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Abstract: Global Navigation Satellite Systems’ (GNSS) carrier phase observations are fundamental
in the provision of precise navigation for modern applications in intelligent transport systems.
Differential precise positioning requires the use of a base station nearby the vehicle location, while
attitude determination requires the vehicle to be equipped with a setup of multiple GNSS antennas.
In the GNSS context, positioning and attitude determination have been traditionally tackled in
a separate manner, thus losing valuable correlated information, and for the latter only in batch
form. The main goal of this contribution is to shed some light on the recursive joint estimation
of position and attitude in multi-antenna GNSS platforms. We propose a new formulation for the
joint positioning and attitude (JPA) determination using quaternion rotations. A Bayesian recursive
formulation for JPA is proposed, for which we derive a Kalman filter-like solution. To support the
discussion and assess the performance of the new JPA, the proposed methodology is compared to
standard approaches with actual data collected from a dynamic scenario under the influence of severe
multipath effects.

Keywords: GNSS; RTK positioning; attitude determination; Kalman filtering; quaternion rotation

1. Introduction

As contemporary applications such as driverless cars or autonomous shipping are called to
revolutionize intelligent transportation systems (ITS), there is a growing need for the provision of
precise and reliable navigation information. Global Navigation Satellite Systems (GNSS) play a
fundamental role, becoming the main information supplier of positioning, navigation, and timing
(PNT) data. While standard GNSS techniques—based on code observations— provide a decent
performance for many applications, they do not comply with the far more stringent precision
requirements of modern safety-critical scenarios. That is the reason why the transition to carrier
phase-based techniques is required to reach precise navigation. Indeed, carrier phase observations
present noise levels two orders of magnitude lower than their code counterpart. However, carrier
phase observations are ambiguous, since only their fractional part is measured by the receiver [1].
The unknown number of integer cycles between satellite and receiver, so-called ambiguities, must be
estimated to enable high-precision navigation. The ambiguities’ estimation process is widely known
as ambiguity resolution (AR) [2–5], which in turn results in a challenging estimation procedure.
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From the use of the carrier phase for precise positioning, two localization techniques are
distinguished: (i) precise point positioning (PPP) ([6], Ch. 25) and (ii) real-time kinematics
(RTK) ([6], Ch. 26). The former exploit GNSS precise corrections for atmospheric effects, satellite orbits,
clocks, and antenna biases. This requires the connection to a global network of stations providing
such corrections, which might not be available in real-time (i.e., several days are needed for final
ephemeris products), then limiting its use in certain applications. In addition, PPP is also constrained
by a long convergence time, ranging from five to 20 min [7]. On the other hand, RTK is a relative
positioning procedure where the location of a vehicle is determined with respect to (w.r.t.) a stationary
or virtual base station of known coordinates, achieving centimeter-level precision. Although limited by
the need for proximal base stations and a communication channel, high-precision positioning can be
obtained almost immediately, making RTK more appealing than PPP for certain real-time applications.
This work focuses on the RTK model to address the positioning problem.

Another well-known application of GNSS carrier phase measurements relates to attitude
determination. Attitude determination is the process of estimating the orientation of a moving
rigid body w.r.t. its environment. In a multi-antenna GNSS system, one seeks to estimate the rotation,
which relates the baseline vectors joining each pair of antenna positions across two frames of interest.
Despite GNSS providing substantially higher precision than other attitude determination systems, its
implementation poses some constraints. On the one hand, at least three non-coplanar GNSS antennas
need to be installed and their relative positions accurately surveyed in the vehicle local frame. On the
other hand, attitude precision is inversely proportional to the separation between antennas, making
this system impractical for small vehicles (i.e., such as unmanned aerial vehicles). An overview of the
formulation for GNSS-based attitude determination was introduced in [8], showing the relationship
between carrier phase AR and the corresponding rotation matrix. In addition, the work in [8] discussed
multi-epoch orientation solving and suggested a batch least-squares (LS) solution, which gathers
GNSS observations along some period of time. This solution is however generally incompatible with
real-time applications. The concept of multivariate-constrained Least-squares AMBiguity Decorrelation
Adjustment (MC-LAMBDA) for GNSS carrier phase-based attitude determination was introduced
in [1,9,10], becoming the most popular and effective attitude determination method.

Traditionally, the positioning and attitude determination problems are considered as two
independent processes. Even when integrated as part of the same filtering solution [11–15],
the cross-correlation between the positioning- and attitude-related observations is disregarded.
However, this information results in being very useful, and it strengthens the overall observation
model. Despite its importance in many engineering fields, there are few contributions discussing
the topic and a lack of understanding of the concept of joint position and attitude (JPA) based on
the exploitation of GNSS carrier phase observables, which in turn is the central interest of this work.
There are several important missing points related to JPA, which to the best of the authors’ knowledge,
have never been explored and constitute the contribution of this article:

(1) The GNSS carrier phase-based positioning and attitude models are revisited, and the connection
to the JPA problem is formalized.

(2) Application of Lie theory principles to the GNSS-based attitude problem (and consequently, also
the JPA). Thus, the attitude is parametrized with the unit-quaternion, and a recursive solution
based on an error state Kalman filter (ESKF) is formulated.

(3) The performance of the proposed recursive solution for the JPA problem is addressed on a
realistic signal-degraded scenario, and the comparison w.r.t separately solving the positioning
and attitude problems (i.e., the standard solution) is analyzed.

The rest of the paper is organized as follows. Section 2 presents the notation employed throughout
the paper, the coordinate frames involved in the estimation process, and the state definitions of the JPA.
Then, Section 3 discusses the carrier phase-based positioning and attitude models. Section 4 relates
the GNSS observations models to the JPA problem, and the Kalman Filter-like recursive solution is
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presented. The experimentation and posterior discussion are presented in Section 5. Finally, Section 7
concludes the paper with an outlook and discussion of future work directions.

2. Notation and Definitions

2.1. Notation

Italics indicate a scalar quantity, as in c; lower case boldface indicates a column vector quantity,
as in a; upper case boldface indicates a matrix quantity, as in A. The matrix/vector transpose is
indicated by a superscript (·)> as in A>. [A, B] and [AB] denote the matrix resulting from the horizontal
and the vertical concatenation of A and B, respectively. IM is the identity matrix of dimension M. 1M,N
is an M× N-dimensional matrix with all components equal to one. 0M,N is an M× N-dimensional
matrix with all components equal to zero. ‖ · ‖ denotes a Euclidean norm, and ‖b‖2

A = b>A−1b is the
weighted inner norm. E(·) and D(·) represent the expectation and dispersion operator respectively.
vec(·) is the operator that stacks the columns of a matrix A into a single vector. A = diag(·) indicates
a diagonal matrix whose entries in the diagonal are given by (·). The Kronecker product is denoted
with ⊗. The quaternion multiplication is denoted by ◦.

