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Abstract: Transformation to Continuous Cover Forestry (CCF) is a long and difficult process in which
frequent management interventions rapidly alter forest structure and dynamics with long lasting
impacts. Therefore, a critical component of transformation is the acquisition of up-to-date forest
inventory data to direct future management decisions. Recently, the use of single tree detection
methods derived from unmanned aerial vehicle (UAV) has been identified as being a cost effective
method for inventorying forests. However, the rapidly changing structure of forest stands in
transformation amplifies the difficultly in transferability of current individual tree detection (ITD)
methods. This study presents a novel ITD Bayesian parameter optimisation approach that uses
quantile regression and external biophysical tree data sets to provide a transferable and low cost ITD
approach to monitoring stands in transformation. We applied this novel method to 5 stands in a
variety of transformation stages in the UK and to a independent test study site in California, USA,
to assess the accuracy and transferability of this method. Requiring small amounts of training data
(15 reference trees) this approach had a mean test accuracy (F-score = 0.88) and provided mean tree
diameter estimates (RMSE = 5.6 cm) with differences that were not significance to the ground data
(p < 0.05). We conclude that this method can be used to monitor forests stands in transformation and
thus can also be applied to a wide range of forest structures with limited manual parameterisation
between sites.
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1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) has identified climate change as a major
threat to agriculture, food security and the livelihood of millions of people across the globe [1]. Forests
are particularly at risk, as their long life span does not permit rapid adaptation to environmental
change [2]. Climate change is predicted to alter: relative abundance of tree species within forests;
tree phenology and frequency and intensity of disturbance mechanisms, including wind and forest
pests [3]. Planted forests have been identified as being especially susceptible to climate change as they
are generally dominated by only one or a few tree species with limited genetic diversity [4].

In its origins around the world, plantation forestry was an entity focused on producing wood
products such as fuelwood or timber [5]. In the 1980s, a new paradigm emerged which emphasised
the potential to manage forests for range of ecosystem services alongside more traditional forest
commodities [6]. In the UK this approach is named under the collective umbrella of Continuous
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Cover Forestry (CCF). CCF is a management approach that maintains forest cover over time, by the
selective felling of single or small patches of trees, which aims to produce a more diverse forest
structure [7]. CCF silvicultural principles, such as promoting structural diversity is well suited
to assist making plantations less vulnerable to the effects of climate change [8]. Transformation
of even-aged plantations to CCF is a long and difficult task which needs frequent management
interventions [9]. A single management intervention can have considerable, long term impacts on
forest structure [10] and has been suggested to be comparable to natural pathogen infestation and
sporadic fire [11]. Therefore, new methods are needed for monitoring transformation which are
cost and time effective when compared against traditional field data collection methods to assist in
informing management interventions.

Unmanned aerial vehicle (UAV) offer opportunities for rapid collection of remotely sensed data
from which forest metrics can be achieved [12,13]. Progression of computer power and dense image
matching techniques has enabled the development of dense photogrammetric points clouds from
UAVs [14]. Photogrammetric generated points clouds are passive and produce detailed Canopy
Height Models (CHM) but are limited in their ability to penetrate the forest canopy [15,16]. However,
photogrammetry is a low cost alternative to Light Detection and Ranging (LiDAR), and enhances the
possibility of using high temporal and spatial resolution to monitor of forest [17]. This development
has opened up the opportunity for Individual Tree Detection (ITD), which enables detailed information
to be retrieved on a tree by tree basis [18], which is vital in assisting with monitoring forests through
transformation to CCF [19]. ITD methods revolve around three sequential steps which involve tree
detection, feature extraction and estimation of tree attributes [20]. A variety of approaches have been
developed to delineate individual trees from both LiDAR and photogrammetry [21], but generally they
can be divided into two categories, i.e., raster based and point based methods. Point based methods
are usually considered more computationally demanding but allows the whole three-dimensional data
to be considered. To-date raster based approaches have been preferred in ITD studies [22]. A variety
of approaches to delineating individual trees from the CHM have been developed: local maxima
detection, valley following, template matching and marked point processes [23–25]. Raster based
approaches are relatively more simple, computationally efficient over large areas and the CHM can be
generated using cost effective photogrammetry.

