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Abstract: Ongoing urbanization leads to steady growth of urban areas. In the case of highly dynamic
change of municipalities, due to the rates of change, responsible administrations often are challenged or
struggle with capturing present states of urban sites or accurately planning future urban development.
An interest for urban planning lies on socio-economic conditions, as consumption and production
of disposable goods are related to economic possibilities. Therefore, we developed an approach to
generate relevant parameters for infrastructure planning by means of remote sensing and spatial
analysis. In this study, the single building defines the spatial unit for the parameters. In the case city
Belmopan (Belize), based on WorldView-1 data we manually define a city covering building dataset.
Residential buildings are classified to eight building types which are locally adapted to Belmopan.
A random forest (RF) classifier is trained with locally collected training data. Through household
interviews focusing on household assets, income and educational level, a socio-economic point (SEP)
scaling is defined, which correlates very well with the defined building typology. In order to assign
socio-economic parameters to the single building, five socio-economic classes (SEC) are established
based on SEP statistics for the building types. The RF building type classification resulted in high
accuracies. Focusing on the three categories to describe residential socio-economic states allowed
high correlations between the defined building and socio-economic points. Based on the SEP we
projected a citywide residential socio-economic building classification to support supply and disposal
infrastructure planning.

Keywords: VHR imagery; WorldView-1; PlanetScope; urban remote sensing; socio-economic
information; urban planning indicators; Belmopan/Belize; spatial analysis

1. Introduction

During the present century urbanization will be one of the major challenges for society,
politicians, and planners. Urbanization as a complex socio-economic process that transforms the
built environment, converting formerly rural into urban settlements [1], has—besides all well-known
challenging tasks—positive effects for society, such as economic growth, poverty reduction, and human
development of urbanization [2]. “Urban areas also serve as hubs for development, where the
proximity of commerce, government and transportation provide the infrastructure necessary for
sharing knowledge and information. Urban dwellers are often younger, more literate and more highly
educated, are more likely to have access to decent work, adequate housing and social services, and can
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enjoy enhanced opportunities for cultural and political participation as well as gender equality” [2].
When urbanization progresses unguided, effects of inadequate planning are evident: unsustainable
production and consumption patterns and impaired sustainability resulting from urban sprawl,
pollution, and environmental degradation [1].

A basic challenge is the lack of capacity within public institutions to manage urbanization [1].
To guide and direct urbanization in order to achieve its potential positive effects and to enable
implementing the sustainable development goals (SDG) proclaimed by the United Nations [3],
paradigms for urban planning, therefore, need to be shifted towards transparent approaches of
evidence-based planning [4]. Infrastructure planning should be considered as a core element in
strategic spatial planning, based on the understanding of the underlying forces, which includes
knowledge of the economic base amongst other things [5].

Socio-economic parameters can serve as indicators for both urban supply and disposal
infrastructure planning. Knowledge of education and economic situations have importance relevant to
household waste production in various regions [6–8], more precisely household income and household
expenditures correlate accurately with household solid waste generation [9]. Jones (2015) shows in a
review article [10] the influence of socio-economic criteria on the consumption of electricity with the
household income as the main factor.

We see a growing potential regarding the use of remote sensing techniques to supply
socio-economic information for planning urban supply and disposal infrastructure—a potential
which has not been considered in present research as the following paragraphs show.

To characterize urbanization, first global datasets of urban expansion were established based on
Landsat data [11] and optical nighttime imagery data [12]. The global urban footprint dataset was fully
generated automatically based on TanDEM-X synthetic aperture radar (SAR) data [13,14]. Most recently,
the world settlement footprint for the years 2012 and 2015 were generated by combining Sentinel-1
radar data and optical Landsat-8 data [15]. To increase the spatial resolution of the information and to
retrieve qualitative information on the change that occurred between different acquisitions, Warth et al.
proposed a method to retrieve information on dynamics in building stock on a single building scale by
differencing urban digital surface models (DSM) [16]. Braun et al. [17] refined these results publishing
a refined urban change dataset on single building scale for Da Nang, VN.

With the increasing availability of VHR remote sensing imagery, there is a need for techniques to
detect objects as a spatial and radiometric product of multiple pixels. Object based image analysis
(OBIA) techniques [18] have been used to detect single buildings [19,20]. Recent studies show the
implementation of OBIA techniques for measuring urban ecosystem functionality [21,22] and indication
of quality of life factors [23,24]. Foci on approaches for image-based object detection approaches
have been shifted most recently towards machine learning (ML) methods [25]. The approaches were
successfully implemented using VHR remote sensing imagery [25,26]. Regarding context based VHR
image analysis in the urban context, a focus lies on mapping slums and informal settlements using ML
techniques [27–29]. Zhu [30] gives an overview on the key developments regarding ML approaches in
urban remote sensing. As a recent example, morphological descriptions of neighborhoods retrieved by
VHR images and spatial distance measures have been successfully applied to predict property values
in other cases [31].

Three-dimensional data derived by photogrammetric approaches [32] supports the physical
description of building stock analysis and detecting changes in building stock [16,33]. Light Detection
and Ranging (LiDAR) approaches using the propagation of light [34] in the urban context have
advantages in vegetation related studies and therefore are applied for tree species detection [35], urban
forest mapping [36], volume estimation [37], and urban ecosystem service (ESs) modelling [38].

Besides the application of SAR data for generating global settlement data and mapping of
impervious surfaces [39], radar technology the ability to detect changes in elevation offered by
processing of the phase information [40]. The increased availability of Sentinel-1 time series data [41]
enables implementing Persistent Scatterer Interferometry (PSI) to precisely monitor surface deformation
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processes [42]. Besides analyzing subsidence as an effect of ground water extraction [43–45], subsidence
could be correlated to construction projects [46–48] by PSI technique. SAR tomography approaches [49]
are performed in the urban context with Sentinel-1 [50,51] and TanDEM-X data [52]. Interferometric
SAR products have been proven to enable the detection of urban flood extension [53].