2.2. Coordinate Frames

In general, a navigation system involves the determination of the position, velocity, and attitude
of a moving (rigid) body. The kinematic quantities generally involve two coordinate frames: (i) the
frame whose motion is described, the body or vehicle frame B, and (ii) the frame with respect to which
that motion is, denoted as the global or inertial frame G. For the problem at hand, the body frame
is defined such that the X-, Y-, and Z-axes are aligned with the right, forward, and up directions of
the vehicle, respectively, while the global frame corresponds to the Earth-centered Earth-fixed (ECEF)
frame. A pictorial example of the aforementioned frames is given in Figure 1 (left). The left subscript
on a vector indicates the frame in which that vector is expressed, while the right subscript refers to a
specific position (i.e., any of the onboard vehicle antennas or the base station).

Figure 1. On the left, depiction of the global and body coordinate frames involved in the navigation
problem. On the right, the configuration of the GNSS master and N slave antennas on the vehicle.

In multi-antenna GNSS platforms, one generally considers the position of the master antenna
as the center of the body frame and the unknown position to be determined Gp , Gpm, while the
positions of the remaining N slave antennas Gpj (with j = 1, . . . , N) are referred to the former with the
respective baseline vectors. For instance, the position in the body frame for the jth slave antenna is as:

Bpj = Bpm + Bbj,m (1)
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where the baseline vector Bbj,m in the body frame is known a priori. Similarly, the position in the
global frame for the jth antenna can be easily formulated upon the knowledge of the master position
and the rotation relating the body and global frames.

Gpj = Gpm + R Bbj,m = Gpm + q ◦ Bbj,m ◦ q∗ (2)

where R ∈ SO(3) and q ∈ S3 are the rotation matrix and unit-quaternion to represent the
body-to-global rotation. The quaternion is written as q = [cos(φ/2), e sin(φ/2)]> with φ a rotation
angle and e a unit rotation axis. The quaternion rotation follows the Hamilton convention (real part
first, right handedness). Henceforth, either R Bu or q ◦ Bu ◦ q∗ are used indistinctly for expressing
the body-to-global rotation of a generic vector Bu. However, since rotation matrices result in difficult
renormalization and computational inefficiency, its use on recursive attitude determination is often
discouraged [16–18]. Instead, this work focuses on the unit quaternion parametrization for attitude
estimation. Additional details on the quaternion group and algebra are provided in Appendix A.

2.3. State Definitions

The proposed JPA problem relates to the estimation of the vehicle kinematics: position Gp, velocity

Gv, and attitude q, as well as the GNSS integer ambiguities a for the n + 1 tracked satellites across the
onboard and base station antennas, as later defined in Section 3. The state estimate x is expressed as a
discrete-time state-space model, described at a given time t as:

xJPA , x =
[
Gp>, Gv>, q>, a>

]>
, Gp, Gv ∈ R3, q ∈ S3, a ∈ Zn×(N+1). (3)

Optionally, the state vector could be augmented to account for the biases of an inertial sensor,
whenever that navigation modality is fused along with GNSS. The state defined in (3) is often applied
to describe the motion of vehicles following a constant-velocity non-turning movement [19,20], e.g.,
automobiles, vessels, or aeroplanes moving in a straight line. To describe a wider range of motions,
(3) could be extended with the acceleration and angular rate of the vehicle, or an interacting multiple
model (IMM) estimator could be applied [21,22].

Preserving the quaternion unit norm constraint is a challenging task, for which Lie theory provides
useful algebraic tools whose application in navigation problems is increasingly used [23–25]. While the
state x lives in a manifold, its perturbations δx belong to the tangent space of the manifold. The error
state Kalman filter (ESKF) allows exploiting the Lie algebra by defining the “true” (unknown) state
as the group composition of the total-state x̂ and the error-state δx as x = x̂⊕ δx [26–28]. At time t,
the error state is described by:

δx =
[
δp>, δv>, δθ>, δa>

]>
, δp, δp, δθ ∈ R3, δa ∈ Rn×(N+1), (4)

where the rotation vector δθ can be identified with its associated quaternion δq as follows:

δθ ∈ R3 (·)∧7−−→ eφ ∈ s3 exp(·)7−−−→ δq ∈ S3. (5)

First, the rotation vector in the Euclidean space δθ ∈ R3 is related to the Lie algebra eφ ∈ s3

through the isomorphism (·)∧ : R3 7→ s3. Then, the Lie algebra is identified with the S3 manifold via
exponential mapping δq = exp(eφ) = [cos(φ/2), e sin(φ/2)]>. Finally, the composition of the total
quaternion q̂ with the error quaternion δq is given by:

q = q̂ ◦ δq (6)

The reader interested in the basics of Lie theory may refer to [29,30] or to a recent selection of
these principles in relation to robotics in [31].
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3. GNSS Carrier Phase-Based Positioning and Attitude Observation Models

Let us consider n + 1 GNSS satellites simultaneously tracked (single frequency) at one antenna
(i.e., if considering N + 1 antennas at the vehicle, the observation model remains the same for each
antenna) installed on a vehicle and at a base station of known coordinates. At a particular time,
the code and phase observables for the ith satellite at the jth antenna (either onboard or base) are:

ρi
j = ‖Gpi − Gpj‖+ Ii + Ti + c

(
dtj − dti

)
+ εi

j,

Φi
j = ‖Gpi − Gpj‖ − Ii + Ti + c

(
dtj − dti

)
+ λNi

j + εi
j,

(7)

where:

ρ, Φ are the code and phase observations (m),

Gpi, Gpj are the positions of the ith satellite and the jth antenna in the global frame,
Ii is the ionospheric error (m),
Ti is the tropospheric error (m),
c is the speed of light (299 792 458 m/s)
dti, dtj are the satellite and receiver clock offsets (s),
λ is the carrier phase wavelength (m),
Ni is the unknown number of cycles (i.e., in general being a real parameter due to the unknown
initial phase at both the satellite and receiver antenna),
εi, εi are the remaining noise/unmodeled errors for code and phase observations, respectively.

