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and Petre L. Ogrutan 1

1 Department of Electronics and Computers, Transilvania University of Brasov, 500036 Brasov, Romania;
alina.machidon@unitbv.ro (A.L.M.); octavian.machidon@unitbv.ro (O.M.M.);
petre.ogrutan@unitbv.ro (P.L.O.)

2 Quantum & Computer Engineering Department, Computer Engineering Research Group, Delft University
of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

* Correspondence: c.b.ciobanu@tudelft.nl

Received: 18 May 2020; Accepted: 9 June 2020; Published: 13 June 2020
����������
�������

Abstract: Remote sensing data has known an explosive growth in the past decade. This has led to
the need for efficient dimensionality reduction techniques, mathematical procedures that transform
the high-dimensional data into a meaningful, reduced representation. Projection Pursuit (PP) based
algorithms were shown to be efficient solutions for performing dimensionality reduction on large
datasets by searching low-dimensional projections of the data where meaningful structures are
exposed. However, PP faces computational difficulties in dealing with very large datasets—which
are common in hyperspectral imaging, thus raising the challenge for implementing such algorithms
using the latest High Performance Computing approaches. In this paper, a PP-based geometrical
approximated Principal Component Analysis algorithm (gaPCA) for hyperspectral image analysis is
implemented and assessed on multi-core Central Processing Units (CPUs), Graphics Processing Units
(GPUs) and multi-core CPUs using Single Instruction, Multiple Data (SIMD) AVX2 (Advanced Vector
eXtensions) intrinsics, which provide significant improvements in performance and energy usage
over the single-core implementation. Thus, this paper presents a cross-platform and cross-language
perspective, having several implementations of the gaPCA algorithm in Matlab, Python, C++ and GPU
implementations based on NVIDIA Compute Unified Device Architecture (CUDA). The evaluation
of the proposed solutions is performed with respect to the execution time and energy consumption.
The experimental evaluation has shown not only the advantage of using CUDA programming in
implementing the gaPCA algorithm on a GPU in terms of performance and energy consumption,
but also significant benefits in implementing it on the multi-core CPU using AVX2 intrinsics.

Keywords: Principal Component Analysis; parallel computing; SIMD; CUDA; GPU

1. Introduction

Today, enormous amounts of data are being generated on a daily basis from social networks,
sensors and web sites [1]. In particular, one type of multidimensional data which is undergoing
an explosive growth is the remote sensing data.

Remote sensing is generally defined as the field or practice of gathering information from distance
about an object (usually the Earth’s surface by measuring the electromagnetic radiation) [2]. The recent
technological advances in both sensors and computer technology have increased exponentially the
volume of remote sensing data repositories. For example, the data collection rate of the NASA
Jet Propulsion Laboratory’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is 4.5 MB/s,
which means that it can obtain nearly 16 GB of data in one hour [3].
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The availability of new space missions providing large amounts of data on a daily basis has raised
important challenges for better processing techniques and the development of computationally efficient
techniques for transforming the massive amount of remote sensing data into scientific understanding.
However, because much of the data are highly redundant, it can be efficiently brought down to a much
smaller number of variables without a significant loss of information. This can be achieved using
the so-called Dimensionality Reduction (DR) techniques [4]. These are mathematical procedures that
transform the high-dimensional data into a meaningful representation of reduced dimensionality [5].
DR techniques are also referred to as projection methods, and are the widely used exploratory tools
for applications in remote sensing due to a set of benefits that are bringing for remote sensing data
analysis [6]:

• Plotting and visualizing data and potential structures in the data in lower dimensions;
• Applying stochastic models;
• Solving the “curse of dimensionality”;
• Facilitating the prediction and classification of the new data sets (i.e., query data sets with

unknown class labels).

Of the several existing DR techniques, Projection Pursuit (PP) [7] and its particular form of
Principal Component Analysis (PCA) [8] are being credited as two of the most popular dimensionality
reduction techniques with numerous applications in remote sensing. PP is a Projection Index (PI)-based
dimensionality reduction technique that uses a PI as a criterion to find directions of interestingness of
data to be processed and then represents the data in the data space specified by these new interesting
directions [9]. Principal Component Analysis [8] can be considered a special case of PP in the sense
that PCA uses data variance as a PI to produce eigenvectors.

Such DR (like PP or PCA) have the disadvantage of being extremely computationally demanding,
in consequence, their implementation onto high-performance computer architectures becomes critical
especially for applications under strict latency constraints. In this regard, the emergence of high
performance computing devices such as multi-core processors, Field Programmable Gate Arrays
(FPGAs) or Graphic Processing Units (GPUs) [10] exhibit the potential to bridge the gap towards
onboard and real-time analysis of remote sensing data.

PCA is a time and computational expensive algorithm, with two computationally intensive steps:
computing the covariance matrix, and computing the eigenvalue decomposition of the covariance
matrix. As a result of its nature, most PCA algorithms work in multiple synchronous phases, and the
intermediate data are exchanged at the end of each phase, introducing delays and increasing the total
execution time of the PCA algorithm. This is one of the reasons that has motivated the appearance
in the recent literature of various implementations for the PCA algorithms in single-core systems,
multi-core systems, GPUs and even on FPGAs.

In this context, this paper describes the parallel implementation of a PP-based geometrical
approximated Principal Component Analysis algorithm, namely the gaPCA method. For validation,
we applied gaPCA to a satellite hyperspectral image for dimensionality reduction. This method has
been implemented in C++, Matlab and Python for our multi-core CPU tests, and PyCUDA and CUDA
targeting an NVIDIA GPU. A comparative time analysis has been performed and the results show that
our parallel implementations provide consistent speedups.

The main contributions of this work are as follows:

• We introduce four implementations of the gaPCA algorithm: three targeting multi-core CPUs
developed in Matlab, Python and C++ and a GPU-accelerated CUDA implementation;

• A comparative assessment of the execution times of the Matlab, Python and PyCUDA multi-core
implementations. Our experiments showed that our multi-core PyCUDA implementation is up
to 18.84× faster than its Matlab equivalent;

• A comparative assessment of the execution times of the C++ single-core, C++ multi-core,
C++ single-core Advanced Vector eXtensions (AVX2) and C++ multi-core AVX2 implementations.
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The multi-core C++ AVX2 implementation proved to be up to 27.04× faster than the C++ single
core one;

• Evaluation of the GPU accelerated CUDA implementation compared to the other implementations.
Our experiments show that our CUDA Linux GPU implementation is the fastest, with speed ups
up to 29.44× compared to the C++ single core baseline;

• Energy consumption analysis.

The rest of the paper is organized as follows: Section 2 highlights related work in the field of
projection pursuit algorithms; Section 3 describes the experimental setup—hardware, software and
the data sets used for testing; Section 4 introduces the gaPCA algorithm with its applications in land
classification; Section 5 describes the parallel implementations of the gaPCA algorithm using multi-core
CPUs, CUDA programming and AVX2 intrinsics; Section 6 presents and analyzes the results obtained
for each experiment. Finally, Section 7 concludes the paper.

2. Background and Related Work

2.1. Projection Pursuit Algorithms

Projection Pursuit is a class of statistical non-parametric methods for data analysis proposed initially
by Friedman and Tukey in 1974 [7], which involves searching for directions in the high-dimensional
space onto which the data can be projected to reveal meaningful low-dimensional insight into the data
structures. Consequently, in Projection Pursuit, the key aspect is optimizing a certain objective function
referred to as the Projection Index. A PI is a function which associates a data projection to a real value
measuring how important that projection is (usually meaning how far from normality is).

Given the fact that the importance of the projection is dependent on the goal to be achieved
(e.g., exploratory data analysis, density estimation, regression, classification, de-correlating variables),
various PIs can be defined for each application (clustering analysis and detection [11,12], classification [13–17],
regression analysis [18,19] and density estimation [20], leading to different indices for different projections
(among these indices one can find entropy [21], variance, robust scale estimator [22], skewness [23],
L1-norm [24]). One of the most popular PI is the variance of the projected data, defined by the largest
Principal Components (PCs) of the PCA.

