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Abstract: Gully erosion has become one of the major environmental issues, due to the severity
of its impact in many parts of the world. Gully erosion directly and indirectly affects agriculture
and infrastructural development. The Golestan Dam basin, where soil erosion and degradation
are very severe problems, was selected as the study area. This research maps gully erosion
susceptibility (GES) by integrating four models: maximum entropy (MaxEnt), artificial neural
network (ANN), support vector machine (SVM), and general linear model (GLM). Of 1042 gully
locations, 729 (70%) and 313 (30%) gully locations were used for modeling and validation purposes,
respectively. Fourteen effective gully erosion conditioning factors (GECFs) were selected for spatial
gully erosion modeling. Tolerance and variance inflation factors (VIFs) were used to examine
the collinearity among the GECFs. The random forest (RF) model was used to assess factors’
effectiveness and significance in gully erosion modeling. An ensemble of techniques can provide
more accurate results than can single, standalone models. Therefore, we compared two-, three-,
and four-model ensembles (ANN-SVM, GLM-ANN, GLM-MaxEnt, GLM-SVM, MaxEnt-ANN,
MaxEnt-SVM, ANN-SVM-GLM, GLM-MaxEnt-ANN, GLM-MaxEnt-SVM, MaxEnt-ANN-SVM and
GLM-ANN-SVM-MaxEnt) for GES modeling. The susceptibility zones of the GESMs were classified
as very-low, low, medium, high, and very-high using Jenks’ natural break classification method
(NBM). Subsequently, the receiver operating characteristics (ROC) curve and the seed cell area index
(SCAI) methods measured the reliability of the models. The success rate curve (SRC) and predication
rate curve (PRC) and their area under the curve (AUC) values were obtained from the GES maps.
The results show that the ANN model combined with two and three models are more accurate
than the other combinations, but the ANN-SVM model had the highest accuracy. The rank of the
others from best to worst accuracy is GLM, MaxEnt, SVM, GLM-ANN, GLM-MaxEnt, GLM-SVM,
MaxEnt-ANN, MaxEnt-SVM, GLM-ANN-SVM-MaxEnt, GLM-MaxEnt-ANN, GLM-MaxEnt-SVM
and MaxEnt-ANN-SVM. The resulting gully erosion susceptibility models (GESMs) are efficient and
powerful and could be used to improve soil and water conservation and management.
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1. Introduction

Human livelihood depends on soil [1]. Soil erosion is the removal and deposition of particles from
the soil surface to other locations [2]. Soil erosion threatens both the quality and quantity of soil and
water resources [3]. Approximately 58% of land degradation worldwide stems from soil erosion [4]. Soil
erosion is a natural process, but it can be exacerbated by human activities [5]. The long-term impacts of
soil erosion become evident, but short-term impacts tend to be less visible [6]. Moreover, soil loss can
cause both flooding and desertification, and can damage both urban and rural infrastructure [7]. Rapid
global population growth intensifies pressure on both the land and natural resources for living space
and food [8]. In addition to this, soil loss rates are increasing [9,10]. Both the conservation of natural
resources and the planning for sustainability are critical for environmental protection. The studies
of soil erosion and erosion susceptibility are fundamental to successful soil conservation [11]. Over
the last 40 years, one-third of the world’s cultivated lands have been impacted by soil erosion. Today,
approximately 10 million hectares are affected annually [12]. Therefore, measures should be taken to
mitigate the effects of soil erosion and to reduce erosion rates [13].

Gully erosion is the most visible form of erosion among the types of soil erosion [14]. It is a major
concern due to the damages that gullying has on environmental quality and resources, including
the sedimentation of reservoirs, constriction of river flows, devastation to arable lands downstream,
impacts on wildlife habitats, and the squelching of regional economic growth [15].

Soil erosion in Iran is a significant problem, affecting agricultural development, the supplies
of natural resources, and environmental quality. Approximately 125 million hectares of Iran’s
165 million hectares of land suffer water erosion [16]. In arid and semi-arid regions, gullies form
due to overexploitation of soils and water and unscientific land and environmental management [17].
Ecosystems, soils, and aquifers are in decline due to gully erosion [18]. Some of the areas that are most
vulnerable to gully erosion are the Ardib watershed [19], the Biarjamand watershed [20], the Bayazeh
watershed [21], the northeastern Semnan Province [22], the Bastam watershed [23], the Mahabia
watershed [24], and the Najafabad watershed [25]. The Golestan Dam basin in the Golestan Province
is also experiencing significant soil erosion problems. This is the primary reason it was selected as a
study area.

The geo-environmental factors that seem to affect gully erosion are topographical (elevation,
slope, aspect, plan and profile curvature, convergence index, topographic position index, topographic
ruggedness index), hydrological (drainage density, length of the overland flow, distance to stream,
topographical wetness index), lithological (geology, distance to lineament), and environmental (soil
type, land use/land cover (LULC), normalized difference vegetation index (NDVI), distance to
stream) [15,19,23,25]. Gully erosion conditioning factors (GECFs) are the important conditions that
must be monitored for sustainable soil and water conservation planning [26]. Gully erosion inventory
maps (GEIMs) are fundamental to the creation of GES maps. Several statistical techniques, like the
revised universal soil loss equation (RUSELE) [27] and the modified universal soil loss equation
(MUSLE) [28], are used to estimate soil loss rates in regions. These techniques are well known,
but calculating soil loss and sediment discharge is time-consuming. Several studies, however, have
used an array of knowledge-driven and probabilistic models in their place. Subsequently, machine
learning models have been developed to map and assess numerous extreme natural processes, like
gullying. The combination of probabilistic and machine learning methods is often used to model
extreme events.