Due to the influence of imprecise ephemeris and atmospheric-related errors, high precision cannot
be achieved directly exploiting the observations on (7). Instead, the double-difference combination of
observations is fundamental to enable precise positioning and attitude determination, as discussed
next. For the remainder of the section, superscripts refer to a particular satellite (r for the pivot and
i = 1, . . . , n for the others), while subscripts denote a particular receiving antenna (m for master
antenna, j = 1, . . . , N for the slave antennas, and b for the base station), as illustrated in Figure 2.

Figure 2. Depiction of the satellites, base station, and the vehicle equipped with a master and slave
antennas involved in the GNSS positioning and attitude models. For the sake of simplicity, the Nth
slave antenna has been omitted in this figure.
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3.1. RTK Positioning Model

RTK is a differential positioning procedure, for which the unknown position of a GNSS antenna is
determined w.r.t. a stationary station of known coordinates [32]. To achieve centimeter-level precision
positioning, the use of observation double-differencing and integer AR (IAR) is required (details in
Section 3.2). Double-difference is the combination formed between two satellites and two receivers
to eliminate or minimize nuisance parameters (i.e., atmospheric propagation delays, clock offsets,
relativistic effects, etc.) from the involved observables. In the positioning model, the particular
double-difference (DD) code and phase measurements (i.e., for the ith satellite, w.r.t. the base b and
pivot satellite r, at the master antenna m) are given by:

DDρi,r
b,m = ρi

b − ρi
m − (ρr

b − ρr
m) ,

DDΦi,r
b,m = Φi

b −Φi
m − (Φr

b −Φr
m) ,

(8)

and the set of positioning DD observations are gathered in the vector ypos ∈ R2n,

ypos , yb,m =

[
DDΦ1,r

b,m, · · · , DDΦn,r
b,m︸ ︷︷ ︸

DDΦ1:n,r
b,m

>

, DDρ1,r
b,m, · · · , DDρn,r

b,m︸ ︷︷ ︸
DDρ1:n,r

b,m
>

]>
(9)

where the notation (·)i,r
b,m refers to the DD observation conformed by the base station and master

antennas, pivot, and ith satellite and (·)1:n,r
b,m is the corresponding n-dimensional vector of DD

observations. The resulting positioning observation model is generally expressed in its linearized
form as:

ypos =

[
G λIn

G 0n

]
xpos + npos =

[
B A

]
︸ ︷︷ ︸

Hpos

xpos + npos, (10)

where λ is the carrier wavelength, x>pos = [Gb>b,m, a>pos], apos ∈ Zn is the vector of ambiguities,
and Gbb,m ∈ R3 is the baseline vector between the master and base station positions. npos is a
zero-mean noise term with covariance Qypos . The so-called design matrices are:

A =

[
λIn

0n

]
, B =

[
G
G

]
, G =


−
(
u1 − ur)>

...
− (un − ur)>

 , (11)

where G is the geometry matrix composed by the satellite steering line-of-sight vectors w.r.t. the base

antenna ui = Gpi−Gpb

‖Gpi−Gpb‖ [6]. Re-arranging some terms in (10), the positioning model can be cast as:

E
(
ypos

)
= Aapos + BGbb,m, D(ypos) = Qypos . (12)

Resolving the baseline Gbb,m between the base station and the master antenna grants knowing the
position of the master antenna as:

Gpm = Gpb − Gbb,m. (13)

Notice that in contrast to (7), where the unknown ambiguities Ni
m ∈ R, because of

double-differencing, we now have integer ambiguities apos ∈ Zn. That is, to solve the estimation
problem defined by the linearized Gaussian observation model (10), we have to resort to AR techniques
(see Section 3.2), which applied to the previous equations, define the single-antenna RTK solution.
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3.2. Integer Ambiguity Resolution for Positioning

The system of observation equations in (10) leads to an optimization problem with mixed real
and integer parameter estimation. For simplicity, let us rename the variables for the positioning model
in (10), i.e., y , ypos, Qy , Qypos , a , apos, and b , Gbb,m. Thus, we want to solve:

{a, b} = arg min
b∈R3,a∈Zn

‖y−Aa− Bb‖2
Qy

. (14)

Due to the integer nature of a, a closed-form solution to (14) is not known. Instead, the work
in [33] proposed the decomposition of the quadratic objective function (14) into the sum of three
successive LS problems,

min
b∈R3

a∈Zn

‖y−Aa− Bb‖2
Qy

= min
b̂∈R3

â∈Rn

∥∥∥y−Aâ− Bb̂
∥∥∥2

Qy
+ min

a∈Zn
‖â− a‖2

Qâ
+ min

b∈R3

∥∥∥b̂|a− b
∥∥∥2

Qb̂|a
, (15)

where the first term on the right-hand side is the so-called float solution, min
∥∥∥y−Aâ− Bb̂

∥∥∥2

Qy
,

a weighted LS (WLS) disregarding the integer constraints on a, that is â is the real or float estimation of
the ambiguities.

The second term, min ‖â− a‖2
Qâ

, corresponds to the integer LS (ILS), for which the integer
ambiguities a are found based on the estimated float ambiguities â and their associated covariance
Qâ. The framework for integer aperture (IA) estimation comprises solving the aforementioned ILS
problem and the validation of the obtained solution. A profound discussion on estimators for integer

estimation problems can be found in ([6], Chap. 23). Finally, the third term min
∥∥∥b̂|a− b

∥∥∥2

Qb̂|a
is the fix

solution. It consists of enhancing the localization estimates upon the estimated integer ambiguities,
resolved upon a WLS estimate:

b = b̂−Qb̂,âQ−1
â (â− a) (16)

where Qb̂,â refers to the cross-covariance matrix between the float estimates for position and
ambiguities. A relevant remark is that, whenever the estimated integer ambiguities do not match the
true ones, the fixed solution will be biased. The precision of the solution improves only when the
correct ambiguities are estimated.