Due to the fact that Projection Pursuit methods execution time increases exponentially with
the dimensionality of data, these algorithms tend to be computationally intensive. This motivated
researches to find alternative approaches for pursuing interesting projection not only in terms of data
structures, but also in terms of computational resources [25,26]. For example, in [27] a simple version
of the Projection Pursuit-based estimator is proposed which is easy to implement and fast to compute.

The Quality of Projected Clusters (QPC) [28] projection aims at finding linear transformations
that create compact clusters of vectors, each with vectors from a single class, separated from other
clusters. Fast approximate version of QPC [29] proposes some modifications of the QPC method that
decrease computational cost and obtains results of similar quality with significant less effort.

The study in [17] presents an accelerating genetic algorithm for the Projection Pursuit model
based on genetic algorithm, which can effectively avoid the huge calculated quantity and slow speed
of traditional genetic algorithm. The authors in [30] proposed a PI based on white noise matrix,
which proved to reveal interesting features in high dimensions with low computational effort on both
simulated and real data sets.

In [31], the algorithms are targeted to speeding up the covariance matrix computation rather than
finding the eigenvalues of matrix (by showing that the covariance between two feature components
can be expressed as a function of the relative displacement between those components in patch space)
and it achieved around 10× speedups than the baseline implementation.
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2.2. Parallel Implementations of PP Algorithms

In addition to algorithmic optimizations like the ones in the references mentioned above,
many efforts made by the scientific community in the past decade focused on developing parallel
implementations of a particular case of Projection Pursuit method, which is PCA, in order to achieve
increased performance fostered by parallel architectures such as multi-core CPUs or GPUs.

In [32], Funatsu et al. proposed a PCA algorithm based on the L1-norm that to be up to 3×
faster on the Geforce GTX 280 GPU architecture comparing with classical CPU. The results were
verified by applying the algorithm in the field of facial recognition. In [33], Josth et al. presented two
implementations of the PCA algorithm, first using the Streaming SIMD Extensions (SSE) instructions set
of the CPU, and secondly using the CUDA technique on GPU architectures for RGB and spectral images.
The results show speed-ups of around 10× (compared with a multi-threaded C implementation) which
allows using PCA on RGB and spectral images in real time.

Another approach of the iterative PCA algorithm implementation on GPU which is based on
the standard Gram-Schmidt orthogonalization was made in [34] by Andrecut. The author presented
the comparison of the GPU parallel optimized versions, based on CUBLAS (NVIDIA) with the
implementation on CBLAS (GNU Scientific Library) on the CPU and showed approximately 12×
speedup for GPU.

In [35], a modified version of the fast PCA algorithm implemented on the GPU architecture was
presented along with the suitability of the algorithm for face recognition tasks. The results showed
approximately 20× faster results comparing with two other implementations of the fast PCA algorithm
(the CPU implementation and the CPU sequential version). In a similar way, in [36] a fast non-iterative
PCA computation for spectral image analysis by utilizing a GPU is proposed.

The paper in [37] presents a study of the parallelization possibilities of an iterative PCA algorithm
and its adaptation to a Massively Parallel Processor Array (MPPA) manycore architecture (The Kalray
MPPA-256-N which is a single-chip manycore processor that assembles 256 cores running at 400
MHz, distributed across 16 clusters), and achieved an average speedup of 13× compared to the
sequential version. In [38] the authors present a study of the adaptation of the previous mentioned PCA
algorithm applied to Hyperspectral Imaging and implemented on the same aforementioned MPPA
manycore architecture.

In addition, the work in [39] presents the implementation of the PCA algorithm onto two different
high-performance devices (an NVIDIA GPU and a Kalray manycore, a single-chip manycore processor)
in order to take full advantage of the inherent parallelism of these high-performance computing
platforms, and hence, reducing the time that is required to process hyperspectral images.

Reconfigurable architectures, like FPGAs, are also used for accelerating PP-based and PCA-related
algorithms. In [40] a FPGA-based implementation of the PCA algorithm is presented as a fast on-board
processing solution for hyperspectral remotely sensed images, while in [41] a parallel Independent
Component Analysis (ICA) algorithm was implemented on FPGA. Furthermore, in [42], the authors
propose an FPGA implementation of the PCA algorithm using High Level Synthesis (HLS).

Last but not least, cloud computing is also leveraged for improving performance and decreasing
runtime: in [43], the authors proposed a parallel and distributed implementation of the PCA algorithm
on cloud computing architectures for hyperspectral data.

This paper addresses the computational difficulties of a Projection Pursuit method named
geometrical approximated PCA (gaPCA), which is based on the idea of finding the projection defined by
the maximum Euclidean distance between the points. The difficulties arise due to the fact that gaPCA
involves computing a large number of distances and we address them by proposing several parallel
implementations of the method. Among them, an SIMD based method and a GPU implementation are
compared and the results showed significant speedup.
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3. Experimental Setup

3.1. Hardware

The CPU used in our experiments was AMD Ryzen 5 3600 [44]. The main characteristics of
this processor are listed in Table 1. We used the MSI B450 GAMING PLUS mainboard with AMD
B450 Chipset.

Table 1. AMD Ryzen 5 3600 CPU specifications.

Proccesor AMD Ryzen 5 3600

Cores 6
Threads 12
Base Clock 3.6 GHz
Maximum Boost Clock 4.2 GHz
Memory 384KB L1, 3MB L2, 32MB L3

The GPU used in our experiments was the EVGA NVIDIA GeForce GTX 1650 [45]. The GPU
specifications are shown in Table 2.

Table 2. GeForce GTX 1650 specifications.

GPU GeForce GTX 1650

CUDA Cores 896
Processor Base Clock 1485 MHz
Processor Max Boost Clock 1665 MHz
Memory 4GB GDDR5
Memory Bandwidth 128 GB/s

For measuring we used the energy consumption, we used the PeakTech 1660 Digital Power
Clamp Meter [46], which provides a large variety of measuring functions (such as measurements for
alternating current, alternating voltage, true power, apparent power, reactive power, energy, the power
factor, frequency and phase angle), and a PC interface for data acquisition via USB 2.0 Interface.

3.2. Software

The experiments described in this paper were conducted on the above-mentioned AMD Ryzen 5
3600 and NVIDIA GeForce GTX 1650 system, running the Ubuntu 18.04.3 LTS 64 bit Operating System
with the following software tools:

• Matlab R2019b with Matlab Parallel Computing Toolbox
• Python 3.6.8
• NVIDIA CUDA toolkit release 10.1, V10.1.243
• PyCUDA version 2019.1.2
• gcc version 7.4.0

3.3. Datasets

The experiments have been carried out on two data sets: the Pavia University [47] hyperspectral
image data set, gathered by the Rosis sensor, having a number of 103 spectral bands, 610 × 340 pixels
and a geometric resolution of 1.3 m, and the Indian Pines data set [48], gathered by the AVIRIS sensor
over the Indian Pines test site in North-western Indiana and consists of 145 × 145 pixels and 200 bands.
RGB representation of both datasets is illustrated in Figure 1.



Remote Sens. 2020, 12, 1918 6 of 29

(a) (b)

Figure 1. RGB visualisation of the two hyperspectral datasets used for experiments, Pavia University
(a) and Indian Pines (b).

In our experiments the image dimensions taken as input are: M (the image width), N (the image
height) and P (the number of bands), giving rise to a [M × N, P] matrix. The testcases used to
benchmark our gaPCA implementations involved taking 4 different crops of each of the two datasets
(100 × 100, 200 × 200, 300 × 300 and 610 × 340 for Pavia University, and 40 × 40, 80 × 80, 100 × 100
and 145 × 145 for Indian Pines). For all test cases we maintained the full spectral information,
i.e., all the available number of bands were considered: 103 for Pavia University and 200 for Indian
Pines. The number of Principal Components computed was varied between 1, 3 and 5 in order to
analyze the scaling effects of computing more than one component.