Popular and effective models have been used to predict patterns of gully erosion susceptibility,
landslide susceptibility, groundwater potential, and flood susceptibility mapping in regions around
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the world. These methods have included: analytic hierarchy process [29], frequency ratio (FR) [30],
information value [31], conditional probability [32], certainty factor (CF) [33], index of entropy (IOE) [34],
logistic regression [35], weight of evidence [36], maximum entropy (MaxEnt) [37], multivariate adaptive
regression spline [38], artificial neural network [39], adaptive neuro-fuzzy inference system [40], boosted
regression tree [41], random forest (RF) [42], linear discriminate analysis (LDA) [5], support vector
machine (SVM), bagging best-first decision tree [43], and classification and regression trees [42].

Ensemble machine-learning models are new powerful tools in the preparation of predictive maps
of gully erosion. Several studies have demonstrated ensemble techniques for gully erosion, landslides,
land subsidence, groundwater potential, and flood risk mapping. Weighted and predicted values
of bivariate statistical methods, multi-criteria decision approaches, and machine learning methods
can be integrated to create a single-layer ensemble model. For instance, fuzzy logic with frequency
ratio, logistic regression and cosine amplitude [44], and artificial neural network and support vector
machine (ANN-SVM) [45] combined with maximum entropy (MaxEnt-ANN-SVM) [46], a multilayer
perceptron neural network (MLP) ensemble with dagging, rotation forest, Bagging, random subspace
and AdaBoost models [47], complex proportional assessment of alternatives with random forest
(COPRAS–RF), COPRAS–FR–boosted regression tree (BRT), and COPRAS–FR–logistic regression
(LR) [48], ensemble of density area (DA)–RF and information value (IV)–RF [49], weight-of-evidence
(WofE) with LR and Decision Tree ensemble [50], ensemble decision tree [43], generalized linear model
(GLM)–fisher’s discrimination analysis (FDA), FR–RF and statistical index (SI)–RF [51], RF–alternative
decision tree (ADTree) and Bagging–ADTree [52], random subspace (RS)–Fisher’s linear discriminant
analysis (FLDA), RS–logistic model tree (LMT) and RS–naïve bayes tree (NBTree) [53], FR–RF [54], Vlse
Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR)–index of entropy (IoE) [55], WoE–IoE [56]
and MaxEnt-ANN, SVM-ANN, SVM-MaxEnt [45] have been used. These ensemble models have proven
to achieve greater prediction success than do single models. Machine learning-based approaches are
better able to determine accurate relationships between the spatial and temporal data, and to predict
future conditions. From this array of models, four individual models (ANN, SVM, MaxEnt, and GLM)
were combined in stepwise fashion (i.e., combinations of two then three and then four) to create
ensembles GES models. The three-fold ensembles (i.e., two-, three-, and four-model combinations) are
quite different from those tested in previous gully erosion research. As natural resources are being
degraded by human activities, information technology, modeling, and other approaches are needed to
protect and revive ecosystems and environments.

Remote sensing (RS) and geographical information systems (GISs) have been vital to spatial
mapping, gully detection, and analysis of the contribution of effective factors, but they also enable
the preparation of datasets for analysis. RS- and GIS-based studies are more accurate and provide
more meaningful results than by use of more primitive methods to map risk [57]. Over the last two
decades, machine learning approaches have developed rapidly. Combination of machine learning, RS,
and GIS produces more accurate results. For instance, Arabameri et al. [19–24] used machine learning
ensembles to prepare a predictive model in a GIS. A high-resolution ALOS PALSAR digital elevation
model (DEM) was combined with Landsat imagery to detect and map gully erosion, providing very
accurate results [49].

The main objective of this study is to map the most severe gully-erosion zones with machine
learning ensemble models. A MaxEnt, a GLM, an SVM, and an ANN were tested for preparation of
a gully erosion susceptibility model (GESM) for the Golestan Dam basin. Furthermore, this study
compares the individual, two-, three-, and four-model ensembles to determine the best gully erosion
assessment model (or model combination).
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2. Material and Methods

2.1. Study Area

The Golestan Dam basin occupies 219,846 hectares (between 37◦24′00” to 37◦45′00”N and 55◦20′00”
to 56◦00”E) in northeastern Golestan Province. The elevation ranges between 58 and 2168 meters above
sea level (m.a.s.l.) (Figure 1). A map of elevation of the study area was prepared from an advanced
land observing satellite (ALOS) phased-array type L-band synthetic aperture radar (PALSAR) digital
elevation model (DEM) acquired from the Alaska Satellite Facility. More than half of the basin is a
gently sloped portion of the Alborz Mountains. The average annual rainfall varies from 224 to 736 mm,
and rainfall is highest in the southeastern section of the basin; meteorological data were acquired from
the Islamic Republic of Iran Metrological Organization [58]. Based on a land use map (Table 1) prepared
at the 1:100,000 scale by the Natural Resources Department of Golestan Province, moderate quality
rangeland comprises the largest portion of the area (25.9%). Poor rangelands account for 19.09%,
garden and dry land-farming for 14.25%, dry land-farming for 11.2%, and dense forests for 11.19%. The
remaining area (18.34%) is shared among gardens, moderate quality forest land, good rangelands, flood
crossings, low quality forests, and residential areas. Based on a lithology map (Table 2) acquired from
the Geological Society of Iran, the region is comprised of wetlands (60.56%), swamp and marsh (13.4%),
grey shale, siltstone and sandstone (8.03%), and shale and calcareous (5.57 %), and the remaining
(12.44%) is comprised of other formations (Table 1). Rock outcrops, entisols, entisols/inceptisols, and
mollisols are the most common soils in the study area [59].
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Table 1. Land use classes in the study area.