The performance of ITD methods has been found to vary with forest structure [26], species [27]
and sensor type [28]. Achieving optimal ITD accuracies is heavily dependant upon two factors:
(i) the extraction methods [29], and (ii) the parameter combinations [30,31]. Investigation into parameter
choice in ITD is in its infancy, with the majority of studies conducting sensitivity analyses by changing
one parameter at a time whilst keeping the other constant (instead of globally) [31,32], thereby not
integrating multi-way parameter interaction [33,34]. Monitoring transformation using ITD methods is
made additionally challenging by rapid structural alterations which occur during selective tree felling
to promote natural regeneration. Selective felling has been found to alter the allometric relationships
of the remaining trees and therefore ITD parameterisation is necessary to incorporate these changes
and is vital in determining transferability of ITD methods across stages of transformation [35,36].
Therefore, ITD methods used to monitor transformation to CCF must be able to efficiently and
accurately self-parametrise to different forest structures to maintain cost effectiveness.

This study address the aforementioned practical challenges by: (i) presenting a novel Bayesian
optimisation approach of parameterising an ITD framework that uses external tree data, removing the
need for site specific allometric models, (ii) demonstrate the effectiveness of this framework against
combinations of fixed sized local maxima search windows which is a well established ITD approach
and, (iii) investigate the transferability of this approach to retrieve tree biophysical variables from
forest stands in a range of transformation stages.
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2. Materials and Methods

2.1. Study Sites

Five study sites located in the UK were identified by experienced CCF practitioners as being in
differing stages of transformation to CCF.

Sites 1 to 4 are forest stands located in Bryn Arau Duon, Carmarthenshire, Wales (52◦07′24.0′′,
3◦50′02′′) (Figure 1). Sites 1, 3 and 4 represent “promoting regeneration” and site 2 represents the
“differentiation” stage of Schütz [9] transformation stages. Bryn Arau Duon is a 600 ha Sitka Spruce
(Picea sitchensis (Bong.) Carr.) dominated plantation, standing at an elevation of 400 m. The initial
planting density was 2500 (stems ha−1). Stands 1 to 4 were planted between 1973 and 1980 and the
first thinnings for the stands were carried out between 2002 and 2004. Since then the stands have been
regularly thinned in order to progress them through transformation stages. Site 5 is located in Wiltshire,
England at Stourhead Estate (51◦06′46.8′′, 2◦21′03′′). This mixed species stand is dominated by Douglas
fir (Pseudotsuga menziesii (Mirb) Franco.), with the presence of other coniferous species (e.g., Picea abies
(L.) Karst., Larix europea Mill.) and broadleaves species (e.g., Quercus robur L., Fraxinus excelsior L.,
Alnus glutinosa L. Gaertn.). Site 5 has formally been in transformation to CCF since 1997 and is the
most diverse in terms of structure and tree species of the study sites and represents the “structuration”
stage of Schütz [9] transformation stages (Table 1).

Figure 1. Location of study sites. Sites one to four are located in Bryn Arau Duon and site five is located
in the Stourhead Estate.

Table 1. Stand information.

Sites Area (ha) Trees (Stems ha −1) BA (m2 ha−1) Mean DBH (cm) sd DBH (cm) Forest Type

1 8 298 23.4 33 6 Monospecific Conifer
2 10.2 552 32.6 27 5 Monospecific Conifer
3 14.3 408 24.5 33 6 Monospecific Conifer
4 32.5 341 29.2 34 6 Monospecific Conifer
5 26.3 215 23.3 51 19 Mixed Species Conifer
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2.1.1. UAV Photogrammetry Data

UAV data were acquired during the winters of 2018 and 2019 using a DJI Phantom 4 advanced.
The Phantom 4 advanced is a low cost (<£1800), off-the-shelf drone which has proven to be capable
of retrieving forest structure variables [37]. The imaging sensor used was a 1-inch 20 megapixels
red, green and blue (RGB) sensor with mechanical shutter and focal length of 8.8 mm. Shutter speed,
aperture and ISO were left automatic in order to adjust to changes of light conditions.

The sites were flown at 90 m Above Ground Level (AGL), North to South with a 90% forward
and 80% sides ways overlap to ensure efficient coverage and high resolution images. The images were
processed through Agisoft Photoscan v1.0.0 software to generate a digital surface model (DSM) and
orthomosaic. Agisoft Metashape v1.4.0 (www.agisoft.com) software (Agisoft LLC, St. Petersburg,
Russia) is a commercial software that uses structure from motion to generate a 3D reconstruction from
a collection of overlapping photographs, providing a dense and accurate 3D point cloud [38]. Detailed
descriptions of the Agisoft Metashape workflow can be found in Lucieer et al. [39] and Turner et al. [40].
To collect information on tree height, digital terrain models (DTMs) were generated by extracting the
lowest photogrammetric points and interpolating between them using an inverse distance weighting
method [41]. Using the processed data and images which were generated through Agisoft Metashape,
a canopy height model (CHM) was generated using the following equation, from which tree variables
were extracted:

CHM = DSM− DTM (1)

The imagery was georeferenced using absolute GPS coordinates from a minimum of 5 Differential
Global Positioning System points for each site. This has been shown to increase horizontal/vertical
accuracy of the photogrammetric product [42].