4. The gaPCA Algorithm

4.1. Description of the gaPCA Algorithm

gaPCA is a novel method that defines its Principal Components as the set of linear projections
described by the maximum range in the data (as opposed to the canonical version of the PCA in which
the Principal Components are those linear projections that maximize the variance of the data) and are
computed geometrically, as the vectors connected by the furthest points. Hence, gaPCA is focused on
retaining more information by giving credit to the points located at the extremes of the distribution of
the data, which are often ignored by the canonical PCA.

In the canonical PCA method, the Principal Components are given by the directions where the
data varies the most and are obtained by computing the eigenvectors of the covariance matrix of
the data. As a result that these eigenvectors are defined by the signal’s magnitude, they tend to
neglect the information provided by the smaller objects which do not contribute much to the total
signal’s variance.

Among the specific features of the gaPCA method are an enhanced ability to discriminate smaller
signals or objects from the background of the scene and the potential to accelerate computation time
by using the latest High Performance Computing architectures (the most intense computational task
of gaPCA being distances computation, a task easily implemented on parallel architectures [49]).
From the computational perspective, gaPCA subscribes to the family of Projection Pursuit methods
(because of the nature of its algorithm). These methods are known to be computationally expensive
(especially for very large datasets). Moreover, most of them involve statistical computations,
discrete functions and sorting operations that are not easily parallelized [50,51]. From this point
of view, gaPCA has a computational advantage of being parallelizable and thus yielding decreased
execution times (an important advantage in the case of large hyperspectral datasets).

To carry out gaPCA in the manner of PP analysis, we first have to define an appropriate Projection
Index and a direction onto which the projection is optimal. A PI is a measure of the desirability of
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a given projection [52]. In PCA, which can be viewed as a special case of PP, this index is the variance
of the projection scores. In gaPCA, the PI is the Euclidean distance among data points. A high PI
(given by large distance between data points) suggests important features, in terms of divergence
from normality, which is a desired objective of Projection Pursuit techniques in general. In the field of
hyperspectral imagery, if a PI attains a high value, it usually indicates a spectral characteristic different
than that of the background, very important for object detection, identification of spectral anomalies,
regardless of their relative size.

Given a sample X = (x1, . . . , xn) of p-dimensional points, xi ⊂ Rp, in order to form a univariate
linear projection of X, we define a as a p-dimensional normalized vector determined by the two
p-dimensional points separated by the maximum Euclidean distance:

a = xk − xl (1)

with
{xk, xl} = arg max

xi ,xj∈X
d(xi, xj) (2)

where d(·, ·) denotes the Euclidean distance.
The gaPCA projection index function can be defined as:

I(a) = f (a) : Rp − R. (3)

Then, the projected data of X can be described as:

p = aT ∗ X, (4)

resulting in a new representation for each of the p dimensional points in a n-dimensional space.
To find a set of orthogonal projections, we have to reduce the rank of the data matrix by projecting

it onto the subspace orthogonal to the previous projections. All the points in X are projected onto the
hyperplane H, determined by the normal vector a and containing m (the midpoint of the segment that
connects the two points):

H = {x ∈ Rp| < a, x >=< a, m >} (5)

This results in a set of projections of the original points, Y = (y1, . . . , yn), computed using the
following formula:

yi = xi + (< a, m > − < a, xi >) · a/||a||2 (6)

To further seek a linear projection onto the new dimensions, all the above steps are computed
iterativelly, giving rise to a direction matrix A, so that the projection data can be rewritten as:

p = AT ∗ X, (7)

This sequence of operations can be repeated until the rank of the data matrix becomes zero.
The end result is an orthogonal matrix, where each column is a projection vector. A graphical
illustration of the computed gaPCA components vs. canonical PCA components is shown in Figure 2.

gaPCA is a geometric construction-based approach for PCA approximation, which was previously
validated in applications such as remote sensing image visualization [53] and face recognition [54].
Moreover, gaPCA was shown [55] to yield better performance in land classification accuracy than
the standard PCA, with the most remarkable results recorded in the cases of preponderantly spectral
classes. In such classes the standard PCA’s performances are lower due to its loss in spectral
information, that restrain its ability to discriminate between spectral similarities. Consequently,
gaPCA is more suitable for hyperspectral images with small structures or objects that need to be
detected or where preponderantly spectral classes or spectrally similar classes are present [55].
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Figure 2. Geometrical approximated Principal Component Analysis (gaPCA) Principal Components
(green) vs. canonical PCA Principal Components (magenta) computed on a correlated 2D point cloud.

4.2. gaPCA in Land Classification Applications

To show the performance and efficiency of gaPCA as a Dimensionality Reduction algorithm in
land classification applications, we have compared the gaPCA approach in the field of classification
with the standard PCA algorithm as benchmark for the assessment of the gaPCA method.

Both methods were used on the Indian Pines and Pavia University datasets for dimensionality
reduction, and for each data set the number of Principal Components computed was selected in order
to achieve the best amount of variance explained (98–99%) with a minimum number of components
(10 for the Indian Pines data, 4 for Pavia University).

The first Principal Components obtained after the implementation of each of the PCA methods
represent the bands of the images on which the classification was performed (the input), using the
ENVI [56] software application. Maximum Likelihood Algorithm (ML) and the Support Vector
Machine Algorithm (SVM) were used for classifying both the standard PCA and the gaPCA image,
for both datasets. The classification accuracy was assessed by generating a sub-set of randomly
generated pixels, based on which a visual comparison with the groundtruth image of the test site at
the acquisition moment was performed.

We assesed the classification accuracy of each method with two metrics: the Overall Accuracy
(OA representing the number of correctly classified samples divided by the number of test samples)
and the kappa coefficient of agreement (k, which is the percentage of agreement corrected by the
amount of agreement that could be expected due to chance alone).

In order to assess the statistical significance of the classification results provided by the two
methods, the McNemar’s test [57] was performed for each classifier (ML and SVM), based on
the equation:

z =
f12 − f21√

f12 + f21

(8)

where fij represents the number of samples missclassified by method i, but not by method j.
For |z| > 1.96, the overall accuracy differences are said to be statistically significant.
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4.2.1. Indian Pines Dataset

Performing land classification on the Indian Pines dataset is a challenging task due to the large
number of classes on the scene and the moderate spatial resolution of 20 m and also due to the high
spectral similarity between the classes, the main crops of the region (soybeans and corn) being in
an early stage of their growth cycle. The classification results of the Standard PCA and the gaPCA
methods are shown in Figure 3a,b along with the groundtruth of the scene at the time of the acquisition
of the image (c). The Figure illustrates that although both classified images look noisy (because of the
abundance of mixed pixels), the classification map obtained by the gaPCA is slightly better.

(a) PCA classified (b) gaPCA classified (c) Groundtruth

Figure 3. Standard PCA (a) and gaPCA (b) images classified (Maximum Likelihood) vs. the
groundtruth image (c) of the Indian Pines dataset.

In Table 3 we summarized the classification accuracy of the two methods for each of the classes on
the scene along with the Overall Accuracy of both methods with the ML and SVM algorithms. A set
of 20,000 randomly generated pixels, uniformly distributed in the entire image were used for testing.
The gaPCA OA is higher than the one scored by the standard PCA and the classification accuracy
results for most classes are better. One reason for these results is that PCA makes the assumption
that the features that present high variance are more likely to provide a good discrimination between
classes, while those with low variance are redundant. This can sometimes be erroneous, like in the case
of spectral similar classes. There is an important difference in the case of sets of similar class labels.
gaPCA scored higher accuracy results for the similar sets of Corn, Corn notill, Corn mintill and also for
Grass-pasture and Grass-pasture mowed than those achieved by the Standard PCA, demonstrating the
ability of the method to better discriminate between similar spectral signatures.
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Table 3. Classification results for the Indian Pines dataset.