3.3. A Comment on Multi-Antenna DD Observations and Processing

Notice that the previous standard RTK solution was formulated for a single master antenna.
One could think that having multiple (N + 1) antennas, i.e., N times more observations, would
certainly improve the overall estimation. The trivial solution is to reformulate the model in (10) taking
into account an N + 1 (i.e., master + N slave antennas) multi-antenna GNSS platform. Notice that in
that case, we have N + 1 unknown baseline vectors between the base and the different antennas to
be estimated alongside the n× (N + 1) integer ambiguities. The multi-antenna (MA) measurement
vector is then:

ypos,MA =
[
y>b,m, y>b,1, · · · , y>b,N

]>
∈ R2n×(N+1), (17)

where yb,m corresponds to (9) and the DD observations formed by the base station and the slave
antennas yb,j, j = 1, . . . , N, can be built as in (8) changing the index m by j. Thus, the corresponding
linearized MA observation model is the concatenation of the single-antenna model (10) as:

ypos,MA = IN+1 ⊗Hpos xpos,MA + npos,MA, (18)
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where the state to be estimated is now x>pos,MA =
[
Gb>b,m, a>b,m, Gb>b,1, a>b,1, · · · , Gb>b,N , a>b,N

]
. However,

obviously, this is like considering N + 1 independent single-antenna RTK problems, because this
trivial formulation does not take into account that all the antennas belong to the same rigid body,
and therefore, there exists a link among antennas, which is disregarded. If we consider known baseline
vectors among the different slave antennas and the master in the body frame, Bbj,m (master to the jth
antenna baseline), we can reformulate the previous model (18) only in terms of the master-to-base
baseline, Gbb,m, but this requires the platform orientation, i.e., its attitude. Therefore, to exploit
multi-antenna RTK solutions correctly, we need to perform a JPA estimation, being the underlying
motivation of this contribution.

3.4. GNSS Attitude Model

GNSS-based attitude determination can be realized for vehicles equipped with at least two GNSS
antennas, whose positions in the local frame of the vehicle have been surveyed, i.e., the baseline among
antennas in the body frame is known. Similarly to the RTK positioning introduced in Section 3.1,
precise GNSS-based attitude estimation requires IAR and observation double-differencing. In this case,
however, the DD combinations performed between the slaves and the master antennas (i.e., for the ith
satellite, w.r.t. the jth antenna and pivot satellite r, at the master antenna m),

DDρi,r
j,m = ρi

j − ρi
m −

(
ρr

j − ρr
m

)
DDΦi,r

j,m = Φi
j −Φi

m −
(

Φr
j −Φr

m

)
.

(19)

The complete set of observations is gathered in vector yatt ∈ R2n×N , which stacks the observations
formed with the combination of slave and master antennas yj,m as:

yatt = vec

[y1,m, . . . , yN,m]︸ ︷︷ ︸
Y

 , (20)

where y>j,m = [DDΦ1:n,r
j,m
>

, DDρ1:n,r
j,m
>
]. Then, the attitude model can be cast as a function of the

quaternion-parametrized attitude operation:

E (yatt) = vec
(

A
[
a1,m, . . . , aN,m

]
︸ ︷︷ ︸

Z

+B
[
q ◦ Bb1,m ◦ q∗, . . . , q ◦ BbN,m ◦ q∗

]
︸ ︷︷ ︸

h(q)

)
, D(yatt) = Qyatt (21)

where Z ∈ Zn,N is the matrix containing the DD ambiguities, which expressed in vector form is denoted
as aatt = vec(Z), aatt ∈ Zn×N . Differently from the RTK positioning case, the GNSS attitude model
presents additional challenges: (i) the double product of the quaternion for the rotation operation
leads to a nonlinear equation (hence, the model being expressed as h(q) and not in matrix form);
(ii) a nonlinear constraint to assure that the quaternion presents the unit norm (otherwise, it would not
represent a proper rotation) is to be imposed. A short discussion on IAR techniques for the attitude
model (21) is provided next, with the associated recursive solution being proposed in Section 4.

3.5. Integer Ambiguity Resolution for Attitude Determination

As previously discussed, the GNSS attitude model in (21) leads to a nonlinear optimization
problem with mixed real and integer parameter estimation, subject to a nonlinear constraint.
The optimization problem is formulated as:

{a, q} = arg min
a∈Zn×N ,q∈S3

‖vec (Y−AZ− Bh(q))‖2
Qy

. (22)
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Notice that, although the constraint function is not made explicit (i.e., (22) is subject to ‖q‖2 = 1),
such a constraint is made implicit by indicating that the quaternion belongs to the three-sphere
q ∈ S3. Similarly to the RTK positioning problem, a closed-form solution to (22) is not known, and a
decomposition into three sequential LS adjustments is applied:

min
a∈Zn×N ,q∈S3

‖vec (Y−AZ− Bh(q))‖2
Qy

= min
Ẑ∈Rn,N ,q̂∈S3

∥∥vec
(
Y−AẐ− Bh(q̂)

)∥∥2
Qy

(23a)

+ min
a∈Zn×N

‖vec(Z)− a‖2
QZ

(23b)

+ min
q∈S3

‖q̂|a− q‖2
Qq̂|a

. (23c)

Similarly to the IAR for positioning in Section 3.2, the three consecutive estimates correspond to
the float solution, the integer ambiguities, and the fixed solution, respectively, with slight differences
residing on the resolution of (23a) and (23c). For non-recursive estimation, (23a) can be solved applying
an iterative on-manifold Gauss–Newton method [34,35]. Notice that the aforementioned adjustment
constitutes a local search for (23a), and thus, the initial quaternion should be carefully chosen [36].
Likewise, solution fixing (23c) also makes use of the Lie algebra, the fixed solution being updated via
exponential mapping, as described in [37].

The multivariate constrained LAMBDA (MC-LAMBDA) constitutes an alternative for the
procedure (23), and it can be considered as the most widespread solution to the GNSS-based
attitude-only determination problem. MC-LAMBDA generally parametrizes attitude as a rotation
matrix, whose nine elements are initially estimated in the float solution disregarding the orthogonality
constraints (i.e., R>R = I, det(R) = 1). Then, the ILS search is performed in conjunction with the
evaluation of the solution fixing—which, in the MC-LAMBDA case, comprises a weighted orthogonal
Procrustes problem—the estimated vector of ambiguities being the minimizer of the combined cost
function [8,9,38]. Despite the popularity and proven effectiveness of MC-LAMBDA, it remains
computationally demanding, and its use on recursive estimation is not as straightforward as the
proposed solution based on Lie theory.

4. Kalman Filtering for the Joint Positioning and Attitude Estimation

Generally, the determination of the positioning and attitude solution is either separately carried
out or as part of the same filtering solution, but disregarding the cross-correlation between the attitude
and positioning models. This section introduces a recursive solution for the JPA problem, based on the
ESKF described in Section 2.3, where the cross-correlation between positioning and attitude models is
recognized and exploited for an enhanced performance.