2.1.2. Forest Inventory

A ground survey collected biophysical parameters for individual trees for sites 1–5 using a variable
plot based on a Basal Area Factor (BAF) of three, following the AFI plot protocol [43]. The coordinates
of the centre of inventory plots were recorded with a Trimble R10 GNSS receiver and post processed
using local base stations to achieve sub-meter accuracy. Plot centres were randomly located in the
forests and a BAF of 3 was used to identify trees to be included in the measurements. Trees which
met the BAF requirement had their diameter, height (Vertex V R© hypsometer (Langsele, Sweden)),
four crown radius measurements (InLife 40 m/131 ft Laser Distance) and distance and bearing from
the centre of the plot recorded. This sampling method has been used at these sites since they started to
undergo transformation to CCF. In total 35 plots were used to produce 515 reference trees.

2.2. Independent Study Site

An independent study site located in the Teakettle Experimental Forest (TEF), California was used
to investigate the transferablility of this approach to differing forest structures. The TEF is located in the
Southern Sierra Nevada Mountains (36◦58′00′′, 19◦ 01′00′′). The TEF is a mixed conifer forest, with red
fir (Abies magnifica A. Murray) and white fir (Abies concolor (Gord. & Glend.) Hildebr.) consisting of
around 86% of the basal area, while the remaining 14% consisting of Jeffrey pine (Pinus jeffreyi Grev.),
white sugar pine (Pinus lambertiana Dougl.) and incense cedar (Calocedrus decurrens Torr.). The study
site in total was 1600 ha in a south-to-north oriented strip.

2.2.1. LiDAR Data—Independent Study Site

Airborne LiDAR was collected from 28th June to 6th July 2017 by the NEON AOP onboard a
DeHavilland DHC-6 Twin Otter aircraft, which returned approximately four laser points per square
meter. A CHM was derived for the site in the Teakettle Experimental Forest from the LiDAR point
cloud and was used for further analysis. The LiDAR data is publicly available on the NEON Data
Portal (http://data.neonscience.org/).

www.agisoft.com
http://data.neonscience.org/


Remote Sens. 2020, 12, 2115 5 of 21

2.2.2. Forest Inventory—Independent Study Site

The independent study site reference tree data consisted of combining eight forest transects which
recorded species, stem diameter and plot data collected by the University of New Mexico which were
used to investigate thinning effects on forest structure and dynamics [44]. Reference trees with poor
horizontal GPS accuracy (>1 m) were removed and trees with diameter < 7.5 cm were also removed
to maintain consistency with Sites 1–5. The remaining reference trees had their crowns manually
digitised using the CHM and orthomosaic. This resulted in 713 reference trees which ranged from
7.5 cm to 90 cm diameter. Further information on the field data collection and study site can be found
at Fricker et al. [45].

2.3. Secondary Tree Data

An external data set of biophysical tree measurements were used to derive allometric relationships
utilised in the ITD framework. The Association Futaie Irrégulière (AFI) was formed in France in 2001
to promote the silviculture of irregular forest stands [43]. The AFI established a network of research
stands across France and the UK to monitor and demonstrate irregular silviculture. In doing so the
network has accumulated an extensive data set of 63,000 trees with measurements on tree height,
diameter, crown radius and species. The AFI data set was used to build the height-diameter (h-d) and
height-crown radius (h-cr) models utilised in the ITD framework.