Class Training Pixels PCA ML gaPCA ML PCA SVM gaPCA SVM

Alfalfa 32 98.7 80.5 18.2 18.2
Corn notill 1145 30.6 47.6 65.2 69.3
Corn mintill 595 51.6 69.2 34.9 46.1
Corn 167 84.9 100 31.4 37.7
Grass pasture 328 55.7 80.5 64.6 71.9
Grass trees 463 96.1 90.6 91.2 92.5
Grass pasture mowed 19 68.3 71.7 60 60
Hay windrowed 528 88.5 96.7 99.5 99.6
Oats 20 100 96.9 15.6 6.3
Soybean notill 681 83.7 77.1 40.9 56.1
Soybean mintill 1831 46.6 47.7 79.4 78.3
Soybean clean 457 36.9 77.7 11.8 36.1
Wheat 150 97.2 97 91.1 93.1
Woods 884 98.7 96.9 97.3 97.3
Buildings Drives 263 33.7 61.4 45.5 52.1
Stone Steel Towers 103 100 100 95.5 97.2

zML = 25.1 (signif = yes) OA(%) 62.1 70.2 67.2 72.1
zSVM = 24.8 (signif = yes) Kappa 0.57 0.67 0.62 0.68

4.2.2. Pavia University Dataset

Figure 4 shows the images achieved with the Standard PCA method (a) and the gaPCA method
(b) classified with the ML Algorithm and the groundtruth of the scene (c).

(a) PCA classified (b) gaPCA (c) Groundtruth

Figure 4. Standard PCA (a) and gaPCA (b) images classified (Maximum Likelihood) vs. the
groundtruth (c) of the Pavia University dataset.

The classification results (for 1000 test pixels) using either ML or SVM are displayed in Table 4,
showing the classification accuracy for each class and the OA. The results show gaPCA scored the best
OA and classification accuracy for most classes.



Remote Sens. 2020, 12, 1918 11 of 29

Table 4. Classification results for the Pavia University dataset.

Class Training Pixels PCA ML gaPCA ML PCA SVM gaPCA SVM

Asphalt (grey) 1766 60.5 61.5 67.2 78.3
Meadows (light green) 2535 68.3 80 65 86.9
Gravel (cyan) 923 100 100 33.3 40
Trees (dark green) 599 88.2 89.7 100 67.7
Metal sheets (magenta) 872 100 100 100 100
Bare soil (brown) 1579 77.8 79.4 53.2 68.3
Bitumen (purple) 565 89.7 89.7 89.7 55.2
Bricks (red) 1474 68.3 72 81.7 86.6
Shadows (yellow) 876 100 100 100 100

zML = 4.87 (signif = yes) OA(%) 72.2 78 69 78
zSVM = 5.97 (signif = yes) Kappa 0.65 0.72 0.61 0.72

The classification accuracies report better performances for gaPCA in interpreting classes with
small structures and complex shapes (e.g., asphalt, bricks). This confirms the interest accorded by the
gaPCA to smaller object and spectral classes leading to less false predictions compared to the standard
PCA for this classes. This is more obvious for classes such as bricks where confusion matrix shows a
misinterpretation with gravel and for asphalt confused with bitumen.

The reason behind these confusions is the spectral similarity between the two classes and not to
the spatial proximity (Table 5), proving that gaPCA does a better job in discriminating between similar
spectral classes because unlike PCA it is not focused on classes that dominate the signal variance.

Table 5. Excerpt from the confusion matrix for the Pavia University dataset.

Class True False

Asphalt (PCA) 60.5 Asphalt 29.5 Bitumen
Asphalt (gaPCA) 61.5 Asphalt 21.8 Bitumen

Meadows (PCA) 68.3 Meadows 25.8 Bare soil
Meadows (gaPCA) 80 Meadows 17.6 Bare soil

Bricks (PCA) 68.3 Bricks 25.6 Gravel
Bricks (gaPCA) 72 Bricks 24.3 Gravel

In light of these results, gaPCA is confirmed to have a consistent ability when classifying smaller
objects or spectral classes, proving the hypothesis that it has a superior ability in retaining information
associated to smaller signals’ variance.

5. Parallelization of the gaPCA Algorithm

The first step was to perform a profiling of the code in order to assess what are the most time- and
computation-consuming subroutines and which of them are appropriate for parallel implementations.
A detailed perspective on the gaPCA algorithm and its sub-routines is shown in Figure 5. As expected,
the code profiling analysis showed that by far the computation of the Euclidean distances between
the pixels was the most time consuming task, accounting for approximately 95% of the total running
time of the algorithm for any given dataset. The second most time consuming stage of the gaPCA
algorithm is the projection of the data on the hyperplane orthogonal to each of the vectors computed,
accounting for just 3% of the total computational time of gaPCA. Based on the time profiling results,
we focused our efforts on parallel implementations for these two subroutines. Three implementations:
CPU multi-threading, CUDA and SIMD AVX2 were ealborated for the Euclidean distance function
(computeMaximumDistance), which is by far the most time consuming and also it’s computational
complexity (pariwise distance computations on a large dataset) fostered the use of the above-mentioned
technologies. A diagram depicting the computation of one iteration of the Euclidean distances function
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is shown in Figure 6. For the subroutine responsible for computing the data projections on the
hyperplane (computeProjections), a CPU multi-core parallel implementation was elaborated.

Figure 5. Diagram showing gaPCA algorithm design and the two sub-routines with parallel
implementations.

Figure 6. Diagram showing one iteration of the Euclidean distances function.

Our research focused on two main aspects. First, on the efficient parallel implementation of
the gaPCA algorithm using SIMD instruction set extensions, multi-threading and GPU acceleration.
Second, on providing a comparison of the above mentioned implementations in terms of time and
energy performance onto two different computing platforms: a PCI Express GPU accelerator from
NVIDIA and a 64-bit x86 CPU from AMD.
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The main idea behind parallelizing the gaPCA algorithm was to take advantages from both thread
level parallelism and data level parallelism in order to gain higher performance. As a result that the
gaPCA algorithm possess a massive data parallelism (with the sequence of operations computing the
Euclidean distance between each pair of n-dimensional points executed for a large number of inputs),
it is a good candidate for implementing CPU Data Level Parallelism (DLP) with SIMD.

5.1. Matlab, Python and PyCUDA Implementations

The initial implementation (Listing A1 in Appendix A) [49] was developed in Matlab using the
specific instructions from the Matlab Parallel Computing Toolbox. The test runs were performed in
Matlab R2019a, on the Linux Ubuntu 18.04 operating system. The par f or instruction executes for-loop
iterations in parallel on a parallel pool of workers on the multi-core computer or cluster. The default
size of the pool of workers is given by the number of physical cores available.

The next two are Python implementations, targeting parallel execution on a multi-core CPU
and a NVIDIA GPU, respectively. Both are based on the Python Numba and Numpy libraries;
the CPU multi-core parallel execution was achieved using Numba JIT compiler, while the GPU CUDA
version has been implemented using the PyCUDA Python library [58]. Python [59] is a high level
programming language. It has efficient high-level data structures and a variety of dedicated libraries
which recommends it both for scientific and real-time application. Numba [60] is an open source
JIT compiler that translates a subset of Python and NumPy code into fast machine code. Numba can
automatically execute array expressions on multiple CPU cores and makes it easy to write parallel loops.