Similarly to the positioning and attitude problems, JPA requires the determination of a vector
composed by integer and on-manifold values. Thus, a three-step decomposition (float estimation,
IAR, and fixing estimation) is applied like in Section 3.5. Remarkably, the IAR process does not
incur modifications—other than the vector of ambiguities comprising both the positioning- and
attitude-related ambiguities—and any admissible integer estimator can be applied, with the ILS
being an optimal estimator [39,40]. With regards to the solution fixing, JPA proceeds similarly to the
attitude case in Section 3.5, applying a WLS. The output of such a WLS is expressed as the error state
(with minimal parametrization of the attitude), which is translated to the total state respecting the
composition operation defined in Section 2.3. Thus, the major aspect to address in the recursive JPA
problem regards the definition of the associated ESKF and the observation models, which are described
in the remainder of the section.

The belief function for the state (3) is presumed to be Gaussian and conditioned on the choice for
the initial state:

p (xt, x0, y0:t) = N (x̂t, Pt) , (24)
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where Pt is the covariance matrix. Notice that, since the error state comprises the state uncertainty,
Pt ∈ R9+n(N+1),9+n(N+1) presents minimal parametrization (i.e., the attitude represented in Pt regards
the uncertainty in the rotation vector θ ∈ R3). The time evolution of xt is dictated by the process and
measurement functions, f(·) and h(·), respectively, also known as prediction and correction models:

xt = f (xt−1) + wt, (25)

yt = h (xt) + nt, (26)

where the process and observation noise are assumed to follow zero-mean normal distributions
wt ∼ N (0, Qt), nt ∼ N (0, Qy), and yt is the vector of observations. The time index t is used
generically: the prediction step can be performed periodically, and the correction step is triggered
whenever GNSS observations are received. Thus, we use t− 1 to refer to the most recent change on
the state estimation (either due to a prediction or a correction step). The ESKF operates the nonlinear
equations for prediction and observation on the total state x̂, while the disturbances represented in the
error state are assumed as small signals, meaning that second-order products are negligible and the
Jacobians are easily derived.

4.1. Prediction Step

A typical dynamical model regards a vehicle to move according to the constant-velocity
non-turning model [19]. Thus, the process function f(·) leads to the following linear model:

x̂t =


I3 I3∆t

I3

I4

In(N+1)

 x̂t−1, (27)

where the empty spots for the matrix in (27) correspond to zero values. ∆t corresponds to the time
spanned between the time at the latest prediction or correction step and the current time. Then,
the covariance predictor is:

Pt = FxPt−1F>x + Qt, (28)

with Qt = diag
(

σ2
p13,1, σ2

v 13,1, σ2
θ 13,1, σ2

a 1n(N+1),1

)
the diagonal matrix gathering the process noise

for the position σ2
p, velocity σ2

v , orientation σ2
θ , and ambiguities σ2

a . The process noise variances
constitute the tuning parameters for the filter and shall scale with the time ∆t. The Jacobian w.r.t. the
error state Fx is as:

Fx ,
∂f

∂δx

∣∣∣∣
x̂t

=


I3 I3∆t

I3

I3

In(N+1)

 . (29)

As discussed in Section 2.3, the presented prediction model describes the movement behavior of
a non-maneuvering vehicle. A more precise prediction step would integrate inertial measurements,
for which the modification of the proposed ESKF can be realized straightforwardly following [28,37].

4.2. Correction Step

At this stage, the observations ypos, yatt corresponding to the positioning and attitude models are
integrated into the recursive JPA estimate. For the sake of convenience, when building the Jacobian
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matrices, the vector of observations yJPA = y ∈ R2n(N+1) is re-structured so that DD phase observations
appear before the DD code observations such as:

yJPA =
[

DDΦ1:n,r
b,m

>︸ ︷︷ ︸
yΦ,pos

, DDΦ1:n,r
1,m

>
, . . . , DDΦ1:n,r

N,m
>︸ ︷︷ ︸

yΦ,att

, DDρ1:n,r
b,m

>︸ ︷︷ ︸
yρ,pos

, DDρ1:n,r
1,m

>
, . . . , DDρ1:n,r

N,m
>︸ ︷︷ ︸

yρ,att

]>
, (30)

where we have introduced the additional notation yΦ/ρ,pos/att to refer to the set of phase and code DD
observations derived from the base-master (positioning) or the slaves-master (attitude) combination.

The update on the state is done according to the classical KF equations:

Kt = Pt−1H>t
(

HtPt−1H>t + Qy

)−1
, (31)

Pt = (I−KtHt)Pt−1, (32)

xt = x̂t ⊕Kt (y− h(xt))︸ ︷︷ ︸
δxt

, (33)

with the measurement function h(·) relating the observations to the state estimate as explained in
Section 3 and Ht the Jacobian matrix for the measurement functions. Applying the chain rule on the
group composition x = x̂⊕ δx, Ht is defined as:

Ht ,
∂h
∂δx

∣∣∣∣
x̂t

=
∂h
∂x

∣∣∣∣
x̂

∂x
∂δxt

∣∣∣∣
x̂t

= Hx̂Hδx, (34)

where Hx̂ is the standard Jacobian of h(·) w.r.t. the nominal state x̂ as:

Hx̂ =

[
IN+1 ⊗ B 02n(N+1),3 Hq̂ IN+1 ⊗A

∂h/∂Gp ∂h/∂Gv ∂h/∂q ∂h/∂a

]
, Hq̂ =


02n,4

B Jq(Bb1,m)
...

B Jq(BbN,m)

 (35)

where the partial derivatives in Hx̂ are indicated in a second row, A, B are as in (11), and Jq(Bbj,m) ,
∂(q ◦ Bbj,m ◦ q∗)/∂q

∣∣
q̂t

is given in (A21). Hδx is the Jacobian of the true state w.r.t. the error state as:

Hδx =


I3

I3

Hδθ

In(N+1)
∂(Gp+δp)

∂δp
∂(Gv+δv)

∂δv
∂(q⊗δq)

∂δq
∂(a+δa)

∂δa

 , Hδθ =
1
2
[q̂t]L


0 0 0
1 0 0
0 1 0
0 0 1

 , (36)

with [q̂t]L defined in (A9) and the partial derivatives indicated below the matrix.
Proper stochastic modeling is key to assure the performance of the proposed JPA problem. Thus,

the observations’ covariance matrix Qy is defined as follows:

Qy ,

[
QΦ

Qρ

]
=


QΦ,pos QΦ,pos,att

QΦ,att,pos QΦ,att

Qρ,pos Qρ,pos,att

Qρ,att,pos Qρ,att

 , (37)

where the subscripts used in (37) follow the notation introduced in (30). Thus, QΦ, Qρ ∈ Rn(N+1),n(N+1)

are the covariance matrices for the complete set of DD carrier and code observations. The former
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matrices QΦ, Qρ are then conformed by the set of carrier/code DD for positioning QΦ,pos, Qρ,pos ∈ Rn,n

and for attitude QΦ,att, Qρ,att ∈ Rn×N,n×N . Matrices QΦ,pos,att, Qρ,pos,att ∈ Rn,n×N denote the
cross-correlation between the code/phase observations for positioning and attitude. Notice that
conventional processing estimation schemes, which separately estimate the positioning and attitude
problems, disregard the cross-correlation between the two problems (i.e., QΦ,pos,att, Qρ,pos,att = 0).
However, this cross-correlation does exist, since the DD observations for positioning and attitude
have in common the pivot satellite noise perceived at the master antenna. Notice that code and phase
observations are generally assumed to be uncorrelated.