2.4. Individual Tree Detection

2.4.1. Bayesian Optimisation Variable Window (BOVW)

Parametrisation of ITD is an important aspect of achieving optimal tree segmentation results [30].
Many previous studies have focused on selecting ITD parameters by using site specific allometric
relationships derived from field data [46], extensive parameter grid searches [47] and parameter sets
based on prior studies [48]. These approaches to parameter selection either require the collection of
additional field measurements, are inefficient or are not parametrised to achieve the optimal results for
the site. The method presented here addresses the issues by adopting a Bayesian Optimisation (BO)
approach to ITD parametrisation which utilises external datasets. BO is commonly used approach in
environmental sciences [49], medical research and is gaining traction in aspects of forestry research [50].
BO investigates the influence of parameters on an objective function and attempts to improve the
result through informed choice. The parameter space is characterised using a probability distribution
which is updated iteratively. The advantage being that the parameters are progressively refined
by informed choice, making BO highly efficient, reducing the number of iterations necessary to
identify optimal parameter combinations. In this study, BO was carried out using the R package
“rBayesianOptimization” which implements a BO with Gaussian processes.

The BOVW framework goes through the following steps for ITD (Figure 2): (a) the CHM resolution
is set. If the CHM is too-course then a higher number of undetected trees is expected and if too fine
then the potential for false positives increases [51]; (b) a Gaussian smoothing window is passed over
the CHM to reduce spurious points. Previous ITD studies have shown that the strength of smoothing
to achieve optimum segmentation results depends on species composition, but generally, overly heavy
smoothing results in an increase in undetected trees [52]; (c) the local maximum is detected in a
circular variable search window (VW) which scaling is determined by a h-cr relationship; and (d) the
segmentation accuracy (F-score) is determined using reference tree data. The parameters in these
steps are iteratively optimised using BO to achieve the highest F-score. The F-score is a commonly
used measure of tree segmentation success (explained further in Section 2.7.1) [53,54]. The parameters
optimised and boundaries for parameter exploration used in the BOVW approach can be viewed in
Table 2.



Remote Sens. 2020, 12, 2115 6 of 21

Table 2. BOVW optimised parameters.

Parameter Minimum Boundary Maximum Boundary

CHM resolution (m) 0.3 1
Size of the smoothing window (pixels) 3 17

Guassian sigma (σ) 0.01 1
h-cr Quantile 0.01 0.99

The boundaries were selected based on previous studies [52,55]. To ensure that the methodology
can adapt to different forest structures it was decided to expand the parameter boundaries wider.
In this study the initial parameter probability distribution was built using a Latin hypercube sample of
10 parameters combinations. After the initial 10 parameter set combinations, 20 optimised parameter
sets were tested. The parameter set which returned the highest F-score was then used to retrieve
biophysical estimates. The BOVW workflow can be viewed in Figure 2.

Figure 2. Workflow of BOVW methodology.

2.4.2. Variable Window (VW)

The VW used in the BOVW approach is based on Popescu and Wynne [56] and uses the
relationship between crown radius and tree height to scale the search window. Thereby, it considers
that taller trees have larger crowns diameter and small trees have smaller crown diameters. H-cr
allometric relationships often exhibit high levels of variation between forests [55], species [57] and
environmental conditions [58]. High levels of variation are exhibited in the h-cr relationship in the AFI
data set and the field data collected from Sites 1–5 (Figure 3). High levels of variation found in the h-cr
relationship might be attributed to the frequency and intensity of management interventions involved
with transformation, which rapidly alters the environmental conditions within the stand. Typically a
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single relationship derived between field measured tree heights and crown radius is used to scale the
VW [55]. However, collecting crown radius measurements is time costly and therefore it is not often
considered when completing forest inventories. Many previous studies have attempted to overcome
these issues by using h-cr relationships from previous studies or using grid searches to derive h-cr
relationships [59,60]. However, these approaches may result in sub-optimal tree detection accuracies
through not incorporating the correct h-cr relationship to scale the search window, which may result in
increased false positives or undetected trees and grid searches are inefficient in deriving the appropriate
window scaling. The BOVW approach attempts to overcomes these issue by utilising external datasets
and a quantile regression approach.
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Figure 3. The relationship between crown radius and tree height. The light blue points are AFI tree
data and the dark blue point represents reference data. (A) Sitka Spruce, (B) Douglas fir.

Quantile regression gives the advantage of testing relationships other than the central tendency,
allowing the exploration of a range of h-cr allometric relationships. For instance, lower quantiles
represent high inter-tree competition with slender crowns, indicating a plantation that has not been
thinned. While higher quantiles represent trees with very broad crowns at a given height, depicting
a heavily thinned stand where trees have reacted to an increase in availability of light. Thereby,
using this method we can test multiple h-cr relationships within a large dataset and optimise it to the
site using BO. The h-cr relationships which are passed to the VW were built using the AFI data set.
Given the high variation and non-linearity in the h-cr relationship in the AFI data we used a second
order polynomial quantile regression approach. As Sites 1–4 were mono-specific, the h-cr model was
built using AFI Sitka Spruce data and applied individually to the sites. Douglas fir was the dominant
species in Site 5 and therefore the h-cr model was built exclusively using AFI Douglas fir data.