Our second implementation (Listing A2 in Appendix A) was developed in Python using the
Numba compiler. The test runs were performed in Python3, on the Linux Ubuntu 18.04 operating
system. The @jit decorator added before the definition of the Python function, specifies that Numba
will be used. Numba’s CPU detection also enables LLVM [61] to autovectorize for appropriate SIMD
instruction set: SSE, AVX, AVX2, AVX-512. The parallel option (parallel = True) enables a Numba
transformation pass that attempts to automatically parallelize and perform other optimizations on
the function. Furthermore, it offers support for explicit parallel loops. Consequently, Numba’s prange
was used (instead of the standard range) to specify that the loop should be parallelized. A thread
pool is automatically started and the tasks are distributed among these threads.Typically the pool
size is equal to the number of cores available on the machine (6 in our case). However, this may
be controlled through the nthreads variable. The numpy.linalg.norm is a function from the Python’s
Numpy scientific package used to compute the norm of a vector or a matrix, in our case the Frobenius
norm of the difference between the two vectors, equivalent to the Euclidean distance between the two).

CUDA Implementation

Our CUDA kernel was designed in order to have a block of threads compute one element of the
distance matrix, with each thread computing the square distance between the corresponding elements
of the two rows in the input matrix. In the example illustrated in Figure 7, the dataset a is the input
matrix, whose rows contain the pixels’ values in every spectral band. The block of threads computes
the distance between rows i and j, with each thread tidq computing (ai,q − aj,q)

2. After all threads in
the block finish the tasks assigned (passing a synchronization phase), the squared values computed
by the threads are added in a parallel tree reduction manner to obtain the total distances between the
rows i and j of the input dataset a.

Listing A3 in Appendix A shows the pseudocode for the CUDA kernel (the Euclidean function).
This function takes as input matrix X and returns C, a three element array containing the maximum
distance (C[0]) and the indexes of the corresponding two furthest points from matrix X (C[1] and C[2]).

In the CUDA kernel, we used a shared memory vector named accumResult, where each thread
computes its corresponding squared difference. After all the threads in a block complete this step
(ensured by calling the __syncthreads(); method), we perform parallel tree reduction as shown in the
code excerpt from Listing A4, obtaining the final distance value. Finally, the thread with threadIdx.y =
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0 in each block compares the current computed distance with the previous existing maximum distance,
and updates the maximum distance (and its corresponding indexes) if it is the case.

Figure 7. Diagram showing the parallel implementation in Compute Unified Device Architecture
(CUDA) of the Euclidean distance function.

5.2. C++ Implementations

The first C++ implementation is a single-core one. For the second C++ multithreading
implementation, we used OpenMP [62], a simple C/C++/Fortran compiler extension, which allows
adding multithreading parallelism into existing source code.

In Listing A5 in Appendix A, the section of code that runs in parallel is marked accordingly by the
pragma omp parallel compiler directive, that will cause the threads to form before the section is executed.
This directive does not create a pool of threads, instead it take the team of threads that is active,
and divide the tasks among them. The pragma omp for directive divides the distances computations
between the pool of threads, which are run simultaneously. Each thread computes a distance between
two rows of the matrix.

For the third C++ implementation, besides OpenMP, we have also employed SIMD instruction
set extensions, for exploiting the avaliable DLP. SIMD instructions work on wide vector registers.
Depending on the specific SIMD instruction set extension employed, the width of the vector registers
ranges from 64 bits to 512 bits (e.g., MultiMedia eXtensions (MMX) [63], SSE [64], AVX [65]). In order
to achieve 100% efficiency, the input array size should be a multiple of the width of the vector
registers (e.g., 4, 8, 16 or 32 16-bit data elements); however, for large input array sizes, this does affect
performance and high speedups can be achieved.

In our experiments, we employ the AMD Ryzen 5 3600 CPU [44] which supports the AVX2 [66]
SIMD instruction set extension. An AVX2 vector register uses dedicated 256-bit registers, corresponding
to the the float, double and int C/C++ types, and may store 8 double precision floating point numbers
or 16 integer values, for example. After profiling the data, we choose to represent them as 16-bits
integers, using __m256i type vectors, containing 16 integers represented on 16 bits. For storing and
manipulating the data, we used the AVX2 intrinsic functions, available in the Intel library header
immintrin.h. Intrinsics are small functions that are intended to be replaced with a single assembly
instruction by the compiler.

One of the major challenges arising when vectorizing for SIMD architectures, is the handling of
memory alignment. SIMD instructions are sensitive to memory alignment, and there are dedicated
instructions for accessing unaligned and aligned data. As a result that each register size has
a corresponding alignment requirement (i.e., the 256-bit Intel AVX registers have an alignment
requirement of 32 bytes), attempting to perform an aligned load, or store, on a memory operand
which does not satisfy this alignment requirement will generate errors [67]. There are several different
methods for memory alignment. As shown in Listing A6 in Appendix A, we used the alignment
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macros defined in the header stdalign.h, providing the alignas() macro and the corresponding _alignas
keyword, for alignment of a variable.

Listing A7 in Appendix A provides the code for computing the distances between two arrays,
p1 and p2, of length size, using AVX2 intrinsics functions. To load the arrays of values into memory,
we used the intrinsic _mm256_load_si256. The _mm256_sub_epi16 was used to subtract each pair
of 16-bit integers in the 256-bit chunks and the values obtained were then multiplied using the
_mm256_mullo_epi16 intrinsic. The second for loop of the function deals with the left-overs of the input
arrays (in case that they are not multiple of 16, the sum of the differences between the remaining values
is computed using standard C++ instructions). The sum of the squared differences was computed with
another C++ function based on SIMD instructions, showed in Listing A8 in Appendix A.

6. Results and Discussion

To evaluate the gaPCA algorithm acceleration, we build a benchmark in which we measured
the amount of time the algorithm took to execute on every testcase of the two datasets mentioned
above, for 1, 3 and 5 Principal Components. For each of the above mentioned image sizes, we ran
the algorithm with the specified number of computed Principal Components, several times for each
test (in order to minimize the overhead time associated with the cache warming [68]) and averaged
the result. The speedup was then computed as the division between the averaged time of each
implementation (e.g., single/multi-core CPU, SIMD-augmented CPU, GPU) for the same image size
and number of computed Principal Components.

6.1. Execution Time Performance

6.1.1. Matlab vs. Python and PyCUDA

The first comparative evaluation was performed between the execution times of the Matlab,
Python and PyCUDA implementations of the gaPCA algorithm. The execution times were measured
for all the above-mentioned image crops of the Indian Pines and the Pavia University dataset,
for a number of 1, 3 and 5 computed Principal Component(s) (PCs), for 2 consecutive runs.

Table 6 shows the timing results for the three implementations, for each test case of the Indian
Pines dataset. Similarly, Table 7 shows the timing results for the test cases of the Pavia University
dataset. Figures 8 and 9 present the speedup between the three implementations (with the Matlab
implementation taken as a baseline for comparison) for all the test cases of the Indian Pines and the
Pavia University, respectively.

For the first test case (Indian Pines), the Matlab implementation outperforms its Python equivalent,
being with up to 4.58× for the 40× 40 image crops, while for the other image sizes (80× 80, 100 × 100
and 145 × 145) the Python implementation is faster. For the second test case (Pavia University),
we can notice that the Matlab implementation is faster than the Python one with approximately 20%
on average (ranging from 4% for the 200 × 200 and 5 PCs dataset to 42% for the 100 × 100 and 1
PC dataset).

One of the major factors influencing the differences in speedup between the Matlab
implementation and its Python counterpart can be explained by the overheads associated with each
environment’s compiler and the deployed components: a startup delay while the data is loaded or
data marshaling associated with deploying certain libraries. Matlab employs a just in time compiler
to translate code to machine binary executables. This substantially increases speed and is seamless
from the user perspective since it is performed automatically in the background when a script is run.
The python Numba Project has developed a similar just in time compiler, but the speedup is actually
very small in case of using “non-native” python code (NumPy functions which cannot be compiled in
optimal ways).