Stochastic modeling for the proposed JPA set of observations can realized straightforwardly as:

Qy =

[
DJPA ⊗DW−1

Φ D>

DJPA ⊗DW−1
ρ D>

]
, (38)

where DJPA ∈ RN+1,N+1 is the differencing matrix, which introduces the base/slaves–master noise
correlation, and D ∈ Rn+1,n the differencing matrix to relate the pivot to the remaining satellites:

DJPA =
[
IN+1 + 1N+1,N+1

]
, D =

[
−1n,1 In

]
. (39)

Finally, W−1
Φ , W−1

ρ ∈ Rn+1 are the diagonal matrices composed by the variance of the original
n + 1 code and phase observations, respectively:

W−1
Φ = diag

(
σr

Φ
2, σ1

Φ
2
, . . . , σn

Φ
2
)

, W−1
ρ = diag

(
σr

ρ
2, σ1

ρ
2
, . . . , σn

ρ
2
)

. (40)

where each σr/1:n
Φ/ρ indicates the standard deviation of the phase and code observations for the n

satellites and the pivot r one. Characterization of the noise present in GNSS observables is generally
realized applying satellite elevation- or carrier-to-noise density ratio C/N0-based models [41,42].
Recently, stochastic modeling w.r.t. the GNSS baseband signal resolution (i.e., bandwidth, modulation,
autocorrelation function) has been proposed [43,44]. When the receiver characteristics and the C/N0

model are unknown, the following elevation-based model is advised:

σi
Φ

2
= a2 +

(
b/ sin(eli)

)2
, σi

ρ
2
= a2 · f 2 + f 2 ·

(
b/ sin(eli)

)2
, (41)

where eli indicates the elevation of the ith satellite, a = 2 mm, b = 2 mm, and f = 100 [11]. Additionally,
when considering medium baseline lengths, —i.e., when the distance to the base station exceeds
20 km—, an additional noise term is added to the positioning covariance matrices QΦ,pos and Qρ,pos to
account for the atmospheric differences between the base and vehicle antennas [45,46].

To emphasize the importance of the JPA model to exploit the observations’ cross-correlation fully,
Figure 3 presents a pictorial example. Such an example considers four observations (with variances
shown in the color bar) to be tracked by the base station, the master, and N = 2 slave antennas.
The code DD covariance matrix Qρ is shown in Figure 3 (left) for the separate estimation of positioning
and attitude and in Figure 3 (right) for the JPA problem. One can observe that separately estimating
the positioning and the attitude problems does not exploit the cross-correlation between both models,
given by the noise for the pivot satellite at the master antenna.
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Figure 3. Pictorial example for double-difference (DD) code observation covariance matrix Qρ. On the
left, the case for separately solving the positioning and attitude problems. On the right, the joint
positioning and attitude (JPA) problem is depicted with positioning and attitude cross-correlation taken
into account.

5. Experimental Setup

The performance characterization of the proposed ESKF-based JPA problem was addressed for
the navigation of a vessel navigation in an inland waterway channel, which is an interesting ITS
application. The measurement campaign was conducted in Koblenz (Germany) on 16 May 2017 (DOY
136, UTC 09:00-14:00), the tracked vehicle the being MSBingen, a multi-purpose research vessel of
the German Waterways authorities. The equipment setup listed three navXperience R© 3G+C GNSS
antennas connected to three separate dual frequency Javad R© Delta receivers, a fiber optic gyroscope
(FOG) IMU iMAR R© IMU FCAI [47], and an active reflector under the master antenna. Figure 4 (left)
shows the MS Bingen and the location of the GNSS antennas and the reflector, while the top right
indicates the configuration of the antennas and the IMU in the body frame, and the bottom right
depicts the number of GPS satellites tracked, as well as the position dilution of precision (PDOP) along
the five-hour long campaign.

Figure 4. On the left, the MSBingen vessel whose navigation solution is estimated. On the top
right, the configuration of the antennas in the body/vehicle coordinate frame. On the bottom right,
the number of tracked GPS satellites and associated position dilution of precision (PDOP).
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The trajectory followed and the location of the base station and the total station are illustrated
in Figure 5, with the distance between the base and the vessel constituting a short baseline ranging
between 900 m and 2.5 km. The vessel navigated from the port on the right side of Figure 5 up river
and then returned back to the point of departure. Moreover, the vessel performed several turns around
the three consecutive bridges nearby the total station, as shown in Figure 6. The multiple bridges
were present along the navigation, especially in the surroundings of the total station position. These
structures shaded the reception of satellite signals and induced multipath/non-line-of-sight (NLOS),
and the navigation solution could be easily affected, leading to multiple cycle slips/loss of track to
occur in the proximity of the bridges.

The reference trajectory of the vessel was obtained based on optical technology [48], using a
total station on land and an active reflector mounted under the master GNSS antenna for automatic
target tracking. This technology assured a positioning accuracy around one centimeter and whose
error pattern was independent of GNSS, while its availability was assured even during the maneuvers
realized around the bridges. The integration of the angular rates measured by the high-quality IMU
was used as the benchmark solution for the attitude estimates.

Figure 5. Trajectory followed by the tracked vessel, whose departure and arrival points coincide with
the port on the right-hand side. The location of the total station (for optical tracking the vessel) and the
base station are marked with a round and a square indicator, respectively.

Figure 6. Positioning performance for the JPA method during bridge passing. The black line is the
reference trajectory estimated using laser tracking, and the dots correspond to the estimated solution
(only fixed estimates) with the horizontal accuracy as indicated on the color bar.