Land Use Area (ha) Area (%)

Moderate Range 56,971.77 25.91
Poor Range 41,968.52 19.09

Dry farming-Garden 31,329.69 14.25
Dry Farming 24,647.25 11.21
Dense Forest 24,595.63 11.19

Orchard 12,381.7 5.63

Moderate Forest 8679.79 3.95
Good Range 6471.76 2.94
Low Forest 4486.76 2.04

Flood Crossing 3824.86 1.74
Agriculture 3666.75 1.67

Residential Areas 819.21 0.37

Table 2. Lithology of the study area.

Geo Unit Description Area (ha) Area (%)

Kat Olive green glauconitic sandstone and shale 11,516.28 5.24
Qsw Swamp 133,117.1 60.56

Ksn Grey to block shale and thin layers of siltstone
and sandstone 17,645.92 8.03

Ekh Olive—green shale and sandstone 2644.15 1.2
Qm Swamp and marsh 29,445.41 13.4

Ksr Ammonite bearing shale with interaction of
orbitolin limestone 12,242.8 5.57

Jmz Grey thick—bedded limestone and dolomite 3253.9 1.48
Jl Light grey, thin—bedded to massive limestone 9945.08 4.52

2.2. Methodology

This study involves several steps (Figure 2) and processes for creating the gully erosion
susceptibility (GES) maps which includes:

(i) To prepare the gully erosion inventory map and the GECFs dataset, 1042 gully head cut locations
were identified using high-resolution images, field investigation, and global positioning system
(GPS). Data for fourteen environmental factors identified from a literature review were compiled
(data sources are described below).

(ii) Multi-collinearity analysis among the GECFs using tolerance and variance inflation factor (VIF)
techniques was done.

(iii) The significance and effectiveness of GECFs was determined using the random forest (RF) model.
(iv) GES maps were prepared with MaxEnt, ANN, SVM and GLM models. The ensemble models

were prepared by combining sets of two, three and four models.
(v) The performances of gully erosion susceptibility models (GESMs) were validated with the area

under receiver operating characteristic curve (AUROC) and seed cell area index (SCAI) methods.



Remote Sens. 2020, 12, 1890 6 of 30

Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 29 

 

Table 2. Lithology of the study area. 

Geo Unit Description Area (ha) Area (%) 
Kat Olive green glauconitic sandstone and shale 11,516.28 5.24 
Qsw Swamp 133,117.1 60.56 

Ksn 
Grey to block shale and thin layers of siltstone and 

sandstone 17,645.92 8.03 

Ekh Olive - green shale and sandstone 2644.15 1.2 
Qm Swamp and marsh 29,445.41 13.4 

Ksr Ammonite bearing shale with interaction of 
orbitolin limestone 12,242.8 5.57 

Jmz Grey thick - bedded limestone and dolomite 3253.9 1.48 
Jl Light grey, thin - bedded to massive limestone 9945.08 4.52 

2.2. Methodology 

This study involves several steps (Figure 2) and processes for creating the gully erosion 
susceptibility (GES) maps which includes: 

(i) To prepare the gully erosion inventory map and the GECFs dataset, 1042 gully head cut 
locations were identified using high-resolution images, field investigation, and global 
positioning system (GPS). Data for fourteen environmental factors identified from a 
literature review were compiled (data sources are described below).   

(ii) Multi-collinearity analysis among the GECFs using tolerance and variance inflation 
factor (VIF) techniques was done. 

(iii) The significance and effectiveness of GECFs was determined using the random forest 
(RF) model. 

(iv) GES maps were prepared with MaxEnt, ANN, SVM and GLM models. The ensemble 
models were prepared by combining sets of two, three and four models. 

(v) The performances of gully erosion susceptibility models (GESMs) were validated with 
the area under receiver operating characteristic curve (AUROC) and seed cell area index 
(SCAI) methods. 

 

Figure 2. Flowchart of research in the study area. Figure 2. Flowchart of research in the study area.

2.3. Gully Erosion Inventory Map (GEIM)

The GEIM is the basic tool for preparing the GESMs. It consists of spatial datasets with several
dependent factors. GEIM represents the spatial distribution of gullies and their geometries (size, shape,
length, and width). Through historical and present-day distributions of gullies one can predict future
probabilities of gully erosion in the region. Several studies have used GEIM to analyze gully erosion
susceptibility [8,24,25,44,60]. ArcGIS 10.3 software was used to generate the GEIM of the Golestan
Dam basin. High-resolution images from the Google Earth engine and the ALOS PALSAR DEM at a
12.5 × 12.5 m resolution were used to prepare the GEIM. Reports of 1042 historical gully formations
were acquired from the Agricultural and Natural Resources Research Centre of Golestan Province
and they were verified by extensive field surveys with handheld GPS. The inventoried sites were
divided randomly into 729 training (70%) and 313 validation (30%) sites [19–25]. The dependent
variable for gully formation was the presence or absence of gully and each pixel was coded binarily
1 or 0, respectively. An equal number of locations (pixels) without gullies (1042) were also selected for
modeling [61]. The geometric characteristics of the gullies were also measured and recorded in the
field [60] (Figure 3). The longest gully was 2.41 km and the shortest was 0.003 km. The deepest gully
was 3.15 m and shallowest gully was 0.04 m. The widest gully was 21 m and the narrowest was 1.3 m.
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2.4. Preparing the Gully Erosion Conditioning Factors (GECFs)

Several factors affect gully erosion [62–64]. Rainfall measurements like rainfall intensity, period,
and spatial distribution are GECFs [65]. Topographic GECFs included slope, slope aspect, plan and
profile curvature, slope length, distance from ridge, convergence index (CI), topographical position
index (TPI), topographical rugged index (TRI) [66]. Rock type, rock arrangement, and fault locations are
lithological GECFs, as are soil content, soil texture, sub-surface flow, erosivity features [67]. In addition,
land use/land cover (LULC) is also an important GECF [68]. Normalized difference vegetation index
(NDVI) is a GECF as erosion is more likely to occur on denuded surfaces more than on thickly vegetated
surfaces [51,58]. Some studies illustrated that numerous environmental conditions (elevation, slope,
aspect, plan and profile curvature, CI, TPI, TRI, drainage density, length of the overland flow, distance
to stream (DtS), topographical wetness index (TWI), soil type, LULC, NDVI, and distance to road)
influencing gully formation [15,19,23,25].