To support urban planning on a city level, information related to function and context is required.
In this regard, Kuffer worked on the mapping of slum areas [54,55], ML based approaches have been
performed as well [27–29]. Socio-economic parameters as planning relevant indicators have been
derived by Jensen [56], where population and quality-of-life-indices were estimated by means of VHR
imagery. Approaches using Landsat-5 TM data were described by Lo [57]. Urban vegetation is an
indicator for socio-economic rating [58]. In this context, urban mapping and planning can benefit from
ESs mapping that helps indicating urban quality factors and urban climate [59,60].

Socio-economic data gathering and analyzing methods that use socio-economic indices to
determine the relative socio-economic status of individuals or households in a sample group have
been applied with different purposes in various scientific fields. Important areas of research include
medical and epidemiological studies [61,62], educational studies [63], or the measuring of inequality in
living standards [64] or health [65]. The research focus in these studies lies in the evaluation of the
correlation between the socio-economic status and health conditions [66–68]. With the help of criteria
like educational level, occupation, and income the influence of the socio-economic status on health and
life expectancy of an individual is examined [69].

The goals of urban planning must be to guide and to manage the dynamics of municipalities
which are caused by many factors, such as persistent urbanization amongst other things. Successfully
implemented urban planning enables citizens to obtain benefit from the advantages of urbanization,
like “access to education, health care and housing, to increase their productivity and to expand
opportunity” [70] and enables the realization of the SDGs [3]. Therefore, decision makers need to adopt
strategies towards planning future urban growth [70]. Knowledge on present states and dynamics of
the urban complex is decisive to plan the future development of a city and its surroundings. In the
case of rapidly growing urban agglomerations, it is challenging to capture current dynamics because
of the rate of change and the inertia of many data gathering methods.

With this study we follow up previous work of designing a development plan for green and blue
infrastructure for Belmopan [71]. Belmopan is a small capital city with 23,038 inhabitants [72] and
can be used as a practical example considering, as Cohen and Barney predict, a majority of urban
dwellers will be living in small cities (<100,000 inhabitants) [2]. Special focus needs to be applied on
such cities, because these municipalities often lack basic services such as piped water, flush toilets,
and electricity [2]. In Latin America and Caribbean region, where the study area of this research is
located, waste production is expected to increase by one third by 2050 as compared to 2016 and 58% of
waste ends up in landfills and open dump sites [73], which causes negative environmental effects.

To establish methods of evidence-based planning and therefore to reduce the gap of data
and knowledge, we propose an approach to support planning of residential supply and disposal
infrastructure by predicting socio-economic information at the scale of residential buildings using
very high-resolution (VHR) remote sensing imagery. VHR optical remote sensing systems, such as the
WorldView or Pléiades satellites, deliver imagery at sub-meter resolution, which allows the precise
detection of buildings with high temporal flexibility. The access to VHR imagery is improved and the
constant data availability is being established [74,75]. A lot of research has been carried out to describe
and prove the relationships between consumption of energy and waste production via socio-economic
indicators. The influence of the socio-economic status (SES) on the urban metabolism—in terms of
material and energy flows generated by households—at the level of individual buildings has not yet
been researched in this way. As a new scientific issue, the correlation of different socio-economic
states—along with potentially differing consumption and generation patterns—to varying building
types is researched within this study. The purpose being to derive relevant values for a well-founded
planning of supply and disposal infrastructure. In the context of planning appropriate supply and
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disposal infrastructure in dynamic environments this correlation might be very important and should
be considered with respect to the building of a reliable database.

To put these findings in effect when planning, remote sensing data sources should be implemented
to support planning processes, in addition to reasons of objectivity and time efficiency, qualitative and
quantitative information relevant for planning can be gathered region-wide.

2. Materials and Methods

2.1. Study Area and Data

2.1.1. Study Area

While still a British Colony known as British Honduras, the study city of Belmopan was
inaugurated in 1970 as the new capital city [76]. The maps in Figure 1 give an overview on Belmopan’s
location. Due to its geographical location, the former capital Belize City was repeatedly threatened
by hurricanes, the last major hurricane named Hattie hit Belize city and the Belize district in 1961
destroying approximately 80% of the city [76,77].
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Figure 1. General map of Belmopan and its regional geographical situation.

Besides causing human losses and physical damage, the hurricanes interrupted governmental
work and destroyed governmental documents, as well [76]. In addition to reduction of risk of natural
hazards, which was the main reason for the relocation of the capital, the dominant and authoritative
position of Belize City in the country was reduced by the inauguration of the new capital city of
Belmopan [76]. The decision on the location for the new capital was based on the following main criteria:
(1) a potable water supply, (2) safety from flooding, (3) its location at the hub of national transportation
network and (4) equidistance from the two largest coastal centers of Belize City and Stann Creek [76].
The city name of Belmopan was inspired by the confluence of the Belize river and Mopan river.
Administrative data indicate an area of 32.25 km2 covered by the Belmopan administrative boundaries.

In 2018 Belize had a population of 398,050 inhabitants, whereas 23,038 people lived in Belmopan [72].
In comparison to global and regional urbanization rate, Belize is estimated to be experiencing
above-average urbanization [1], as it is shown in a global and regional comparison in Figure 2.
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The Belmopan annual population growth rate is estimated at 5.7% [78]. These dynamics underline the
necessity for standardized urban mapping at regular intervals.Remote Sens. 2020, 12, 1730 5 of 27 
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Figure 2. Comparison of measured and prospected urban growth rates for Belize, the Latin America
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2.1.2. VHR Imagery

The WorldView-1 (WV-1) satellite, launched in 2007, offers stereo imagery, which is achieved by a
single pass bi-directional acquisition mode. At nadir, the panchromatic band has a ground sampling
distance of 0.5 m [79]. In this research two stereo image scenes were used acquired on 2018/03/16 and
on 2018/03/29, respectively, as shown in Table 1, in order to achieve high quality results the datasets
cover 28.04 km2 of the Belmopan administrative area. A total of 13.1% of the administrative area not
covered by the WV-1 imagery is undeveloped. For the imagery data radial polynomial coefficients
(RPC) are delivered by the imagery provider. The first scene has a share of cloud-covered areas of 6.3%,
affected areas lie partly above built-up zones. For details on WV-1 imagery and acquisition please refer
to Table 1.

Table 1. Overview on WorldView-1 acquisitions used.