The ESKF-based JPA solution was as presented in Section 4, while the positioning- and
attitude-only estimates were derived from the recursive formulation of the models in Section 3.
The navigation solution used GPS observations for the L1 and L2 frequencies, with a cut-off elevation
of 15◦ and a sampling rate of 1 Hz. Stochastic modeling of the observation was realized using the
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elevation-based model in (41). The IAR process used the ILS method based on search-and-shrink [3],
and the navigation solution was only considered valid when the ratio-test for ambiguity resolution
was passed [49,50]. Despite using the ratio-test, failure cases—i.e., when an ILS solution is considered
valid, but the ambiguities are incorrectly estimated—could occur. In this experiment, the failure rates
for both JPA and separately estimation of positioning and attitude were comparable and rather low
(≤1% during the period of bridge passing). Thus, the fix ratio—i.e., the percentage of epochs for which
the ratio-test is passed—was considered to evaluate the availability of the precise navigation estimates.

6. Results and Discussion

First, the performance characterization of the proposed JPA was compared against positioning
and attitude determination solutions obtained in a separate manner (i.e., two Kalman filters were
processed in parallel, one integrating the positioning observations and the other in charge of the
attitude model). Notice that the inertial information was not integrated in any of the aforementioned
filters, since the focus of the contribution was to address the gain of JPA against conventional GNSS
attitude and positioning models.

The comparison between JPA and the positioning- and attitude-only models is reported in Table 1,
in terms of the fix ratio over the course of the measurement campaign. The first column depicts
the number of satellites n + 1 and the corresponding percentage of time for which that number was
tracked. The following columns correspond to the fix ratio of the assessed positioning and attitude
methods: the second column is for the proposed JPA, the third for the positioning-only, the fourth for
the attitude-only, and the last column the union of the positioning and attitude (i.e., the simultaneous
occurrence of having a fixed solution for the positioning- and attitude-only solution of the third and
fourth columns). The first thing to notice is that, generally, the fixing ratio grew with the number of
satellites, and the chances of having a fixed solution for five or less satellites was very uncommon. Some
conclusions could be drawn from the comparison of JPA against separately estimating positioning
and attitude:

Table 1. Percentage of fixed solutions (%) depending on the number of locked satellites.

Number of Satellites/Time (%) Fix Ratio (%)
JPA Positioning Attitude Pos ∩ Attitude

9/(28.68) 85.94 82.30 83.25 73.10

8/(27.10) 83.93 54.07 78.50 49.07

7/(35.32) 68.12 60.22 81.58 53.49

6/(06.51) 47.78 65.27 66.89 60.24

≤5/(2.38) 01.17 02.33 02.56 01.40

Total 74.60 63.84 79.35 57.11

(i) The attitude model was “stronger” than the positioning one despite the nonlinearities in the
observation function. There were two reasons to ground the positioning-attitude difference in
performance: on the one hand, small residuals due to the atmospheric propagation delays between
the vehicle and the base station might be present despite the short baseline; on the other hand,
the data redundancy was higher in the attitude than in the positioning model (i.e., n(N + 1) code
observations guided the float estimate of the four-dimensional unknown quaternion, while n code
measurements supported the search of the three-dimensional unknown position).

(ii) In average, JPA performed better than the union of separately estimating the position and attitude
problems. Thus, the former provided a fixed solution for 74.60% of the time, while the latter
was limited to 57.11% of time—which was a difference in precise navigation availability of over
45 min. Such increased performance was likely due to exploiting the cross-correlation between
the positioning- and attitude-related observations, as discussed in Section 4.
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(iii) The standalone attitude problem presented a higher fix ratio compared to the JPA, as it was
unaffected by the residual atmospheric propagation delays present in the positioning problem.
Thus, a practical application might be interested in executing in parallel the attitude-only and the
JPA filters, leading to high availability positioning and attitude estimates and a mechanism to
monitor the integrity of the algorithms if discrepancies between the estimates occurred.

Next, the positioning performance was analyzed. Besides the higher availability for the JPA
against positioning-only estimates, the fixed solutions were very much equivalent up to the mm-regime.
As depicted in Figure 6, a GNSS-independent localization ground truth was available, obtained using
optical (laser-based) technology. For that, a total station was located on the small island in the center
of the river, and automatic tracking of the active reflector located below the master antenna was
performed. This area was most interesting, since the three bridges induced multipath biases and the
track of satellites was often lost. As expected, the chance for having a fixed navigation solution under
the bridges resulted in being null, although the navigation fix was rapidly recovered. The standard
deviation for the fixed position solution was very close to a centimeter, although a few wrong fixes
(with horizontal errors of up to 15 cm) occurred as well. To counteract or minimize the likelihood of
wrong fixes to occur, the use of a second constellation, the integration of IMU observations, or the
application of GNSS-robust techniques would be of great benefit [51,52].

Finally, the JPA-based attitude determination performance was examined. As with the positioning
case, the fixed attitude solutions were equivalent between attitude-only and JPA estimates. Figure 7
depicts the estimated orientation using the Euler angles—pitch, roll, and heading—defined here
as the rotation from the body to the global frames. The highest degree of similarity was achieved
on the heading estimation, while the pitch and especially the roll were characterized with higher
levels of noise. The better heading performance could be explained in relation to the GNSS satellite
geometry—offering a higher accuracy on the horizontal plane—and the antenna configuration onboard
the vehicle, as the two front antennas were coplanar with the local horizontal plane of the vehicle.
It was noticeable that the IMU allowed to track subtle motions, such as the pitch variations due to the
small waves in the river, and in general, the fusion of IMU and GNSS is recommended. Although the
standard deviation for the heading estimates were below the degree, the roll presented some errors of
up to 10◦, likely due to a wrong fix, since the period of time analyzed (12:00–13:00 UTC) corresponded
to the time in which the vessel maneuvered around the bridges.

Figure 7. Attitude estimates over time for an hour of the studied experimentation. The attitude
performance of the JPA (in black crosses) is shown against the reference fiber optic gyroscope (FOG)
IMU-based estimate (in grey).
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7. Conclusions and Future Work

This article provided a discussion of GNSS carrier phase-based positioning and attitude
determination. Generally, these two estimation problems are solved individually, with some estimation
machinery behind each of them, or as part of the same navigation solution, but disregarding
the cross-correlation existing between the observations. The joint positioning and attitude (JPA)
problem was introduced, with special emphasis on the recursive solution to the estimation problem.
Thus, applying the principles of Lie theory and the well-known error state Kalman filter (ESKF),
a complete recursive solution for the JPA problem was presented. Besides the simplicity of the
solution, the ESKF presented as assets: (i) minimal state parametrization, avoiding possible numerical
instabilities on the estimated covariance matrix; (ii) straightforward use of the three-step decomposition
of the mixed integer and real parameter estimation, where computationally intensive methods for
the fix solution were avoided. The proposed ESKF and JPA were motivated by the expression of the
GNSS attitude model in terms of the unit quaternion rotation, which was also presented here. Unlike
traditional models based on the estimate of inter-antenna baselines or rotation matrices, the model
presented respected the nonlinear constraints of the rotation throughout the three consecutive
least-squares solutions. Moreover, the tight search for the integer candidates in conjunction with
the weighted orthogonal Procrustes problem as in the acclaimed MC-LAMBDA was bypassed.