GECFs’ reciprocal relationships were assessed with a multi-collinearity test. The 14 GECFs were
mapped in GIS (Figure 4a–n). Spatial resolution of each factor, however, was not the same. The
base resolution of these maps was set by the PALSAR DEM resolution (12.5 × 12.5 m). All factors
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were converted to this resolution in ArcGIS 10.3. The preparation procedure for each factor is
described below.
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(RSP), (d) height above nearest drainage (HAND), (e) slope length, (f) slope, (g) rainfall, (h) slope aspect,
(i) distance to stream (DtS), (j) distance to road (DtR), (k) stream density, (l) road density, (m) LULC,
and (n) lithology.

2.4.1. DEM Derived Factors

The topographical and hydrological factors (elevation, slope, slope aspect, slope length, CI, TPI,
TRI, topographical wetness index (TWI), stream power index (SPI), STI, distance to stream (DtS),
and drainage density) were extracted from the ALOS PALSAR DEM following several steps and
processes. The characteristic and morphology of the topographical and hydrological factors depends
upon the accuracy and gridding techniques employed [69]. The efficiency of the gridding procedure
determines the quality of several of the topographical and hydrological GECFs. The vertical accuracy
of the DEM was 0.3 m and was used for all of these variables (a similar accuracy assessment was used
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in Gesch et al. [70]). Vertical accuracy was assessed by comparing elevation on the DEM with ground
control points (GCPs). At each point, GCP elevations were subtracted from the DEM elevations at the
locations in the GIS. The differences were identified as errors. Positive errors occurred where the DEM
value was greater than the GCP, negative errors were for DEM values below GCP elevations. The mean
error, root means square error, and standard deviation of the mean error were computed from these
measured errors [70]. Interferometric synthetic aperture radar (InSAR) was used to produce the ALOS
DEM, and this was analyzed by Zhou et al. [71] and Zhang et al. [72]. Phase measurement is the main
step in InSAR for DEM creation and this was followed by the transformation of phase to height [71].

After processing the ALOS PALSAR DEM, the topographical and hydrological GECFs were
created and measured in GIS with the SAGA GIS tool. The topographical factors influence erosive
power, velocity of flow, and surface runoff [73]. Slope controls surface runoff and drainage, influencing
gully formation [74]. Slope aspect is also an important GECF [75].

Nubre et al. [76] created the height above nearest drainage (HAND) as a new terrain model.
The HAND model indicates topography according to the local relative heights in the drainage network.
Kornejady et al. [77] used the HAND tool as a topo-hydrological factor for landslide susceptibility
mapping. The ALOS PALSAR DEM was used in this study to create a DEM raster with a resolution of
10 m. For a series of computations, the DEM layer was used to construct a hydrologically consistent
DEM, to define flow directions, and to delineate drainage channels. The mapped stream network (MSN)
layers were acquired from the Iranian Department of Water Resources Management IDWRM [77].
The MSN was field survey assessed. The automated process for generating the HAND map was
conducted in this case study, thus, the spatial data used in the HAND Tool derived from both the DEM
and the MSN. When the user chooses the automated process, the “drainage network” area should
become operational. The design of the Hand tool’s user interface is valuable, as it allowed fast entry of
layers and the choice of either the manual or automatic procedure. The relative slope position (RSP)
was determined from the DEM using the SAGA GIS tool. The RSP value ranges from 0 to 1 (Figure 4c).
Rahamati et al. [78] used the RSP factor as a conditioning factor for groundwater potential mapping.

2.4.2. Hydrological Factors

As rainfall impacts drainage processes and collapses gully material [79], precipitation data were
collected from the Metrological Department of Iran. The thin plate spile method, first formulated
by Wahba, is an effective and accurate interpolation method. The modified orthogonal least squares
of thin plate spline (TPS-M) was used to prepared the raster layer of the rainfall data collected from
the different weather stations. This is more accurate method than the classical interpolation method.
The detailed of the methodology could be found in the work of Boer et al. [80]. The rainfall amounts
ranged from 224 to 736 mm (Figure 4). DtS and SD are essential hydrological components. DtS and
SD determine the width of erosion in rills and gullies [81]. The drainage network was derived from
the DEM with the automatic ArcHydro tool in the GIS. Distances from locations (pixels) to streams
was measured with the Euclidean distance tool. The drainage density was determined by Horton’s
formula on a 1 km2 grid. The highest drainage density was measured as 1.39 km/km2 (Figure 4k).