A second factor causing poor performance for Python as compared to Matlab for the smaller
image crops, is the fact that in general, NumPy’s speed comes from calling underlying functions
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written in C/C++/Fortran. NumPy performs well when these functions are applied to whole arrays.
In general, poorer performance is achieved when applying NumPy functions on smaller arrays or
scalars in a Python loop (for the smaller dataset dimensions the Matlab speedup is higher than for the
larger datasets). It is also notable that Matlab’s Parallel Toolbox is limited to 12 workers, whereas in
Python there is no limit to the number of workers.

When comparing the two CPU multi-core implementations (Matlab and Python) with the GPU
implementation (PyCUDA), the speedups show that the GPU implementation of the gaPCA algorithm
is up to 17.82× faster (for Indian Pines) and up to 18.84× faster for the Pavia University dataset than the
Matlab CPU implementation of the same algorithm taken as reference for comparison. One can notice
that the greatest speedup is registered for the test cases with 1 computed principal component, due to
the fact that for the smaller dataset sizes more of the data can fit into caches and the memory access time
reduces dramatically, which causes the extra speedup in addition to that from the actual computation.
In addition, the GPU speedup is slightly smaller for 3 and 5 computed Principal Components, due to
the fact that unlike the CPU execution times which grow unlinear, the GPU execution time grows linear.

Table 6. Indian Pines Matlab vs. Python vs. PyCUDA execution times (s).

Crop Size No. of PCs Matlab Python PyCUDA

40 × 40 1 0.275 1.260 0.153
40 × 40 3 0.832 2.802 0.449
40 × 40 5 1.448 3.519 0.756
80 × 80 1 8.326 6.797 0.769
80 × 80 3 24.678 18.265 2.319
80 × 80 5 40.990 29.333 3.884
100 × 100 1 22.090 14.531 1.592
100 × 100 3 66.377 41.929 4.843
100 × 100 5 110.449 68.647 8.004
145 × 145 1 104.134 64.498 5.843
145 × 145 3 313.070 181.152 18.036
145 × 145 5 521.057 298.212 30.137

1,8 1,9 1,9

10,8 10,6 10,6

13,9 13,7 13,8

17,8
17,4 17,3

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
0,2 0,3 0,4

1,2 1,4 1,4 1,5 1,6 1,6 1,6 1,7 1,7

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

1 PC 3 PC 5 PC 1 PC 3 PC 5 PC 1 PC 3 PC 5 PC 1 PC 3 PC 5 PC

40x40 40x40 40x40 80x80 80x80 80x80 100x100 100x100 100x100 145x145 145x145 145x145

S
p

e
e

d
u

p
 (

X
)

Image dimensions (pixels) and nb. of PCs computed

Matlab Python PyCUDA

Figure 8. Indian Pines Matlab vs.Python vs. PyCUDA speedup for 1 PC (a), 3 PCs (b) and 5 PC (c) for
various image dimensions.
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Table 7. Pavia University Matlab vs. Python vs. PyCUDA execution times (s).

Crop Size No. of PCs Matlab Python PyCUDA

100 × 100 1 9.507 13.476 0.866
100 × 100 3 28.439 39.126 2.745
100 × 100 5 47.580 64.131 4.497
200 × 200 1 195.801 204.855 10.391
200 × 200 3 575.083 601.477 31.884
200 × 200 5 957.494 992.193 53.496
300 × 300 1 883.342 1027.397 50.905
300 × 300 3 2653.649 3036.512 155.068
300 × 300 5 4432.107 5030.831 260.203
610 × 340 1 4501.181 5453.752 267.402
610 × 340 3 13,588.632 16,035.242 806.866
610 × 340 5 22,675.191 26,702.160 1347.312
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Figure 9. Pavia University Matlab vs. Python vs. PyCUDA speedup for 1 PC (a), 3 PCs (b) and 5 PC (c)
for various image dimensions.

6.1.2. C++ Single Core vs. Multicore

The second comparative evaluation was performed between the execution times of several C++
implementations: single core (C++ SC), single core with AVX2 intrinsics (C++ SC AVX2), multi-core
(C++ MC) and multi-core using AVX2 intrinsics (C++ MC AVX2). The execution times were again
measured for all image crops of the Indian Pines and the Pavia University dataset, for 1, 3 and 5
computed principal component(s) and averaged between 2 consecutive runs. Table 8 shows the timing
results for the four implementations, for each test case of the Indian Pines dataset. Similarly, Table 9
shows the timing results for the test cases of the Pavia University dataset.

The speedups between the four implementations (with the single core implementation taken as
a baseline for comparison) are shown in Figures 10 and 11, for all the test cases of the Indian Pines
and the Pavia University, respectively. The results show that the single-core AVX2 implementation
is almost 4 times faster on average (3.90×) than the single core one for Pavia and 4.6 times faster on
average for the Indian Pines testcases. The speed-up is slightly higher for Indian Pines due to the fact
that this dataset has more spectral information (more bands, 200 vs. 103 as previously mentioned)
which leads to more data being processed using AVX2 instructions thus increasing the efficiency and
decreasing the execution time.

With regard to the multi-core implementation, the speed-up is consistent between the two datasets,
and is on average 6 times faster than the single core version (6.04× for Pavia and 5.98× for Indian
Pines). This is consistent with the number of cores (6) of the CPU on which the tests were carried.
As expected, the multi-core AVX2 implementation yielded the best results with an average speed-up
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of 21.24× for Pavia and 23.92× for the Indian Pines testcases. The slightly better speed-up in the case
of Indian Pines is again caused by the higher spectral dimension of this dataset, as explained above.

Table 8. Indian Pines C++ Single Core (SC) vs. Single Core AVX2 (SC AVX2) vs. Multi Core (MC) vs.
Multi Core AVX2 (MC AVX2) execution times (s).

Crop Size No. of PCs C++ SC C++ SC AVX2 C++ MC C++ MC AVX2

40 × 40 1 0.947 0.206 0.169 0.047
40 × 40 3 2.858 0.620 0.480 0.120
40 × 40 5 4.749 1.035 0.796 0.211
80 × 80 1 15.147 3.317 2.502 0.663
80 × 80 3 45.274 9.942 7.534 1.674
80 × 80 5 75.451 16.389 12.457 3.012
100 × 100 1 36.834 8.070 6.108 1.605
100 × 100 3 110.570 23.834 18.452 4.560
100 × 100 5 184.189 40.409 30.627 7.871
145 × 145 1 162.853 35.185 27.017 6.797
145 × 145 3 491.379 105.084 81.027 18.816
145 × 145 5 814.208 175.127 135.510 32.400
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Figure 10. Indian Pines C++ Single Core (SC) vs. Single Core AVX2 (SC AVX2) vs. Multi Core (MC) vs.
Multi Core AVX2 (MC AVX2) speedup for 1 PC (a), 3 PCs (b) and 5 PC (c) for various image dimensions.

Table 9. Pavia University C++ Single Core (SC) vs. Single Core AVX2 (SC AVX2) vs. Multi Core (MC)
vs. Multi Core AVX2 (MC AVX2) execution times (s).

Crop Size No. of PCs C++ SC C++ SC AVX2 C++ MC C++ MC AVX2

100 × 100 1 18.373 4.63084 3.030 0.805
100 × 100 3 55.185 13.9219 9.025 2.814
100 × 100 5 91.666 23.1688 15.277 4.565
200 × 200 1 293.311 74.8406 48.650 12.652
200 × 200 3 880.324 222.279 144.703 40.199
200 × 200 5 1472.080 371.005 243.616 68.642
300 × 300 1 1488.370 387.629 247.666 67.894
300 × 300 3 4489.640 1165.61 741.890 211.110
300 × 300 5 7438.200 1933.44 1240.140 363.606
610 × 340 1 7956.360 2053.12 1322.530 393.734
610 × 340 3 23,962.794 6202.35 3975.840 1144.730
610 × 340 5 40,190.385 10,408.8 6605.060 1905.980
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Figure 11. Pavia University C++ Single Core (SC) vs. Single Core AVX2 (SC AVX2) vs. Multi Core
(MC) vs. Multi Core AVX2 (MC AVX2) speedup for 1 PC (a), 3 PCs (b) and 5 PC (c) for various image
dimensions.