2.5. Optimised Fixed Window (OFW)

An effective ITD framework presented by Mohan et al. [61] was used as a comparison against
the BOVW approach. Following Mohan et al. [61] framework, we used a 0.5 m CHM and tested four
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fixed search window size (FWS) (3 × 3, 5 × 5, 7 × 7 and 9 × 9 pixels) first on an unsmoothed CHM,
and then on smoothed CHMs. Smoothing was carried out using a mean smoothing filter with a fixed
window size (SWS) of 3 × 3, 5 × 5 and 7 × 7 pixels. The tree detection accuracy was determined using
the reference tree data.

Tree Detection—Independent Test Site

The independent test site followed the same methodology as Sites 1–5 for both the BOVW and
Optimised Fixed Window (OFW). As no individual tree measurements were available for the species
present, Douglas fir was used as a proxy species to produce the h-cr allometric models used to scale
the VW in the BOVW framework.

2.6. Tree Diameter

Individual tree diameters in Sites 1–5 were predicted directly from the height of the detected
trees using quantile regression. The h-d models were built externally, using the AFI tree data. As Sites
1–4 were mono-specific, the h-d relationships were built using AFI Sitka Spruce data and applied
individually to the sites. Douglas fir was the dominate species in Site 5 and therefore the h-d
relationship was built exclusively using AFI Douglas fir data. The h-d relationship for both species
shows non-linearity and therefore second order polynomial regression was applied at nine quantiles
(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). The quantile prediction with the lowest RMSE when compared
to the field data was selected as the model to retrieve diameters from the segmented tree heights.
To compare the quantile approach to a site specific model a Weibull h-d model was fitted to the field
data for each site. Weibull h-d models have been found to achieve good results in a range of forest
types and species compositions [62].

2.7. Accuracy Assessment

2.7.1. Individual Tree Segmentation Accuracy Assessment

The accuracy of the ITD methods was computed by determining if there was a detected tree
located in the crown of a reference tree [31]. The reference tree crowns were sized according to the
crown diameter measurements taken in the field. If there were two or more points located in the
reference tree crown, then the highest point was assumed to be the correct tree top and the other were
assumed to be spurious points. To evaluate the accuracy, we calculated recall (r), precision (p) and
F-score using the following equations [53,54]:

r =
TP
TP

+ FN (2)

p =
TP
TP

+ FP (3)

F = 2× r× p
r
+ p (4)

True positives (TP) are the number of true matches, false positives (FP) are the number of
oversegmentations and false negatives (FN) are the number of missed reference trees. Precision is
inversely related to commission error and recall is inversely related to omission. The F-score is the
harmonic mean of p and r. Thus, a higher F-score indicates a higher r and p value. If all the trees were
correctly segmented, then r and p would be equal to one, which would result in the F being equal to
one. In each reference site we split the reference tree data in half to create a training and test set.

2.7.2. Tree Biophysical Variable Assessment

In this study, the root mean square error (RMSE), R2 and relative root mean square error (rRMSE)
were used to evaluate the accuracy of tree characteristics. The differences in distribution of biophysical
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variables between the field measurements and the UAV predicted variables was evaluated by first
using a Shapiro–Wilk W test to allow correct selection of the appropriate statistical test (Student’s t-test
or Wilcoxon).

3. Results

3.1. Individual Tree Detection Accuracy

The detection of individual trees and subsequent estimation of forest stand variables using
the BOVW took on average 4 min/ha, while the OFW took on average 1 min/ha using a single
8th-generation Core i5 processor. Assessment of the tree detection accuracy are summarised in Table 3
and a visual example can be viewed in Figure 4.

Figure 4. Individual tree detection from the BOVW method for Sites 1, 2 and 5. Red dots represent true
positive trees (TP), blue dots represent commission (FN) and orange dots represent omission (FN).

The results revealed that the BOVW approach had a higher detection rate in all sites when
compared with the OFW approach and attained a higher mean test accuracy (F-score = 0.88) in
comparison to the OFW mean test accuracy (F-score = 0.83). The highest test accuracy was achieved in
the Test site (F-score = 0.93) and the result was attributed to the low tree density found in the study
site. The overall test performance of both methods achieved test F-scores within the range 0.80 to 0.93
and the test precision (p) ranged from 0.85 to 1. The largest difference between the two methods occurs
between the recall (r), where the mean test recall for the BOVW (r = 0.84) was 0.6 higher than the mean
test result for the OFW (r = 0.78) approach.