2.4.3. Environmental Factors

The distance to road (DtR) is important because roads affect runoff and influences the formation of
gullies [82]. A road map at a scale of 1:100,000 was acquired from the National Geographic Organization
of Iran [19–25]. Euclidean distance buffering was used to measure distances to roads. Distances ranged
from 0 to 20,477 m (Figure 4j). The road density map was created using the line density method.
Road densities in the basin range from 0 to 0.56 km/km2 (Figure 4l). Geomorphology, LULC, NDVI,
and lithology are regarded as significant to GES [83]. The geological map of the study area was
acquired from the Geological Society of Iran [84]. The lithology map was digitized in GIS from the
map at a scale of 1:100,000. Geologically, the study area is composed of eight geological segments and
units: Kat, Qsw, Ksn, Ekh, Qm, Ksr, Jmz, and Jl (Figure 4n). LULC contributes directly or indirectly
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by influencing evapotranspiration, infiltration, run-off, and sediment dynamics [85]. By comparison,
many agricultural practices promote gully erosion and genesis [86]. The land use map was created
from the combination of a map of 1:100,000 scale created by the Golestan Province Department of
Natural Resources and images acquired from Google Earth. A total of 346 ground control points
(GCPs) were selected for validation using the kappa index. The obtained kappa coefficient for the
prepared map was 0.924, indicating its high accuracy. The land use types include poor range, dry
farming-garden, good range, moderate forest, low forest, residential areas, moderate range, dense
forest, agriculture, dry farming, flood crossings, and gardens (Table 1 and Figure 4).

2.5. Multi Collinearity Analysis

The GECFs were tested for the collinearity using tolerance (TOI) and the variance inflation
factor (VIF) [19–24,62]. The TOI and VIF methods indicate whether there are linear relationships
between GECF pairs. The linear relationship depends on the threshold range value of TOI and VIF.
The values <10 for VIF and >0.1 for TOI, suggest no collinearity problems among the GECFs [62].
A multi-collinearity problem exists when two and more factors are highly correlated. Arabameri et
al. [19], Saha et al. [58], and Roy and Saha [44] used this method for GES assessment. It is a vital test
for subsequent modeling phases.

2.6. Methods

One statistical probability method (GLM), one artificial intelligence method (ANN), and two
machine learning models (SVM and MaxEnt) were chosen to prepare GESMs. A number of ensemble
models were created by combining these models in stepwise combinations (ensembles of two-, three-,
and four-models) to determine which was best.

2.6.1. Maximum Entropy (MaxEnt)

MaxEnt is a presence-only feature and machine-learning model [87]. The presence-only feature is
important for modeling as it is more reliable for remote areas [88]. On the other hand, the model is biased
when exposed to data from nearby accessible areas [89]. MaxEnt identifies the existence probabilities
of locations where a phenomenon is present based on the information theory and statistics [90]. To
evaluate the uncertain distribution of probability it consists of set geo-environmental variables. MaxEnt
assumes that the probability of occurrence for a phenomenon (here gully erosion) is equal at the all
pixels so that it selects the uniform probability distribution function (PDF) as the target distribution.
However, certain restrictions compel this PDF to circulate the true target. These constraints are
determined by the GECF data that were used to map GES. An interchangeable equation of those
factors, called the features was used in the MaxEnt [91]. Specific variables form the features that force
MaxEnt’s first conjecture to have those constraints. A continuous layer, such as distance to streams
for example, creates a linear function that imposes a limit on the numerical average of factor values
in the locations where the phenomenon is present. If the mean value of the factor at the presence
points is, for instance, equal to 102 m, MaxEnt will consider the locations close to this number as
highly susceptible areas. Specific types of features are contained in continuous variables, specifically
quadratic, product, threshold, categorical, k binary variables [92]. The maximum entropy would be the
final best estimation that satisfies all constraints [93,94]. All the mathematical details of the MaxEnt
model can be found in Phillips et al. [87,92] and Elith et al. [91].

2.6.2. Artificial Neural Network (ANN)

The human brain is the inspiration for ANN [95]. ANN has several algorithms that can analyze
and predict the nonlinear properties of a phenomenon [96]. Multi-layer perceptron (MLP) is one of the
popular algorithms of the ANN model [97]. An ANN consists of the nodes of three layers: the input
layer, hidden layers, and the output layer. The nodes in hidden layers measure the information inside
the data when the input layer is not sufficiently involved and responsive to do so. GECFs and gully
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erosion training results connect the input layer to the output layer. The input and hidden layers then
systematically strive to simplify and predict the structures by embracing the knowledge from the input
nodes and working with dynamic functions [98].

The number of input and output nodes is defined by a structured code, where nodes are equal to
GECFs and output nodes are equal to a Boolean value (0 and 1) for each pixel: 1 indicates probable
gully erosion and 0 probably not gully erosion. The trials and errors are determined by the number of
hidden layers or nodes [99]. The application of and detailed information about the ANN model is
discussed in Arora et al. [100].

2.6.3. Support Vector Machine (SVM)

SVM is a supervised machine learning classifier introduced by Vapnik and Chervonenkis in 1963,
that depends on the principle of statistical learning [101]. SVM can be used for classification and
regression [102]. It consists of several types of classification functions and can be used to analyze
errors and to generalize information that requires the least amount of model tuning [103]. To limit the
inherent complexity in the behaviors of phenomena, these processes use stored information inside
factors in many iterations [104]. Typically, the hyper-plane with the highest margin should provide
the strongest classification performance [105]. A strong hyper-plane between objects is to be much
greater than the problem’s theoretical vision, when facing actual noisy artifacts. To assign training data
around the margin an appropriate methodological error (total gap between the margin and training
points), a soft hyper-plane is configured [106]. Subsequently, the rise in the uncertainty of the model
contributes to a growth in the complexity of the model and to become the least suited model, thus
leading to a decline in generalization, and vice versa. A standardized n-dimensional hyper-plane
solution with a maximum distance that is rather complicated and that also has few training errors
should thus be found [107–110].

2.6.4. General Linear Model (GLM)

The GLM was derived from the classic linear-regression model platform extension [111]. The GLM
applies a common regression structure to non-normal distributions [112]. The statistical function that is
known as LOGIT for the GLM model was computed by the Equation (1) [113,114]. GLM is used when
there are n independent observations, Y is a function of explanatory variables, X1, X2, ..., Xn (these can
be either continuous or categorical), and observations derive from any exponential family distribution.

