was utilized. Overall, we
can see from Figure 16 that the residual with large values (see red curve) was significantly mitigated.
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6. Conclusions and Future Work

Achieving accurate positioning via VINS in an urban canyon is a challenging problem, due to the
numerous expected dynamic objects. Instead of directly eliminating the features from dynamic objects,
this study proposes to adopt the visual measurement model based on the quality of feature tracking to
improve the performance of the VINS. To model the uncertainty of visual measurements and improve
the system’s resistance to outliers, adopting the adaptive covariance and the adaptive M-estimator to



Remote Sens. 2020, 12, 1686 20 of 22

evaluate the performance of the VINS is proposed in this study. The accuracy is improved in both of the
two experiments, especially in Urban Canyon 2, which shows the effectiveness of the proposed method.

This study only contributes to mitigating the effects of DFPs. The remaining errors were mainly
caused by other factors, such as the unstable illumination conditions and feature extraction failure. In
the future, we will further study how to acquire and estimate the quality of the detected features for
VINS and its integration with other sensors (e.g., GNSS) in urban canyons.
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