WorldView-1 Stereo
Pair 1

WorldView-1 Stereo
Pair 2

PlanetScope
Two Frames

Acquisition date 2018/03/16 2018/03/29 2018/03/29
Ground sampling distance 0.5 m 0.5 m 3.0 m

In track view angles −24.3◦, 15.3◦ −9.4◦, 29.9◦ 0.1◦, 0.12◦

Cloud coverage 6.3% 0.2% 0%

2.1.3. HR Imagery

PlanetScope data were chosen to get access to multispectral imagery [80]. Images acquired
on 2018/03/29 were selected to achieve minimum cloud coverage and identical image contents
in comparison with the WV-1 imagery described in Section 2.1.1. PlanetScope operates in a sun
synchronous orbit with a four-band frame imager. The visual spectrum is captured by the blue
(455–515 nm), green (500–590 nm), and red (590–670 nm) channels at a ground sampling distance
of 3 m. The near infrared spectrum is captured at 780–860 nm [81]. The PlanetScope imagery is
delivered radiometrically preprocessed in surface reflectance values. In the imaging mode as used,
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a PlanetScope scene covers 180 km2, but the entire urban area of Belmopan was not covered in a single
scene. Therefore, two scenes were used for the analyses. Figure 3 gives an overview on the used
satellite imagery.
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2.1.4. Ground Truthing Data

A questionnaire-based survey using the mobile KoboCollect tool [82] was performed to collect
ground truthing data for the building type classification. During two field campaigns in January and
March 2019 datasets with a total sample size of 405 building were collected. Each building was assigned
to the building types defined in Section 2.2.4. Additionally, information on the number of stories,
mean roof height, roof type, and parcel-related information describing accessibility and vegetation
share were collected. Building height information was measured with a Bosch GLM 50C handheld laser
measurement device. Locations of the buildings surveyed were recorded with handheld GPS devices
and manually location corrected-based on the WorldView-1 imagery in a geographical information
system (GIS) (see Section 2.1.2.).

2.1.5. Auxiliary Data

Auxiliary data on non-residential building use was collected during the field campaigns.
Non-residential building use was sub-classified into business, public sector, and industry.
The non-residential buildings were collected by GPS measurements as point information and position
corrected based on the WorldView-1 image. The collected building-use information was added with
information on business, public sector (administration, education, health institutions), and industry
based on OpenStreetmap (OSM) [83] and Google registrations. Data on the official plan of land use,
administrative boundaries (sectors, precincts, and parcels), as well as on the road network and public
transportation infrastructure were provided by the city council of Belmopan as vector geometries.

2.1.6. Socio-Economic Interviews

For gathering socio-economic data and information on household level in Belmopan an
interview-based survey was designed and carried out in March and April 2019. KoboCollect
was used as described in Section 2.1.4. According to the six main representative building types
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determined for Belmopan and their detected shares/spatial concentration in the city (Section 2.2.5),
test areas were defined for the implementation of the socio-economic survey. Building types 23 and 24
(see Section 2.2.4) do not occur in statistically sufficient numbers in Belmopan. Within the test areas a
total of 425 households were surveyed by means of digital questionnaires with about 210 questions on
the main subject areas:

• housing and infrastructure (type and devices of the house);
• specific information on the household (size, age structure, occupation, education, etc.);
• items, features and devices (assets) owned by the household;
• expenditures (on housing, food, health, etc.) of the household;
• food and buying habits of the household;
• income (amount, sources) of the household.

2.2. Methods

Our proposed methodology predicts socio-economic measures on a single building scale, Figure 4
schematically shows the single steps of the approach. Basing on VHR remote sensing imagery,
single buildings are detected. Supported by local ground truthing information, building types are
classified. Through statistical analysis of resident’s interviews, a relationship between building types
and socio-economic groups can be established. Detailed information on the methodology is given in
the following sections.
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Figure 4. Schematic overview of the approach. Socio-economic analysis leads to the “socio-economic
points” (SEP) ranking (see Section 2.2.6. and Section 3.3.). The prediction of socio-economic status
bases on building types via socio-economic classes (SEC) (see Section 2.2.7. and Section 3.4.).

2.2.1. VHR Image Processing

In order to orthorectify WV-1 imagery for generating the building dataset and to derive building
heights, the WV-1 data described in Section 2.1.1, were processed photogrammetrically. To increase
the quality in urban areas, two stereo pairs were chosen to achieve a fourfold coverage. The off-nadir
angles are clearly differentiated, as shown in Table 1, and therefore the usage of four input images
increase the quality of the resulting elevation dataset.

For the photogrammetric processing, the EATE approach in ERDAS Imagine [84] was chosen,
as already implemented by Bachofer and Warth [16,33].

The main elevation dataset was calculated with all four WV-1 images. To replace cloud
affected pixels, a substitute elevation dataset was calculated based on the cloud free image pair.
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For cloud-covered pixels, elevation information of the main dataset was substituted with elevation
data from the alternative elevation dataset. In addition to this, the fourfold coverage reduces the
impact of the cloud coverage on small parts.

In order to determine building heights from WV-1 height information, a normalized DSM
(nDSM) was calculated. A digital terrain model (DTM) was generated based on the WV-1 DSM.
Therefore, building heights were removed by means of building footprints (see Section 2.2.2) and
heights affected by tree or forest were removed as well via threshold based NDVI (see Section 2.2.3)
masking using PlanetScope imagery. The resulting gaps in the DSM were closed by applying spline
interpolation. Differencing DSM and DTM gives the nDSM, which contains height information on
buildings, trees, and other non-ground objects.

2.2.2. Delineation of Building Footprints

On the base of the orthorectified WV-1 scene from 2019/03/29, the building dataset was generated.
With an HPF multi-resolution approach the orthorectified PlanetScope scene was pansharpened using
the panchromatic WV-1 scene to combine the very high spatial resolution of the panchromatic channel
with the multispectral information delivered in the PlanetScope scene. The orthorectified scene is the
correctly positioned main basis for the manually observed building detection. In cases of indistinct
building outline, the unrectified WV-1 scene without distortions caused by the orthorectification was
used as reference. To digitize building footprints the Java-OpenStreetMap-Editor (JOSM) [85] was
used for reasons of simple digitization and attributization routines and the intended publishing of the
building dataset on the OpenStreetmap server.