6.1.3. C++ Multi Core vs. CUDA

The final comparative evaluation was performed between the execution times of the three parallel
C++ implementations: multi-core (C++ MC), multi-core using AVX2 intrinsics (C++ MC AVX2) and
multi-core with CUDA programming (C++ MC CUDA). The execution times were again measured for
all image crops of the Indian Pines and the Pavia University dataset, for 1, 3 and 5 computed principal
component(s) and averaged between 2 consecutive runs. Table 10 shows the timing results for the
three implementations, for each test case of the Indian Pines dataset. Similarly, Table 11 shows the
timing results for the test cases of the Pavia University dataset.

The speedups between the three implementations (with the standard multi-core implementation
taken as a baseline for comparison) are shown in Figures 12 and 13, for all the test cases of the Indian
Pines and the Pavia University, respectively. The results show that the multi-core AVX2 implementation
is on average 3.52 times faster than the standard multi-core one for Pavia and 4 times faster on average
for the Indian Pines testcases. This difference in speedup is caused by the same spectral dimensionality
difference between the two datasets previously addressed.

With regard to the multi-core CUDA implementation, this was shown to be 4.85× faster on
average than the standard multi-core version for Pavia and 4.14× faster on average for the Indian
Pines testcases. It can be noticed that for the smaller crop sizes the speed-up is significantly lower
or the CUDA version is even slower than the MC AVX2 implementation for the smallest crop size
(e.g., for Indian Pines 40 × 40 and 1PC is 1.49× vs. 3.58× for MC AVX2). This is due to the CUDA
computational overhead (i.e., copying the data from CPU memory to GPU memory and reverse).
The impact of the overhead is reduced as the dataset size increases. This also explains the the speed-up
difference between the two datasets which is reversed compared to the other comparisons discussed
above, with a higher speed-up for Pavia and lower for Indian Pines. This is due to the fact that Indian
Pines has a much smaller spatial resolution than Pavia (145 × 145 vs. 610 × 340) and for the smallest
crop size (40 × 40) the CUDA computational overhead surpasses the acceleration gain.

Figure 14 shows a comparison of all implementations in terms of speed-up compared to the C++
single-core version taken as baseline. This comparative perspective confirms that the two CUDA-based
implementations (C++ MC CUDA and PyCUDA) yield the highest speed-ups, followed closely by
the C++ MC AVX2 version. The C++ MC CUDA is faster than the PyCUDA version on average with
9.3% for Pavia and with aprrox. 30% for Indian Pines, which is explained by the fact that aside from
the CUDA kernel, C++ multi-core code proved to be faster than its Python equivalent. Moreover,
both show better speed-ups for Pavia than for Indian Pines, which is consistent since both share the
same CUDA kernel.
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Table 10. Indian Pines C++ Multi Core (MC) vs. Multi Core AVX2 (MC AVX2) vs. Multi Core CUDA
(MC CUDA) execution times (s).

Crop Size No. of PCs C++ MC C++ MC AVX2 C++ MC CUDA

40 × 40 1 0.169 0.047 0.113
40 × 40 3 0.480 0.120 0.202
40 × 40 5 0.796 0.211 0.239
80 × 80 1 2.502 0.663 0.585
80 × 80 3 7.534 1.674 1.619
80 × 80 5 12.457 3.012 2.654
100 × 100 1 6.108 1.605 1.324
100 × 100 3 18.452 4.560 3.835
100 × 100 5 30.627 7.871 6.343
145 × 145 1 27.017 6.797 5.609
145 × 145 3 81.027 18.816 16.690
145 × 145 5 135.510 32.400 27.770
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Figure 12. Indian Pines C++ Multi Core (MC) vs. Multi Core AVX2 (MC AVX2) vs. Multi Core CUDA
(MC CUDA) speedup for 1 PC (a) 3 PCs, (b) and 5 PC (c) for various image dimensions.

Table 11. Pavia University C++ Multi Core (MC) vs. Multi Core AVX2 (MC AVX2) vs. Multi Core
CUDA (MC CUDA) execution times (s).

Crop Size No. of PCs C++ MC C++ MC AVX2 C++ MC CUDA

100 × 100 1 3.030 0.805 0.689
100 × 100 3 9.025 2.814 1.916
100 × 100 5 15.277 4.565 3.143
200 × 200 1 48.650 12.652 9.989
200 × 200 3 144.703 40.199 29.699
200 × 200 5 243.616 68.642 49.068
300 × 300 1 247.666 67.894 50.700
300 × 300 3 741.890 211.110 151.082
300 × 300 5 1240.140 363.606 251.730
610 × 340 1 1322.530 393.734 267.495
610 × 340 3 3975.840 1144.730 801.950
610 × 340 5 6605.060 1905.980 1336.010
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Figure 13. Pavia University C++ Multi Core (MC) vs. Multi Core AVX2 (MC AVX2) vs. Multi Core
CUDA (MC CUDA) speedup for 1 PC (a) 3 PCs, (b) and 5 PC (c) for various image dimensions.

The C++ MC AVX2 implementation shows a reversal of this trend - Indian Pines results having
a slightly higher speed-up than Pavia—results which are consistent with the C++ SC AVX2 version
where we notice the same trend. The probable cause is related to the spatial and spectral characteristics
of the two datasets. Indian Pines has a lower spatial resolution but a higher spectral resolution than
Pavia, and the spectral resolution impacts the number of AVX2 operations carried out. This leads to
Indian Pines benefiting from AVX2 acceleration to a higher degree than Pavia.
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Figure 14. gaPCA overall speedup comparison.

6.2. Energy Efficiency

For evaluating the energy consumption we measured the system power consumption during
the execution of each algorithm implementation for two test-cases: Indian Pines 100 × 100 and Pavia
University 200 × 200; in all cases 5 PCs were computed. The system’s power consumption was
measured using a PeakTech 1660 Digital Power Clamp Meter [46], which provides a USB connection
and dedicated software for data acquisition, thus increasing the accuracy and reliability of the results.

The measurement results were consistent between the two test-cases and show on one hand
that all parallel solutions consume much less total energy than the single-core implementation and
on the other, that among all parallel implementation, the most efficient was the C++ MC AVX2
implementation, followed closely by the C++ MC CUDA implementation and the PyCUDA version.

Table 12 shows the energy consumption for the Matlab, Python and PyCUDA implementations
versus the total execution time; the energy results are also displayed in Figure 15. Similarly, the energy
consumption for the C++ implementations are illustrated in Table 13 and Figure 16.
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C++ MC CUDA implementation is shown to be slightly less energy efficient than the C++ MC
AVX2 implementation (consuming 24.74% more energy in the Indian Pines test-case and 4.89% more
energy in the Pavia University test-case) but it outperforms the C++ MC AVX2 implementation in
terms of execution speed (being 24.07% faster for the Indian Pines test-case and 39.89% faster for Pavia
University). The difference in the increased energy consumption for the two test-cases (24.74% Indian
Pines vs. 4.89% Pavia University) can be explained by the difference in the number of spectral bands
(200 for Indian Pines vs. 103 for Pavia University), which leads to the number of threads per block
being used by the CUDA kernel (256 for Indian Pines vs. 128 for Pavia University). These results are
confirmed also in the case of the PyCUDA implementation, which uses the same CUDA kernel.

Table 12. Energy measurement results for the Matlab, Python and PyCUDA implementations.

Dataset Size No. of PCs Implementation Energy (J) Time (s)

Indian 100 × 100 5
Matlab 4595.29 110.449
Python 2409.06 68.647
PyCUDA 609.23 8.004

Pavia U 200 × 200 5
Matlab 34,139.77 957.494
Python 34,192.04 992.193
PyCUDA 3589.8 53.496

Table 13. Energy measurement results for the C++ implementations.