The tree detection percentage accuracy was found to vary with different diameter classes.
Figure 5A shows that both ITD methods achieved lower detection rates for small diameter trees
(<27.5 cm) than larger trees (>27.5 cm), which aligns with previous studies as they have been found to be
poorly represented in the CHM due to overstory trees [52,63]. However, the BOVW was able to achieve
a higher detection percentage for smaller diameter trees than the OFW. The overall tree detection
percentage for the BOVW increased with increasing tree size from a minimum of 66% to a maximum of
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94% for tree size classes in the ranges <27.5 cm and >45 cm, respectively. The largest difference in tree
detection between the two methods occurs in tree sizes <27.5 cm, where the BOWV detected 15% more
trees (Figure 5A). Ensuring high detection rates in larger diameter trees is considered important as
these retain the highest overall volume and monetary value in respect to the total stand and have been
found to have disproportionate ecological impact on forest structure [64,65]. The relationship between
tree detection percentage and diameter class was also apparent in the independent test site (Figure 5A).
Which similarly found that the BOVW approach was able to detect a higher percentage of smaller
diameter trees (<27.5 cm) than the OFW approach and both detected almost identical percentages of
large diameter trees (>47.5 cm) over all sites.

Table 3. The highlighted grey colour represents the highest test results, which were determined by
comparing the F-score. The highest F-score values were selected as the best results.

BOVW OFW

Sites Recall Precision F-Score Recall Precision F-Score

1 Training 0.85 1 0.92 0.85 1 0.92
Test 0.79 0.95 0.86 0.79 0.84 0.81

2 Training 0.93 0.87 0.90 0.84 0.88 0.86
Test 0.87 0.89 0.88 0.75 0.88 0.81

3 Training 0.89 0.95 0.92 0.89 0.95 0.89
Test 0.91 0.85 0.88 0.78 0.90 0.83

4 Training 0.88 0.98 0.93 0.89 0.87 0.88
Test 0.76 0.97 0.85 0.78 0.89 0.82

5 Training 0.83 0.95 0.89 0.85 0.95 0.90
Test 0.82 0.90 0.86 0.73 0.89 0.80

Test Site Training 0.88 0.98 0.93 0.86 1 0.93
Test 0.88 0.98 0.93 0.83 0.99 0.90

Mean Training 0.88 0.96 0.92 0.88 0.93 0.89
Mean Test 0.84 0.92 0.88 0.78 0.90 0.83
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Figure 5. The percentage of detected trees using the Optimised Fixed Window (OFW) (Light Blue) and
BOVW (Dark Blue) in diameter classes for (A) Sites 1-5 and (B) independent test site. The frequencies
are located above the bars.

The ITD parameter combinations selected for each site are displayed in Table 4. The optimisation
process found no absolute agreement of optimal parameter sets, however, the 0.40 m CHM resolutions
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were consistent across all sites. These parameter sets indicate that the BOVW framework is adjusting
to the respective forest structure.

Table 4. Optimal parameters sets for the BOVW and OFW for each of the reference sites.

BOVW OFW

Sites h-cr Quantile CHM Resolution Size of the Smoothing Window (σ) FW Size SWS

1 0.60 0.40 7 (1.6) 3 5
2 0.08 0.40 3 (0.35) 3 3
3 0.18 0.40 15 (0.06) 5 3
4 0.29 0.40 15 (0.01) 3 3
5 0.17 0.40 13 (0.05) 5 5

Test Site 0.18 0.40 15 (0.05) 3 7

3.1.1. Retrieval of Biophysical Estimates

The comparison between the UAV-derived and field based individual tree metrics was conducted
only for trees that were correctly detected by the BOVW (N = 438). Figure 6A presents the relationship
between observed and UAV derived tree heights. The height values ranged from 12.6 to 44.9 m, with a
mean value of 23.1 m. Detected tree heights showed a strong relationship with field data (R2 = 0.93,
RMSE = 2.10 m (9%)), however, there was a significant difference between UAV predicted and observed
tree height (α = 0.05).
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Figure 6. (A) Unmanned aerial vehicle (UAV) determined tree height compared to field-measured tree
height; (B) UAV determined tree diameters compared to field-measured tree diameters. The solid line
represents the 1:1 line the diameter RMSE is the mean RMSE across all sites.