2.2.3. HR Image Processing

As two acquisitions are necessary for full coverage of the Belmopan city, both PlanetScope scenes
were mosaicked. No preprocessing before the mosaicking was necessary due to the data delivery
already being surface reflectance. The orthorectification process for multispectral PlanetScope imagery
was performed by an RPC based approach implemented in ERDAS Imagine. Data on RPC for the
PlanetScope imagery was delivered by the data provider. The WV-1 DSM, described in Section 2.2.1,
was used as very high-resolution elevation data input.

Based on the orthorectified multispectral imagery, the normalized difference vegetation index
(NDVI) was calculated to delineate vegetated areas. Studies [60,86] have proven that NDVI based
tree detection approaches deliver practicable results in urban environments. Applied to PlanetScope
imagery, the NDVI is derived as follows:

NDVIPlanetScope =
PlanetScope Band 4− PlanetScope Band 3
PlanetScope Band 4 + PlanetScope Band 3

, (1)

For the generation of the normalized DSM which represents object heights, a tree mask must
be calculated to distinguish between trees and ground level areas. Observations during the field
campaigns have shown, that grass is very low in Belmopan and therefore can be interpreted as
ground elevation in the DSM. To separate between ground and tree covered areas, a histogram-based
threshold-based approach was chosen. In the histogram a local minimum value between the NDVI
values of tree covered areas and non-tree covered areas represents the threshold to create the tree mask.
Based on the PlanetScope scene acquired on 2018/03/29, the NDVI threshold is 0.21.

2.2.4. Definition of Building Typology

The prediction of socio-economic status bases on building type information. Therefore, the method
aims to propose a global definition for residential building types. This study focusses on the prediction
of socio-economic indicators on residential buildings, as other building functions cannot be derived
solely based on remote sensing information. In this regard, we defined eight residential building types
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(BT), which are denominated by numbers and neutral designations, in order to avoid preconceptions of
its residents and surrounding neighborhoods. Buildings types 11–14 represent single family buildings,
whereas building types 21–24 represent multifamily buildings. We define the term “Multi-Family
Building” as a building with two or more residential units, as already suggested by Vetter-Gindele
et al. [87]. The proposed building types are defined by construction materials used and the physical
structure of the buildings and have no significance over the building condition or building maintenance.
For building type nominations see Table 2.

Table 2. Building types with respective nomination.

Building Type Nomination Building Type Nomination

BT 11 Single Family Basic BT 21 Multi-Family
Basic

BT 12 Single Family Standard BT 22 Multi-Family Standard
BT 13 Single Family Advanced BT 23 Multi-Family Apartment
BT 14 Single Family Complex BT 24 Multi-Family Modern Apartment

Due to cultural and historical influence, building types differ worldwide and therefore must be
adapted to local building structures. For Belmopan we assigned the buildings to the building typology
as follows.

Buildings with one dwelling unit were assigned from BT 11 to BT 14. The main criteria for
the assignment of BT 11 is the use of natural construction materials. BT 12 is characterized by four
corners, rectangular building footprint and gabled or shed roof types. BT 13 can be similar to BT 12,
but shows deviations from the rectangular footprint. Additional stories can also exist, but not full
stories. Buildings with multiple full stories are assigned to BT 14, as well as buildings with complex
footprints and complex roof structures.

BT 21 is the only Multi-Family Building type with two dwelling units at a single floor building
structure. It is usually characterized by gabled or shed roofs and, therefore, can only be structurally
differentiated from BT 12/13 by increased footprint area. In Belmopan, BT 22 is characterized by
a simple rectangular footprint. Usually these buildings enclose two dwelling units on two stories.
BT 23 contains multiple apartments; the increased footprint area allows multiple apartments per story.
The number of stories can exceed two. BT 24 is a modern multifamily apartment, which is constructed
by modern materials and highly equipped with modern technical devices. It shows complex footprints
and roof structures. Table 3 and Figure 5 give an overview on the building typology for Belmopan.

Table 3. Building typology for Belmopan, criteria to visual on-site differentiation.

Criteria BT 11 BT 12 BT 13 BT 14

Denomination Single Family Basic Single Family
Standard

Single Family
Advanced

Single Family
Complex

Building footprint characteristics Any Rectangular Rectangular with
extensions Complex

Roof characteristics Any Rectangular/gabled
roof Cross gabled roof Complex roof

Construction material Natural Concrete Concrete Concrete
Number of stories 1 1 >1 >1.5

Criteria BT 21 BT 22 BT 23 BT 24

Denomination Multi-Family Basic Multi-Family
Standard

Multi-Family
Apartment

Multi-Family
Modern

Building footprint complexity Rectangular Rectangular Rectangular Complex

Roof complexity Rectangular,
gabled/shed roof Flat, rectangular Flat, rectangular Complex

Construction material Concrete Concrete Concrete Concrete
Number of stories 1 2 >2 >2
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2.2.5. Classification of Building Types

The classification of building types was conducted in two steps. First a supervised classification
was conducted based on the reference classes collected during the field survey (Section 2.1.4.). Of the
405 collected buildings, 363 were identified as residential and used for the training. A variety of
attributes were computed per building polygon that served as explanatory features for the prediction:

• Geometry features (n = 6): area; perimeter; number of corners; shape ratio (area/perimeter);
shape index [89]; average height (Section 2.2.1.).

• Distance features (Euclidean, n = 8): roads; paved roads; bus lines; parcels of land use commercial;
parcels of land use education; parcels of land use green spaces; parcels of land use industry;
parcels of land use public.

• Density features (n = 5): average building density within a radius of 150 and 250 m; absolute
number of buildings within 50, 100, and 200 m.

• Land use features (according to the official plan provided by the city council, n = 2).
10 parcel classes: agriculture, commercial, education, green space, industrial, mixed use,
public/institutional, residential, utilities, vacant. Four sector classes: built-up, developing,
vacant/agriculture/forest, university.

• Spectral features (average per polygon, n = 4): HR red; HR green; HR blue; HR infrared.