The experimentation of this work included real data collected for an ITS application, for which
a vessel navigated for several hours around an inland waterway scenario. The results indicated a
clear gain in precise navigation availability for the proposed recursive JPA, when compared to filtering
solutions applied in parallel for the positioning and attitude cases. However, evidence showed that,
since the GNSS attitude model was clearly stronger than the positioning one (at least when three or
more GNSS antennas conformed the vehicle setup), the best strategy for a real application would
probably be the parallel execution of an attitude-only and JPA filtering solutions. Thus, the availability
of precise attitude and positioning estimates would be maximized.

Prospective lines of research on the JPA problem relate to the theoretical characterization of
possible estimators. For any estimation problem, it is fundamental to obtain the minimum achievable
performance, i.e., the derivation of the associated Cramér–Rao bound (CRB). This is especially
challenging for JPA, since the model constitutes a mixture of real and integer unknown parameters.
Moreover, such CRB should be invariant, since the performance shall not depend on the attitude
parametrization employed. Hence, the ultimate performance (i.e., efficiency) of the proposed Lie
algebra-based recursive JPA solution remains an open issue until such a CRB is derived.
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Appendix A. The Rotation Group and the Quaternion

Attitude determination is the process of finding the relative orientation between two orthogonal
frames. In R3, the rotation group SO (3) denotes the group of rotations under the operation of
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composition [30]. Rotations are linear operations preserving the vector length and the relative vector
orientation. Thus, the rotation group SO (3) can be defined as:

SO (3) := {r : R3 → R3/ ∀ v, w ∈ R3 , ‖r (v) ‖ = ‖v‖, r (v)× r (w) = r (v×w)}. (A1)

The rotation operation can be represented in multiple forms, although the most well known
correspond to the Euler angles, rotation matrix, and quaternion. The quaternion is a four-dimensional
hyper-complex number, often used to represent the orientation of a rigid body in a 3D space under the
unit-norm constraint. The quaternion is defined as:

q ,

[
qw

qu

]
=

[
cos (θ/2)

e sin (θ/2)

]
, (A2)

with qw and qu the real and complex parts, e a unit rotation axis, and θ a rotation angle. The unit
quaternion can also be expressed with the exponential mapping of the rotation vector θ ∈ R3, such that:

q{θ} , exp (θ) =

[
cos

(
‖θ‖2/2

)
θ
‖θ‖2 sin

(
‖θ‖2/2

)] . (A3)

A quaternion only describes a proper rotation under the unit-norm constraint of its components:

‖q‖2 ≡ q2
w + ‖qu‖2 = 1. (A4)

Quaternions obeying this constraint can be said to belong to the unit-quaternion group, described
by the three-sphere S3. The transformation quaternion to rotation matrix R is given by the following
homogeneous quadratic function:

R{q} =
(

q2
w − qu

>qu

)
I3 + 2ququ

> + 2qw[qu×], (A5)

where I3 ∈ R3 is the identity matrix and the skew operator [v×] defines the cross-product matrix:

[v×] =

 0 −vz vy

vz 0 −vx

−vy vz 0

 , (A6)

which is a skew-symmetric matrix, i.e., [v×] = −[v×], equivalent to the matrix form of the cross
product [v×] w = v×w.

The quaternion product (quaternion product is generally denoted as ⊗, which this work reserves
for the Kronecker product instead.) ◦ is non-commutative, associative, and distributive over the sum:

p ◦ q =

[
pwqw − pu

>qu

pwqu + qwpu + pu × qu

]
, (A7)

The composition of quaternions is bilinear and can be expressed as two matrix products:

q1 ◦ q2 = [q1]Lq2 q1 ◦ q2 = [q2]Rq1, (A8)

with [q]L and [q]R the left and right quaternion product matrices, respectively. These product matrices
are given by:

[q]L = q0I4 +

[
0 −qu

>

qu [qu×]

]
, [q]R = q0I4 +

[
0 −qu

>

qu −[qu×]

]
. (A9)
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The rotation operator over a vector r(v) using quaternion parametrization is expressed as:

r(v) = R{q} v = q ◦ v ◦ q∗, (A10)

where q∗ is the inverse quaternion operation:

q∗ =

[
qw

−qu

]
. (A11)

Jacobian with Respect to the Quaternion

This subsection derives the Jacobian matrix Jq(v) for the rotation of the vector v with respect to
the quaternion q, defined as:

Jq(v) ,
∂ (q ◦ v ◦ q∗)

∂ q
. (A12)

Extending the quaternion multiplication and using (A7),

q ◦ v ◦ q∗ =

[
qw

qu

]
◦
[

0
v

]
◦
[

qw

−qu

]
(A13)

=

[
−qu

>v
qwv + qu × v

]
◦
[

qw

−qu

]
, (A14)

from here, we will pay attention solely to the imaginary part:

q ◦ v ◦ q∗ = −qu
>v (−qu) + qw (qwv + qu × v) + (qwv + qu × v)× (−qu)

= qu
>v qu + q2

wv + qwqu × v− qwv× qu + (qu × v)× (−qu) . (A15)

Considering the vectorial product properties:

a× b = −b× a (A16)

a× (b× c) =
(

aTc
)

b−
(

aTb
)

c (A17)

we can group qwqu × v− qwv× qu = −2qwv× qu. Substituting the vectorial product for the skew
operator [·×], to facilitate the matrix formulation, and applying Equation (A17), we can reformulate
the quaternion operator as:

q ◦ v ◦ q∗ = q2
wv− 2qw[v×]qu + 2

(
qu
>v
)

qu −
(

qu
>qu

)
v. (A18)

From here, deriving the partial derivatives of the quaternion results in being uncomplicated:

∂ (q ◦ v ◦ q∗)
∂ qw

= 2qwv− 2[v×]qu (A19)

∂ (q ◦ v ◦ q∗)
∂qu

= −2qw[v×] + 2
(

qu
>vI3 + quv>

)
− 2vqu

>, (A20)

obtaining finally:

Jq(v) = 2
[

qwv− [v×]qu −qw[v×] + qu
TvI3 + quv> − vqu

>
]
∈ R3,4. (A21)
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