Y = Pr (Y = 1) =
eC0+C1X1......+CnXn

1 + eC0+C1X1......+CnXn
(1)

2.7. Measuring the Importance of GECFs by RF

RF is a non-parametric multivariate model [115]. RF models generate thousands of trees,
developing ‘forests’ based on decision rules. Each tree in the RF model depends on a sample of
bootstrapped data, applying a CART process with a random subset of variables used at each node.
The final decision of class membership and output is made according to majority voting among all
decision trees [116]. The RF model was used in this study to evaluate the relative importance of the
variables. RF is a machine learning model developed by Breiman [115]. More details of this model can
be found in Breiman et al. [116] and Calle et al. [117,118].

2.8. Validation Techniques

2.8.1. Receiver Operating Characteristics (ROC)

The ROC curve is a popular validation method for assessing a model’s performance [119]. The area
under curve (AUC) of ROC measures the discriminatory capacity of a classification model [120].
This method was widely applied for accuracy assessment of numerous assessments of natural
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hazards [121–125]. The ROC curve is used to test the efficiency of a classifier system over the spectrum
of cut-off points [126]. The ROC curve is two-dimensional because there are two terms (events and
non-events) in the modeling of precision assessment, and therefore, two types of possible accuracy [127].
The first aspect is the success rate of event identification (shown along the Y- or vertical axis). The ROC
is a graph which plots the sensitivity (Y-axis) against the 1-specificity (X-axis) using the following
Equations (2) and (3):

Sensitivity =
TP

TP + FN
(2)

Speci f icity =
TN

FP + TN
(3)

AUC =
(
∑

TP +
∑

TN)

(P + N)
(4)

where TP is true positive, FN is false negative, TN is true negative, FP is false positive. P is the total
number of gullies and N is the total number of non-gullies.

The area under curve (AUC) indicates the predictive capacity of the model. The threshold values
of AUC range from 0.5 to 1 (1 indicates the best performance and 0.5 indicates poor performance) [128].
AUC values have been classified into four levels of accuracy: poor (AUC = 0.6 to 0.7), fair (AUC = 0.7
to 0.8), good (AUC = 0.8 to 0.9) and excellent (AUC = 0.9 to 1) [129].

ROC curves were plotted with both the training gullies points and validation gullies points.
The sizes of the training and validation gully sets are proportional and relevant. A 70:30%
split is common and widely used, for instance in gully erosion susceptibility [19–25], landslide
susceptibility [121], flood susceptibility [122], groundwater potential [130], and land subsidence
susceptibility modeling [123–125]. Other sample ratios have been tested: 80:20 [131], 70:30 [132], and
50:50 [133]. There are no absolute rules or standard methods for partitioning of samples, but the
decision reflects the user’s and experts’ opinions and goals. A model’s performance depends on the
partitions of the samples in the inventory datasets. The sample partitions make a suitable result when
the larger percentage of the training data are selected for modeling and the smaller percentage of
validation data are used to test the accuracy of the models. Therefore, a 70:30 ratio of the inventory
datasets was used to train the GES models and to validate them.

2.8.2. Seed Cell Area Index (SCAI)

The SCAI is the ratio of gullies’ pixels to each model’s classes of susceptibility. Arabameri et al. [19]
states that high SCAI values indicate good model accuracy and low values indicate poor performance.
This method has been used to assess the predictive accuracies of models’ susceptibility maps.

2.9. Creating Ensemble Models

Ensemble modeling combines two or more single models into a composite model to enhance the
reliability of predictive power [134]. This technique has received significant interest among the experts,
especially those who use data-mining and machine-learning models [135]. In all ensemble strategies
(e.g., bagging and boosting), individual models are weighted. However, there is a diversity of methods
to calculate the weights. This study used the heterogeneous group, an integration system that includes
addition, subtraction, multiplication, and division when an expanded method was developed for
further analysis. The weighted mean function was used to construct the ensemble structures of the
three models using Equation (5):

EM =

∑n
i=1 (AUSRCi ×Mi)∑n

i=1 AUSRC
(5)

where EM is the resulting ensemble model, AUSRCi is the AUSRC value of the ith model (Mi).
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3. Results

3.1. Multi-Collinearity Analysis (MA)

The multi-collinearity test among GECFs was performed in SPSS 17 statistical software. The GECFs
in this study achieved tolerance and variance inflation factor (VIF) values below the upper and lower
limits, respectively (Table 3). There are no multicollinearity problems among the GECFs. Therefore,
all GECFs were suitable for gully erosion modelling.

Table 3. Multi-collinearity analysis of the gully conditioning factors.

Conditioning Factors
Collinearity Statistics

Tolerance VIF

LULC 0.923 1.083
Drainage density 0.911 1.098
Distance to road 0.906 1.104

Valley depth 0.854 1.171
Relative Slope Position (RSP) 0.765 1.307

Geology 0.743 1.346
Rainfall 0.654 1.529

Road density 0.645 1.550
Slope length 0.518 1.931

Aspect 0.465 2.151
Distance to stream 0.456 2.193

Slope 0.423 2.364
Height Above the Nearest Drainage (HAND) 0.384 2.604

Elevation 0.355 2.817

3.2. Gully Erosion Modeling with Individual Models

GESMs were produced using the MaxEnt, ANN, SVM, and GLM models. The GESMs were
categorized into very low, low, moderate, high, and very-high susceptibility zones based on Jenks’
natural break classification method. The SVM model categorized 16.01% of the basin as very-high
GES. The MaxEnt assigned this class to 14.32%, ANN assigned 14.15%, and GLM 14.47% (Figure 5).
The classifications of very low susceptibility areas were 33.11% by MaxEnt, 56.30% by ANN, 39.99% by
SVM, and 33.86% by GLM.
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model (GLM).