These 25 features were used for the training of a random forest classifier, an algorithm originating
from machine learning, which repeatedly uses subsets of the training data and explanatory features
to calculate classification trees based on variable thresholding [90]. In our case, 1500 trees were
computed based on five randomly selected features and 236 randomly selected building types for
training (subset of 65%). In the end, a final classification is retrieved for each building based on the
majority class of all 1500 iterations.

This resulted in a classification of all buildings in the city. Of course, buildings which were
attributed as public, commercial, industrial, or uninhabited based on the field survey or data from
OpenStreetMap and Google Maps were not assigned a residential building type.

2.2.6. Processing of Socio-Economic Data

The key assumption underlying our approach of gathering relevant data for supply and disposal
infrastructure planning is that different socio-economic groups of households living in different
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building types have different habits and lifestyles, which in turn result in different material and energy
flows. In order to prove this correlation, the different socio-economic states of the households in
Belmopan had to be determined and classified before assigning them to different building types.

All 425 interviews were checked for plausibility. In the case of unrealistic replies and insufficient
numbers of replies for statistical categorization, such related questionnaires were not considered. A total
of 395 out of the 425 socio-economic datasets surveyed in Belmopan proved to be statistically reliable
after initial analyses. In order to determine the socio-economic status of the surveyed households
as relative position in the sample groups, a multidimensional approach was developed. Similar to
the “Social Class Index” applied in a German health survey [91], the socio-economic index developed
within this current study is based on three categories of questions and their respective answers. On the
basis of the socio-economic data gathered in Belmopan the categories which proved to be appropriate
for creating the relevant index were:

1. Expenditures.
2. Educational level.
3. Household assets (owned items).

Expenditures was chosen as the first category because answers involving questions on expenditures
in an interview-based survey are usually more reliable than those on income [92]. The OECD equivalence
square root scale was used to take differences in household sizes and nonlinearities with respect
to growing household sizes and related expenditures into account [93]. The educational level was
integrated in the index with six different characteristics. Following the “Udai Pareek Scale” developed
to examine the socio-economic status of rural population in India by Singh (2017) [92], the third
category focusses on the different assets (owned items) of the household. This allows contemplating
the financial situation of a household in a long-term perspective.

The six different educational levels ascertained for Belmopan, ranging between “no graduation
(category 1)” and “Master/or higher (category 6)”, determined the main structure of the six classes
in each category of the socio-economic index which was developed via this context. Following this
structure, the total expenditures of the households were grouped into six classes of equal size. Likewise,
the household assets (owned items) queried with binary questions were divided into six classes to fit
into this structure.

In order to determine the socio-economic status of a surveyed household, and so to make it
comparable, points were assigned to the six classes in the three primary categories, thus forming a point
scheme ranging from 3 to 18 socio-economic points. As a result, a generated proxy variable within this
scheme with a value of 3 determines the lowest and with a value of 18 the highest socio-economic
status (SES) of a household.

2.2.7. Classification and Prediction of Socio-Economic Data

Related to the building types, socio-economic projections can be assigned to the single buildings,
as described in the previous section. To avoid the impression of precision of the 15-point scale (3–18),
and a source of errors in the prediction of socio-economy, socio-economic points are aggregated into
socio-economic classes (SEC). Besides reducing errors in predicting socio-economic information, it can
be critical to publish detailed sensitive information regarding resident’s socio-economic status at a
single building level. Creating classes helps avoid the possibility of instrumentalizing the results so to
marginalize and expose residents of single buildings. Therefore, because different building types can
host dwellers of similar socio-economic status, there is no reason to define an identical number of SEC
as building types. The determining criterion for the number of SEC must be the statistical similarity
of SEP.

Furthermore, as land value varies depending on the location and distance from places of urban
activity, the necessity to subdivide building types based on spatial and location-based information
may be identified. Studies have shown that the highest land values are to be expected in the city
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centers and central business districts [31,94]. Without local expertise it is hardly possible to define a
city center, to which the land value development is related and to access the key influences on value
generation. Therefore, for this purpose, besides interviewing local experts [95] we created a set of
quality of life indicators [56,57] by means of geo-spatial attributes to test the process of building types
subdivision. The distance US Embassy located in Belmopan hereby was considered as quality of life
indicator because the security service regularly patrols the surrounding neighborhood, which leads to
higher security and due to this causes higher land values. Our selection results in the following quality
of life indicators:

• distance to main roads (ring road)
• distance to administrative center (city administration);
• distance to places of education;
• distance to market center (market square);
• distance to US Embassy;
• building density;
• vegetation density.

Correlating the above geo-spatial attributes to building types with high variation in
socio-economical description enables determining a threshold to divide a building type in the
subclasses “near” and “far”, e.g., building type “12 near” and building type “12 far”. The subdivision
“near” represents spatial proximity to city center, “far” represents buildings relatively distant to the
city center.

3. Results

3.1. Building Detection

Following the goal to give free access to the building footprints via the OSM database, the already
existing buildings had to be adjusted to the 2018/03/29 WV-1 acquisition. The standard base image on
OSM was acquired between 2008 and 2010. This could be verified via the water treatment plant being
under construction in the base image, which was under construction in the stated period. Therefore
approximately 1500 pre-existing buildings were adjusted to their correct location by means of the
orthorectified WV-1 scene and their building footprints updated accordingly. Buildings which were
generated on the previous scene, which are no longer present in the recent acquisition, were removed
for the present state of the database.

Based on this initial building footprint adaption the remaining buildings were digitized. At the
time the WV-1 image was acquired on 2019/03/29 we detected a total number of 6627 buildings.

3.2. Building Type Classification

The initial trainings accuracy of the random forest classifier was comparably low: 56.7%. This is
because there was considerable class overlap between the building types Single Family Basic, Standard,
and advanced, as well as between Single Family Standard and Multi-Family Standard as shown in
Table 4. Accordingly, user’s and producer’s accuracies are largely below 60%. To reduce this overlap,
the created building type classifications were refined through logical expressions based on the criteria
presented in Table 3 and statistical evaluation of critical thresholds. For instance, any building which
was classified as Single Family (BT1x) but has a size below 30 m2 will be reclassified to “uninhabited”.
Hereby to reclassify building types, the building height is an important building attribute. A set of 249
building measurements was measured in situ to verify the building heights derived by the WV-1 nDSM.
The accuracy analysis revealed a root mean square error (RSME) of 1.23 (measurement unit: meters),
which indicates good quality of the determined building heights. A chart containing information in
this respect is shown in Appendix A. The full list of the applied rules is shown in Appendix B.
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Table 4. Error matrix of building types after the random forest classification.