Dataset Size No. of PCs Implementation Energy (J) Time (s)

Indian 100 × 100 5

C++ SC 3672 184.189
C++ MC 1108.75 30.627
C++ SC AVX2 792 40.409
C++ MC CUDA 471.43 6.343
C++ MC AVX2 378 7.871

Pavia U 200 × 200 5

C++ SC 27,512.87 1472.080
C++ MC 9242.40 243.616
C++ SC AVX2 7431.87 371.005
C++ MC CUDA 3491.43 49.068
C++ MC AVX2 3328.63 68.642
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Figure 15. Energy consumption for the Indian Pines (a) and Pavia University (b) datasets for the
Matlab, Python and PyCUDA implementations.
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Figure 16. Energy consumption for the Indian Pines (a) and Pavia University (b) datasets for the C++
implementations.

7. Conclusions

The recent trends and advances in remote sensing and Earth observation in recent years have
led to the continuous acquisition of massive geospatial data of various formats. This raises scientific
challenges related to the processing, analysis and visualization of remote sensing data, with focus
on algorithms and computing paradigms able to extract knowledge and meaningful information
both offline and in real time. Hence, the latest High Performance Computing devices and techniques,
like parallel computing, GPUs and enhanced CPU instructions sets like AVX2 represent solutions
able to provide significant gains in term of performance improvements of various data intensive
applications and algorithms.

In this paper we have presented the implementation of a PP-based geometrical Principal
Component Analysis approximation algorithm (gaPCA) for hyperspectral image analysis on a multi-
core CPU, a GPU and multi-core CPU using AVX2 intrinsics, together with a comparative evaluation
of the implementations in terms of execution time and energy consumption.

The experimental evaluation has shown that all parallel implementations have consistent
speed-ups over the single core version: the C++ CUDA was on average 29.3× faster on Pavia and
24.8× faster on Indian Pines, while the C++ MC AVX2 version had an average speed-up of 21.2× for
Pavia and 23.9× for Indian Pines compared to the baseline C++ SC version. These timing results show
not only the advantage of using CUDA programming in implementing the gaPCA algorithm on a
GPU in terms of performance and energy consumption, but also significant benefits in implementing
it on the multi-core CPU using AVX2 intrinsics. These two implementations were shown to be much
faster than the standard multi-core implementation, and also the most efficient with regard to energy
consumption. The C++ MC AVX2 version was shown to be the most efficient, requiring on average
8.26× less energy when running the Pavia dataset and 9.71× less energy when running the Indian
Pines dataset compared to the baseline C++ SC implementation. The C++ MC CUDA version had just
slighlty lower results, being 7.88×more efficient on Pavia and 7.78×more efficient on Indian Pines
than the single-core implementation.

Consequently, this paper highlights the benefits of using parallel computing, AVX2 intrinsics and
CUDA parallel programming paradigms for accelerating dimensionality reduction algorithms like
gaPCA in order to obtain significant speed-ups and improved energy efficiency over the traditional
CPU single-core or multi-core implementations.
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Appendix A. Code Listings for gaPCA Parallel Implementations

Listing A1. Matlab implementation for the Euclidean distances function.

function [i_extreme, j_extreme, dist_max] euclidDist(X)
{

[m, n] = size(X);
parfor i = 1: m − 1

[d(i),j(i)] = max(pdist2(X(i,:),X(i + 1:m,:)));
end
[dist_max,ind] = max(d);
i_extreme = ind;
j_extreme = j(ind)+ind;
return

}

Listing A2. Python implementation for the Euclidean Distances function.

@jit(nopython = True, parallel = True, nogil = True)
def euclidDist(A):

dist = numpy.zeros(len(A))
index = numpy.zeros(len(A))
for i in prange(len(A) − 1):

temp_dist = numpy.zeros(len(A))
for j in prange(i + 1,len(A)):

temp_dist[j] = numpy.linalg.norm(A[i] − A[j])
dist[i] = numpy.amax(temp_dist)
index[i] = numpy.argmax(temp_dist)

return (numpy.amax(dist), numpy.argmax(dist), int(index[numpy.argmax(dist)]))

Listing A3. Pseudocode for the CUDA kernel computing pairwise Euclidean distance between the
rows of the input matrix X.

euclidean kernel(input X, output C):
elem1 = X[blockIdx.x, threadIdx.y];
elem2 = X[blockIdx.y, threadIdx.y];
result = (elem1 − elem2)*(elem1 − elem2);
accum[threadIdx.y] = result;
Synchronize threads
Perform parallel tree-reduction and compute dist
if (dist>C[0])

C[0] = dist;
update indexes C[1] and C[2];

endif

Listing A4. CUDA kernel code for parallel tree-reduction.

__syncthreads();
// Paralleltree− reduction
for (int stride = SIZE/2 ; stride > 0 ; stride »= 1) {

if (ty < stride)
accumResult[tx*SIZE + ty] += accumResult[stride + tx*SIZE+ty];

__syncthreads();
}
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Listing A5. Source code for the C++ multi-core function computing pairwise Euclidean distances
between the rows of the input matrix X.

void parallelDist(short **X, int n, int m, int& index1, int& index2, long long d)
{

long long dist[n] = { 0 };
int index[n] = { 0 };
#pragma omp parallel num_threads(12)
{

#pragma omp for
for (int i = 0; i < n −1; i++)
{

long long temp_dist[n] = {0};
for (int j = i + 1; j < n; j++)
{

temp_dist[j] = squarediff(m,X[i],X[j]);
}
dist[i] = *max_element(temp_dist,temp_dist + n);
index[i] = distance(temp_dist, max_element(temp_dist,temp_dist + n));

}
}

d = *max_element(dist, dist + n − 1);
index1 = distance(dist, max_element(dist,dist + n − 1));
index2 = index[index1];

}

Listing A6. Source code for the C++ alignment of a two-dimensional matrix of short.

alignas(__m256i) short **arr = (short **)malloc(ROWS * sizeof(short *));
std::size_t sz = COLS;

for (i = 0; i<ROWS; i++)
arr[i] = static_cast<short*>(aligned_alloc(32,sz*2));
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Listing A7. Source code for the C++ SIMD function computing pairwise Euclidean distances.

long long squarediff_avx(int size, short *p1, short *p2)
{

std::size_t sz = size;
long long s = 0;
int i = 0;

for (; i + 16 <= size; i+ = 16 )
{

// load 256-bit chunks of each array
__m256i first_values = _mm256_load_si256((__m256i*) &p1[i]);

__m256i second_values = _mm256_load_si256((__m256i*) &p2[i]);

//substract each pair of 16-bit integers in the 256-bit chunks
__m256i substracted_values = _mm256_sub_epi16(first_values, second_values);

// multiply each pair of 16-bit integers in the 256-bit chunks
__m256i multiplied_values_lo = _mm256_mullo_epi16(substracted_values,

substracted_values);
__m256i multiplied_values_hi = _mm256_mulhi_epi16(substracted_values, substracted_values);

s += sum_avx(multiplied_values_lo, multiplied_values_hi);
}

for (; i < size; i++)
{

s+= pow(p1[i] - p2[i],2);
}

return s;
}

Listing A8. Source code for the C++ multi-core function computing the sum of two 256-bit registers.

long long sum_avx(__m256i a_part1, __m256i a_part2)
}

short extracted_partial_sums1[16] = {0};
short extracted_partial_sums2[16] = {0};
_mm256_storeu_si256((__m256i*) &extracted_partial_sums1, a_part1);
_mm256_storeu_si256((__m256i*) &extracted_partial_sums2, a_part2);
long long sssum = 0;
for(int i = 0;i < 16;i++) }

int temp = ((extracted_partial_sums2[i]«16) | ((extracted_partial_sums1[i]) & 0xffff));
sssum+=temp;
}
return sssum;
}
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