3.3. Gully Erosion Modeling by Ensemble of Two Models

Combining two models provides better performance for GES mapping. Pourghasemi, et al. [45]
used ensemble machine learning algorithms GESM. Their results demonstrated that the ensemble
model achieved the highest predictive performance. We used six two-model ensembles: GLM-MaxEnt,
GLM-ANN, GLM-SVM, MaxEnt-ANN, MaxEnt-SVM, and ANN-SVM. The GESMs produced by
these ensemble models were also classified into the five susceptibility classes. The GLM-MaxEnt
model classified 13.52% of the basin as very-high GES. MaxEnt-ANN assigned very-high to 23.76%,
the highest among these ensemble models, and GLM-ANN assigned 12.91%, the lowest among these
models (Figure 6). All ensemble models indicated that the central and northeastern parts of the basin
have very-high GES.
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3.4. Gully Erosion Modeling by Ensemble of Three and Four Models

Two-model ensembles are the models most typically used [19–25,45]. The application of three-
or four-model ensembles has been rare. Arabameri et al. [49] applied three-model ensembles of
COPRAS-FR-RF, COPRAS-FR-BRT, and COPRAS-FR-LR to map GES. These ensembles included a
multi-criteria decision approach model (COPRAS), two probabilistic models (FR and LR), and two
machine learning models (RF and BRT). In this study, three- and four-model ensembles were used
(Figure 7). The ensembles comprised of two machine learning models have been found to be effective
and accurate for the prediction and mapping of natural hazards. The GLM-MaxEnt-ANN model
classified 13.10% of basin as very-high susceptibility, 10.62% as high, 15.85% as moderate, 22.73% as
low, and 37.71% as very low. The GLM-MaxEnt-SVM ensemble assigned the classes (in the same
order) to 14.32%, 14.30%, 15.09%, 22.15%, and 34.14%. The MaxEnt-ANN-SVM ensemble applied
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these classes to 12.92%, 9.04%, 15.18%, 22.33%, and 40.53%. The ANN-SVM-GLM model classified
14.27% of the basin as very-high, 9.32% high, 15.17% moderate, 20.67% low, and 40.57% very low.
The classification by the four-model ensemble GLM-ANN-SVM-MaxEnt was 13.48%, 11.32%, 14.87%,
22.11%, and 38.21%.
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3.5. Assessing the Importance of the Factors

Evaluation of the significance of each GECF provides planners important information that can
guide sustainable natural resource use [10,20]. The spatial correlations of the GECFs to gullies
were calculated with the RF model in this study (Table 4). Others have used RF techniques for
factor-importance analysis [20,58]. The results indicate that of greatest importance was distance to
road (RF = 19.23). This factor was followed by LULC, HAND, rainfall, valley depth, distance to
stream, slope length, stream density, aspect, elevation, geology, slope, and RSP. GES was higher on
rangeland than on non-agricultural lands and on areas nearer roads. Higher gulley erosion was also
associated with high stream density, HAND, and lower distances to streams. Elevation has direct and
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indirect effects on hydrological properties and soil moisture and these may influence gully erosion
potential. Overall, gullying susceptibility was highest on rangelands that had higher densities of roads
and streams.

Table 4. Relative influence of effective conditioning factors in the random forest (RF) model.

Factor Weight

Distance to road 19.23
LULC 18.60

Height Above the Nearest Drainage (HAND) 17.03
Rainfall 16.13

Valley depth 15.34
Distance to stream 14.65

Slope length 14.42
Stream density 13.54

Aspect 11.85
Elevation 9.34
Geology 9.08

Slope 4.43
Relative Slope Position (RSP) 2.76

Road density 1.65

3.6. Validation of the Models

The GES model’s performances were evaluated with the AUC of ROC and SCAI methods applied
to the training and validation datasets. The training dataset produces the success rate curve (SRC)
and the testing dataset the prediction rate curve (PRC). According to AUC of the SRC the ANN-SVM
ensemble achieved the highest accuracy (0.948) (Figure 8). In order of success were models using ANN,
ANN-SVM-GLM, GLM-ANN, MaxEnt-ANN-SVM, GLM-MaxEnt-ANN, ANN-SVM-GLM-MaxEnt,
MaxEnt-ANN, SVM, GLM-SVM, GLM-MaxEnt-SVM, MaxEnt-SVM, GLM, GLM-MaxEnt, and MaxEnt
(Figure 9a–c). Based on the AUC of the PRC, the ANN-SVM model again had the highest accuracy
(0.923). The MaxEnt model was least accurate (0.858) (Figure 9d–f). The AUCs of both the SRC and
PRC indicate that all models achieved very good to excellent performance for GESM. Yet, though the
ANN-SVM ensemble was superior in both assessments, the success and prediction rates of the other
were less consistent. The AUC of SRC value of the ANN model was 0.946 (second best among the
models), but the AUC of the PRC was 0.906 (seventh best).
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SCAI was also used to evaluate prediction performance. The SCAI for all the individual
and ensemble models indicated that all models achieved at least very good accuracy (Figure 10).
The susceptibility classifications of all 15 models were evaluated. The SCAI values decreased from as
the susceptibility class increased (Figure 11).
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4. Discussion

Gully erosion is a geomorphic process but anthropogenic activities accelerate erosion and create
imbalances in environmental mechanisms. Borrelli et al. [136] and Azareh et al. [33] concluded
that gully erosion is a complex hazard that can interrupt economic growth, cause infrastructural
collapse, and disrupt ecosystems. This study used novel machine learning ensembles comprised of
MaxEnt, ANN, SVM, and GLM models to produce gully erosion susceptibility models (GESMs). These
were evaluated using ROC curves and the SCAI. GESMs can be useful to governmental institutions,
especially as they can improve decision making for gully erosion mitigation [19–22]. Several GESMs
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have been developed over the last few years and scholars have been searching for the best combinations
of models and methods [19–25,45].