Classified
∑

PA

BT11 BT12 BT13 BT14 BT21 BT22 BT23 BT24

real

BT11 18 20 1 0 0 0 0 0 39 46.2
BT12 4 105 21 0 2 1 0 0 133 78.9
BT13 0 33 48 3 1 1 1 0 87 55.2
BT14 1 2 15 18 2 3 2 0 43 41.9
BT21 1 6 6 2 4 1 0 0 20 20.0
BT22 0 9 3 7 0 5 2 0 26 19.2
BT23 0 0 2 3 0 1 8 0 15 57.1
BT24 0 1 0 0 0 0 0 0 1 0.0∑

24 176 96 33 9 12 13 0 363
UA 75.0 59.7 50.0 54.5 44.4 41.7 61.5 0.0 56.7

BT = building type (Figure 2), PA = producer’s accuracy in %, UA = user’s accuracy in %.

After the application of the refinement rules, the overall classification accuracy increased to 86.8%
with user’s and producer’s accuracies over 75% for most of the classes (Table 5). However, even with a
manual refinement of the classes, a small class overlap could not be eliminated, especially between
Single Family Standard (BT12) and Multi-Family Basic (BT21), as they are both characterized by one
story and small to medium size. The table also shows that the Multi-Family Standard (BT22) has
the lowest of all accuracies and is therefore probably underestimated in the prediction (only 43.8%
producer’s accuracy). However, based on its comparably low occurrence in Belmopan, this error is
tolerable at the cost of high accuracies in the single family buildings. The same applies for Multi-Family
Modern Apartment (BT24) which was not predicted by the classifier at all because of its low frequency
in the training data (n = 1).

Table 5. Classification matrix of building types after the random forest classification.

Classified
∑

PA

BT11 BT12 BT13 BT14 BT21 BT22 BT23 BT24

real

BT11 32 20 1 0 0 0 0 0 35 91.4
BT12 4 147 3 0 0 1 0 0 155 94.8
BT13 0 2 84 3 0 1 1 0 91 92.3
BT14 1 2 2 25 1 1 0 0 32 78.1
BT21 1 4 1 2 10 1 0 0 19 52.6
BT22 0 2 3 2 0 7 2 0 16 43.8
BT23 0 0 2 2 0 1 10 0 14 71.4
BT24 0 1 0 0 0 0 0 0 1 0.0∑

38 160 96 33 9 12 13 0 363
UA 84.2 91.9 87.5 75.8 88.9 58.3 76.9 0.0 86.8

BT = building type (Figure 2), PA = producer’s accuracy in %, UA = user’s accuracy in %.

After the assignment of new classes all 6627 building footprints were classified as demonstrated
in Table 6, with Single Family Standard as the most frequent class (46%). A total of 760 buildings
were assigned to a primary non-residential use (public, commercial, industrial, uninhabited) based on
the field survey and data from OpenStreetMap and Google Maps. It is however likely that there are
even more non-residential buildings within the city which can be excluded from the socio-economic
analyses. Building type 24 is present in Belmopan with minimal numbers. Therefore, it is challenging
to characterize this building type in the training dataset with one sample. During data collection
campaigns, the focus has solely been laid on residential building information. This leads especially to
an underrepresentation of industrial used buildings, but as well other uses such as commerce, as a
complete database for non-residential building use is not publicly available. Generally, single family
buildings are classified more accurately than multi-family buildings. As dwelling numbers cannot be
determined by remote sensing imagery, proxies such as building height must be applied. Even with a
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very high spatial resolution of 0.5 m, the building heights derived by WV-1 can contain variations due
to roof-covering vegetation, and other influences and therefore can lead to misclassification. The map
in Figure 6 gives an overview on the building type classification in Belmopan.

Table 6. Building type information in Belmopan.

Building Type Number of Buildings Share of Total Number

11—Single Family Basic 764 11.5%
12—Single Family Standard 3060 46.2%

13—Single Family Advanced 1211 18.3%
14—Single Family Complex 566 8.6%

21—Multi-Family Basic 33 0.5%
22—Multi-Family Standard 138 2.0%

23—Multi-Family Apartment 94 1.4%
24—Multi-Family Modern Apartment 1 <0.1%

Public 166 2.5%
Commercial 219 3.3%

Industrial 6 <0.1%
Uninhabited 369 5.5%

Total 6627 100%
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Figure 6. Map of detected buildings and classified building types in Belmopan (date: 2019/03/18).
Total number of detected buildings: 6627. Manual assignment “Public”, “Commerce”, “Industry” on
best knowledge. Background: PlanetLabs, 2018/03/18.; Stamen Design, Data by OpenStreetMap.

3.3. Socio-Economic Points Determination

The mean expenditures—normalized by the square root of the household size (corresponding
to OECD recommendation [93])—of the investigated households amount to 1320 BZD per month
ranging from less than 600 BZD for the lower 25% of households to more than 1450 BZD per month
for the upper 25%. The median expenditures were 930 BZD per month. As can be seen in Figure 5,
roughly half of the monthly expenditures are on food (27%) and housing including additional costs
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(22%). Other major spending factors are medical care (16%) which include medicine, doctor’s visits
and health insurance, and mobility (15%).

As a second category of the socio-economic index, items owned by the households (assets) were
considered. Within this category various items and features were queried, of which 24 selected assets
were determined to be included into the index. Figure 7b shows these 24 main assets and the percentage
of households that own them. As one can see, there are some assets that the majority of the surveyed
households own like a stove (98%) or an electric fan (95%) but also assets that are relatively rare like a
dishwasher (13%) or a generator (5%).
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Figure 7. Percentage share of household expenditures (a) and household assets (b) in Belmopan
(n = 395 interviews).