Similarly, to tree height validation, the estimated diameter values obtained from the h-d model
were only compared to trees that were correctly detected by the BOVW. The detected field DBH values
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ranged from 16 to 95 cm with a mean value of 38 cm. Tree diameter errors and their respective h/d
quantile for each site are displayed in Table 5.

Table 5. UAV predicted diameter errors for each of the reference sites.

Sites h/d Quantile DBH RMSE DBH RMSE (%) Site Specific DBH RMSE

1 0.82 5.6 17 6.8
2 0.60 4.0 13 4.0
3 0.81 5.0 14 5.4
4 0.78 4.2 12 3.9
5 0.88 15.1 23 11.4

mean 0.82 5.6 17 6.8

Site 5 had the highest diameter RMSE and achieved a more accurate diameter estimate using
the site specific allometric relationship. This result was expected given the larger range of species
composition and diameter distribution within the stand in comparison to the monospecific plantations
of Sites 1–4. Overall, pooled predicted results from Sites 1–5 were able to achieve a mean diameter
RMSE of 5.6 cm. The pooled diameter distribution formed from the individual tree DBH measurements
is shown in comparison to field data DBH distribution in Figure 7. The Kolmogorov–Smirnov test
used for comparing empirical and predicted distributions, revealed that all sites aside from Site 3
provided differences that were not significant relative to the reference data (α = 0.05). The pooled
DBH distribution (Figure 7) was also found to accurately reflected differences that were not significant
relative to the pooled reference diameter data (α = 0.05) when using a Kolmogorov–Smirnov test.
The site specific Weibull h-d model provided similar mean diameter predictions (mean RMSE = 6.8 cm)
and were not significantly different to each other (α = 0.05). Thereby, indicating that it is possible to
achieve diameter results similar to a site specific h-d model when using this approach.

0.00

0.02

0.04

25 50 75 100

DBH (cm)

D
en

si
ty

Field Measured DBH Distribution

UAV DBH Distribution

Figure 7. Pooled tree diameter distribution in 4 cm intervals for field measurements (line) and UAV
predicted diameters (dashed line).

3.1.2. BOVW Training Data

The BOVW methodology requires reference data to optimise ITD and diameter parameters.
Therefore we explored the relationship between the amount of training data and the accuracy and
precision. The relationship was examined by incrementally selecting random training trees from the
pool of reference trees, optimising to the randomly selected trees and then validating the accuracy
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against all the reference trees. Twenty replicates for each training set size was completed to retrieve
a mean and standard deviations of the F-score. Sites 1 and 5 were selected as being the most
structurally contrasting.

Figure 8 presents the relationship between training set size and the impact on the precision and
accuracy of the F-score. Site 1 (Figure 8A) shows a gradual improvement in accuracy (F-score) and
precision with increasing numbers of reference trees. This relationships starts to plateau around
20 reference trees. Thus, adding more training samples may not lead to significantly more accurate
tree detection. Site 5 (Figure 8B) presents a steeper learning curve in comparison with Site 1 and
appeared to plateau around 60 reference trees. The differences in the learning curves maybe attributed
to differences in forest structure. Site 5 is more heterogeneous than Site 1 and therefore the preliminary
results indicate that heterogeneous sites require more training data when using this approach.

The amount of training data needed to precisely determine the quantile used to derive the h-d
relationship is shown in Figure 9. This relationship was derived from field measured tree heights to
remove the errors associated with UAV obtained tree heights. Visually, Sites 1 and 5 require 15 and 25
reference trees to ensure precision and accuracy similar to utilising all the training data. Similarly to
the relationship between training data and tree detection accuracy, Site 5 required more training data
before the learning curve plateaued in comparison to Site 1 and has been attributed to the increased
variation of tree sizes found in Site 5.
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Figure 8. Mean tree detection accuracy based on selected training data on all reference data. (A) Site 1,
(B) Site 5. Bars represent the standard deviation around the mean.
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Figure 9. Mean tree diameter RMSE (%) based on selected training data on all reference data. (A) Site 1,
(B) Site 5. Bars represent the standard deviation around the mean.

4. Discussion

This research developed a novel self-parametrising, transferable photogrammetric based UAV
method capable of monitoring transformation to CCF at the individual tree level, which could also be
transferred to any high resolution CHM, such as delivered from LiDAR. Our results demonstrate a
robust and efficient framework for monitoring even-aged plantations to CCF, capable of providing
accurate biophysical estimates from a range of forest structures. In the following sections, we discuss
our findings in relation to other studies to identify the effectiveness of this approach and outline
future improvements.