The Golestan Dam basin, encompassing most of Golestan Province, Iran, was chosen as the
study site in which severe gully erosion can be assessed with individual and ensemble predictive
models. Unique among GESM studies, this study tested and evaluated the results from two-,
three-, and four-model ensembles. A gully erosion inventory data set was created and used in a
now-common [19–25,44,58–60] 70:30 random partition to calibrate the models and evaluate the results,
respectively. GECFs that are useful in one study area may not be suitable other regions, therefore,
factors were selected based on a review of literatures describing GES models [45,58]. The literatures
helped to identify fourteen geo-environmental factors—elevation, slope, slope aspect, rainfall, geology,
relative slope position, distance to stream, distance to road, drainage density, road density, slope
length, HAND—that were used to map GES in the study area [19–25,44,58–60,78]. After modeling,
the contributions of each of the GECFs were assessed using the RF method [58]. The results indicated
that the DtR and rainfall were the most important predictive variables among the GECFs. Using
Jenks’ natural break method, the GES maps were classified into five susceptibility classes. The GESMs
classified 12.91%, to 16.01% of the study area as very-highly susceptible to gully erosion.

It is very difficult to avoid the problem of overfitting because non-gully pixels were chosen in a 1:1
ratio with the gully-present pixels, even though the actual number non-gully pixels is greater than the
number of gully pixels. Furthermore, the training and testing datasets were based on a sampling ratio
of 70:30 without testing the accuracy of the sampling ratio. Additionally, despite the multicollinearity
test, noise may remain among the GECFs. The key benefit of machine learning algorithms is that they
optimize the searches of several datasets from which valuable information is collected. Such methods
may compensate for assumptions and can aid the formulation of strategies and the statistical processing
of large datasets. Despite several drawbacks of machine learning, this study can help scholars create
new models to improve performance not only for GES modelling, but for modelling of other hazards
like floods, landslides, and others.

The distribution of GES in the Golestan Dam basin was successfully mapped by all individual and
ensemble models. SVM-based models are very capable of dealing with non-linear and high-dimensional
grouping problems by use of the kernel feature and the adding of slack parameters [137]. However,
there may still be overestimation in SVM’s GES model [138]. Some methods can be paired with SVM
to boost the efficiency of GES assessments, which may achieve better results than other models [138].
The ANN-SVM ensemble achieved the highest accuracy, resembling the results in Chen et al. [46] and
Pourghasemi et al. [45].

Models Prioritization

Comparing and appraising the machine learning models’ results was a key objective of this
study. The GESMs were constructed using the MaxEnt, ANN, GLM, and SVM models and
eleven ensembles of these models. Model prioritization is an innovative and creative technique
to evaluate model performance to select the best model. The prioritization process has been
used in drainage morphometrics studies as sub-basin prioritization [139]. A similar approach
was used here. The individual models, and the two-, three-, and four-model ensembles were
used to produce fifteen GESMs. To rate the models, the AUC of SRC and the AUC of PRC were
calculated and for each the models were ranked (i.e., prioritized) (Figure 12). The ANN-SVM (PR
= 1) model ranked first. It was followed in rank by GLM, MaxEnt, ANN, SVM, GLM-MaxEnt,
GLM-ANN, GLM-SVM, MaxEnt-ANN, MaxEnt-SVM, GLM-MaxEnt-ANN, GLM-MaxEnt-SVM,
MaxEnt-ANN-SVM, ANN-SVM-GLM, and ANN-SVM-GLM-MaxEnt.
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5. Conclusions

The Golestan Dam basin is one of the most gully-prone regions in Golestan Province owing to the
combined impacts of GECFs. Modelling of GES is essential for the management of this destructive
phenomenon in the Golestan Dam catchment. The broad goal of models is to provide more accessible
and meaningful soil information to decision-makers based on the cutting-edge knowledge in this
field. Communities in the Golestan Dam basin are facing soil erosion rates that threaten agriculture
and local infrastructure. GESMs were developed from four standalone models (MaxEnt, ANN,
SVM, and GLM). They were integrated into two-, three-, and four-model ensembles (GLM-MaxEnt,
GLM-ANN, GLM-SVM, MaxEnt-ANN, MaxEnt-SVM, GLM-MaxEnt-ANN, GLM-MaxEnt-SVM,
MaxEnt-ANN-SVM, ANN-SVM-GLM and ANN-SVM-GLM-MaxEnt). The estimations of GES from all
of the models were categorized into five levels. AUC of the ROC curve and SCAI methods were used
to evaluate the ensemble accuracies of the models’ mapped predictions of GES. All models achieved
excellent results. Among the 15 GES models, ANN-SVM produced the highest predictive capability
and was selected as the best model for these purposes in this basin. GESMs are efficient and effective
measures for the potential of gully erosion in this area. The government institutions in Iran can employ
the ANN-SVM GESM tool to prevent formation of gullies and to mitigate soil erosion. To prevent soil
erosion in the areas of highest GES, more intensive measures need to be implemented. Community
outreach and public education are vital to soil conservation and management. Thus, different scholars,
engineers, and decision makers have important roles in the quest for sustainable management in these
areas that are susceptible to soil erosion and particularly to the formation of gullies.
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