The third category considers educational degrees. With the “associate’s degree” as the first
university degree in Belize, six different educational levels were identified for Belmopan ranging
from no school graduation (educational class 1) to master’s degree or higher (educational class 6).
Figure 8 shows the shares of the educational levels of the main income earners of the households in the
surveyed areas. About a quarter of the main income earners in the interviewed households have only
primary school graduation (17%) or no school graduation at all (10%), in contrast to the 45% that hold
a university degree (associate’s degree 17%, 18% bachelor’s degree, 10% master’s degree or higher).
Figure 8 gives an overview on the educational degrees of the main income earners in Belmopan.
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Figure 8. Educational degree for main income earner in Belmopan (n = 395 interviews).

Based on the developed socio-economic index (see Section 2.2.6.) the socio-economic points
(SEP) were derived by the results of the three categories. The average socio-economic points of the
395 investigated households is 10.5. The distribution of the SEPs is shown in Figure 9. Appendix C
provides a summary of the composition of SEP based on the three used components per building type.
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Figure 9. Histogram showing the statistical distribution of residential socio-economic points on
household level in Belmopan. Data based on interviews.

3.4. Class Generation and Extrapolation

As Figure 10a shows, building types can be described by SEP. However, building types 12,
13, and 22 show high variations of socio-economic points. This leads to imprecise socio-economic
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predictions. To reduce this variation, building types 12, 13, and 22 needed to be disaggregated in
subclasses 12a/12b, 13a/13b, and 22a/22b. A set of best fitting spatial indicators were tested to serve as
parameters for splitting the building types. Table A1 in Appendix D shows the relationships between
intra-building type socio-economic measures and spatial indicators. Distance to market center, distance
between the ring road and building, the share of buildings within a 250-m hexagon, delivered the best
results. For building type 13, the distance to the US Embassy showed with an r = −0.33 the highest
correlation coefficient to the decline of socio-economic measures compared to the other quality of life
indicators tested with a p = 0.00001 showing high significance (Figure 11b). The correlation analysis
between the SEP (BT22) and share of built-up area parameter revealed an r = 0.44, but a relatively high
p = 0.15. This is due to the small sample size, but the obvious trend can be seen. Figure 11 shows the
correlations between the spatial indicators and socio-economic measures within building types 12, 13,
and 22. An overview on thresholds for building type separation and socio-economic statistics for the
building types is given in Appendix E.
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Figure 11. Identified effects of distance on SEP within building types to be disaggregated in 
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Figure 10. Boxplot chart showing statistical distribution of SEPs over building types. (a) Initial building
typology with high SEP variation in building type classes 12, 13, and 22. (b) The statistical distribution
of SEP on refined building typology with effect of reduced variation of SEP for the building type classes
12a/b, 12a/b, and 22a/b. In (b), socio-economic class (SEC) assignment is indicated by colored contours
(SEC I: blue, SEC II: yellow, SEC III: pink, SEC IV turquoise, SEC V: green). For detailed statistics see
Appendix E.
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As described in Section 2.2.7, there is a necessity to create socio-economic classes for three reasons:

1. To predict socio-economic relevant planning values on a single building scale based on
building type;

2. To avoid a false impression of precision;
3. Not to publish detailed sensitive information on resident’s socio-economic status at a single

building level.

The classes were chosen considering the SEP statistics of the building types. On this basis,
the classes were assigned manually. We chose to establish five socio-economic classes, with the effect
that not every building type represents a single socio-economic class, for which there is no need. Main
decision criteria are the highest possible homogeneity in SEP. By comparing mean socio-economic
points and standard deviations of SEP within the building types, we set up the class assignment shown
in Table 7, which meets the stated criteria for homogeneity in SEPs.

Table 7. Table on assignment of socio-economic classes to building types and number of buildings to
corresponding building type classes and socio-economic classes.

Socio-Economic Class Building Types Number of Buildings

I
11 764

12 far 2573

II
13 far 792

22 dense 80

III
12 close 487

21 33

IV
13 close 419
22 open 58

V 14 566

Total number of residential buildings 5772

Based on these assignment rules, the socio-economic class was predicted for residential buildings.
Figure 12 gives an graphical example for building types and the referring SEC in Belmopan.
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4. Discussion

Basing on building footprints, building types can be classified with random forest in high accuracy.
Besides footprint area, a database of ancillary data for three-dimensional building description, spatial
information, and rule-based adaptions are essential for successful classification results, as shown in
Appendix B.

The intended and applied interview design based on a spatial sampling method that defines
areas for interviews using areas of major building type abundances enables the socio-economic
characterization for Belmopan. The establishment of the SEP as index to describe residential
socio-economic backgrounds delivers good results by combining information on expenditure,
educational level, assets, and household income. Correlations between building types and
socio-economic information could be proven in this study. For predicting socio-economic attributes, we
think it is necessary to create socio-economic classes. Predicting a socio-economic 15-part scale generates
too much room for decreased accuracy, therefore a socio-economic classification containing five classes
represents socio-economic information in relation to building types with sufficient information content.

The success of the work is directly linked to the collaboration with local authorities and in situ
interviews. Our study showed that the implementation of local knowledge is essential to the result for
multiple reasons:

1. The establishment of the building typology needs to be adapted for individual case cities.
High variations in building types can even exist within countries;

2. The generation of socio-economic information and a socio-economic scaling, SEP in our study,
must be based on local information and current surveys;

3. This work indirectly confirms findings of previous studies on location-dependent land value [31,94]
through high variation of SEP within single building types. By applying spatial measures, building
types can be disaggregated to achieve building types homogenous in SEPs. To identify reference
points of urban function, local knowledge is needed as well.

As the relation between building types and socio-economic categorization is shown, it is possible
to characterize municipalities for supply and infrastructure planning. Socio-economic information
is not directly utilizable as planning value, but the relation between consumption/waste production
and socio-economy has been shown [6–10]. Furthermore, the interview design allows conclusion on
household assets—on which energy demands can be estimated. Knowledge on building types can
support describing and predicting socio-economic attributes. As the socio-economic classification is an
a-posteriori measure, a focus should be put on validating the socio-economic measures.

The presented methodology is not limited to WV-1 data. Other VHR imaging satellites can be
implemented for building detection and building type classification, which offer a high flexibility
for data generation, especially for upcoming satellites missions such as Pléiades Neo [74] and the
WorldView Legion [75]. A higher number of VHR imaging satellites leads to increased data availability
and higher data reliability. As a result of this, our presented approach is able to continue in operation
for long-term urban mapping and planning.

Nonetheless, an awareness must be created that with using VHR imaging technology, data
producers and data users are moving on both sides of the borderline of personal privacy and space.
The presented methodology produces sensitive information, which can in incautious motivations help
expose certain groups of inhabitants or, respectively, induce or increase social conflicts. Discussions
must be conducted on how to handle this level of information in general.
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5. Conclusions

Our presented methodology proved to be able to provide valuable relevant socio-economic
indicators for planning. VHR remote sensing data and in-situ household interviews are essential for
high accuracy results. For larger municipalities, other building detection approaches must be used
to reduce processing time and manual corrections. Regarding this, techniques basing on machine
learning have shown their potential for fast processing of large amounts of satellite imagery [26,30].

Considering Zhu’s demand for future strategic directions in urban remote sensing to contribute to
the use remote sensing techniques for the “characterization of urban heterogeneity, characterization of
urban form and structure in two and three dimensions, and linking remote sensing with emerging
urban data” [96], this study works in this manner and shows a way to implement VHR remote sensing
data for urban infrastructure planning and delivers information to support evidence based planning [4].
As previously shown, the availability of satellite imagery will increase and therefore a constant data
availability will be established. Furthermore, the potential of unmanned aerial vehicles (UAVs) for
the quick and cost-effective mapping of urban areas can be exploited even more [97]. The findings of
this study, to predict socio-economic information by using VHR images, have shown the potential to
support urban planning. Subsequently, we see a necessity to do further investigation on the suitability
of such data to derive relevant information for direct planning from similar databases. With knowledge
regarding building parameters, such as building height and roof information, and having access to
building type and socio-economic information on residents, further attempts should be made to predict
specific consumption and production patterns, such as energy demands, waste water production,
and solid waste production as Vetter-Gindele [87] has shown for waste production.
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Figure A1. Validation for determined building heights from WV-1 nDSM. The reference dataset was
generated by 249 measured buildings. The mean building represents the mean height from wall height
and rooftop height.

Appendix B. Manual Refinement of Building Type Classifications

IF BT12 AND area < 125 THEN BT11
IF BT13 AND corners > 7 THEN BT12
IF BT12 AND area > 150 AND height > 4 THEN BT13
IF BT13 AND area < 140 AND height < 3.15 THEN BT12
IF BT13 AND shape_ratio > 3.05 THEN BT14
IF BT21 AND corners > 4 AND area < 220 THEN BT13
IF BT22 AND corners < 6 AND height < 3.9 THEN BT12
IF BT22 AND corners > 6 AND area < 350 THEN BT14
IF BT23 AND height > 5.25 THEN BT14
IF BT1x AND area > 150 AND height > 3.05 THEN BT21
IF BT14 AND corners < 7 AND area > 145 THEN BT22
IF BT14 AND height > 5.15 ABD AREA > 190 THEN BT23
IF BT11 AND (’Elysium’ OR ’Florida’ OR ’Maya Ketchi’ OR ’Maya Mopan’ OR ’Maya Yucatec’ OR

’Utopian’ OR ’Salvapan’ OR ’North Salvapan’ OR ’San Martin’) THEN BT12
IF BT1x AND perimeter > 47 AND height > 3.7 AND corners > 7 AND shape_ratio > 3.4 AND

area > 230 THEN BT14
IF BT1x AND area < 30 THEN uninhabited
IF BT1x AND area > 510 AND corners ≤ 5 THEN uninhabited

uninhabited
“btype_complete” like ‘%Single%’ and “shp_area” > 510 and “shp_corners” <= 5
“shp_area” < 30

Single Family Advanced
“btype_complete” = ‘Single Family Standard’ and “hgt_building” > 4 and “shp_area” > 150
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Figure A2. SEPs per building type. As described in Section 2.2.6, total SEP are composed of household
expenditures, household assets, and educational level of household main earner.

Appendix D. Table Showing Correlation between SEP and Distances from Urban Points
of Centrality

Table A1. Relation between distance from buildings to point urban centrality to socio-economy on
building type level.

SEP (Building Type Level) r
Ringroad

r
Center

r
US Embassy

r
Built-Up 250 m

12—Single Family Standard −0.47
(p = 1.8 * 10−7)

−0.48
(p = 1.1 * 10−7)

−0.44
(p = 1.4 * 10−6)

0.29
(p = 0.002)

13—Single Family Advanced −0.19
(p = 0.01)

−0.27
(p = 0.0004)

−0.33
(p = 1.2 * 10−5)

0.05
(p = 0.5)

22—Multi-Family Standard −0.30
(p = 0.33)

−0.43
(p = 0.15)

−0.19
(p = 0.55)

0.44
(p = 0.15)

r = correlation coefficient, p = p-value.
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Appendix E. Overview on Parameters for Disaggregating Building Types 12, 13, and 22

Table A2. Overview on thresholds for building type disaggregation and socio-economic statistics on
refined building types. Thresholds for building type disaggregation apply to BT12: distance to market
center, BT13: distance to US embassy, BT22: share of built-up area within a 250 m hexagon.

Initial Building Types n Mean SEP Standard Deviation SEP Threshold

12—Single Family Standard 108 10.4 2.79 988 m
13—Single Family Advanced 172 11.6 2.94 1018 m
22—Multi-Family Standard 12 11.8 3.30 0.125

Refined Building types n Mean SEP Standard Deviation SEP

11—Single Family basic 55 7.3 2.2
12a—Single Family Standard close 74 11.3 2.59
12b—Single Family Standard far 34 8.3 1.99

13a—Single Family Advanced close 69 12.8 2.6
13b—Single Family Advanced far 103 10.9 2.9

14—Single Family complex 24 14.7 2.1
22a—Multi-Family Advanced open 6 13.8 1.47
22b—Multi-Family Advanced dense 6 9.8 3.48

23—Multi-Family Apartment 1 15 -

Thresholds applied to following parameters: Building type 12: “distance to ring road (in meters)”, building type 12:
“distance to market center (in meters)”, building type 22: “shared built-up area within a 250 m hexagon”.
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