4.1. Accuracy of Individual Tree Detection

Our findings indicate that the BOVW can self-parametise to achieve respectable tree detection
accuracies (mean test F-score = 0.88) and resulted in a significant improvement of F-score in comparison
to the OFW approach (α = 0.05). Improvements of 5% in tree detection, as found in this study in
comparison to the OFW method, can have significant enhancements on forest inventory estimates
as tree detection has been found to be the primary source of error in forest inventory estimates
when using ITD [66]. Despite the inclusion of a range of forest structure and species compositions,
we achieved segmentation results comparable with studies applied in similar forest types with
minimal input changes between sites [23]. Vega et al. [67], using the PTrees ITD method reported
to segment individual trees in a conifer plantation in south western France to an F-score of 0.95.
Lahivaara et al. [68] was able to achieve a reported accuracy of 70.2% in a managed boreal forest in
Eastern Finland and Maltamo et al. [69] detected only 39.5% of all trees in southern Finland using local
maxima techniques.

The independent test site results were consistent with Sites 1–5 in which the BOVW achieved
a higher test tree detection accuracy in comparison to the OFW. While providing evidence for
transferability of this approach, the results for the independent test site could be further improved
by advancements in the raw data collection and the inputs to the BOVW. The low point densities
(4/m2) used to create the CHM for the independent test site meant that smaller diameter trees were
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less well represented in the CHM and therefore increased the difficulty in their detection. The h-cr
quantiles used in the VW were derived from Douglas fir data and not the species present in the test
site. Therefore, with access to individual tree measurements of the species present at the site would
allow the integration of the correct allometric relationships into the optimisation process. Whilst the
BOVW results are viewed favourably, caution should be taken when comparing ITD results across
studies given the differences in stand complexity and species composition [22].

4.2. Biophysical Estimates

Our results confirmed the general statement that tree heights are mostly underestimated from UAV
photogrammetry, but provided a strong relationship with the observed tree height (R2 = 0.93). On the
other hand, tree height errors (RMSE = 2.1 m) reported in this study exceeded the accuracy reported
by other UAV photogrammetry research and could be attributed to several errors [70,71]. Firstly,
DTMs derived from photogrammetry are based only on the canopy surface which is viewable from the
sky. Therefore, in areas of high canopy cover there are significant areas of omission, which have been
coined as dead ground [72] and results in DTM extrapolation. The undulating topography and varying
densities of canopy cover found in the study sites caused fluctuating difficulty in DTM production.
Secondly, vertex measurements are also error prone with operator skill and canopy closure affecting
the accuracy of the tree height measurements [73], with discrepancies being reported up to 1.3 m
in coniferous plots [20]. Thirdly, the quality of the UAV photogrammetric product. Environmental
conditions have a significant impact on the quality of the photogrammetric data set, with wind speed
being shown to impact height by up to 0.5 m [74]. Accumulatively, these factors could explain the
discrepancy in tree height estimations. The addition of a LiDAR DTM it is expected to improve tree
height estimations using this approach, as it has been found to provide accurate DTMs in forests with
high canopy cover [75].

Monitoring tree diameter distributions is a common method of discerning the stage of
transformation and providing direction for future management interventions [76]. Although a
relatively simple model, quantile regression is rarely used in deriving diameter estimates in ITD studies.
The results from this approach are encouraging (mean RMSE = 5.6 cm), especially when considering:
(a) predictions were based upon h-d models parameterised using external data sets, (b) the method
required limited training data to select the correct quantile (Figure 9) and (c) used tree height as the sole
predictor which had errors (RMSE = 2.1 m) exceeding that of other studies [77,78]. Allometric models
are highly vulnerable to errors in their input data, especially when using one predictor and therefore
improvements in diameter predictions are expected with enhancements in tree height accuracies.
Similar mean diameter accuracies were achieved by developing site specific Weibull h-d models
(RMSE = 6.8 cm) and using either approach would result in predictions within the broad range found
in the wider literature which fluctuates from 15% to 23% rRMSE [69]. Vastaranta et al. [79], using a
multi-source ITD inventory in a range of forest stands in Finland, reported dbh accuracies ranging
from 10.9% to 19.9% RMSE.Valbuena-Rabadán et al. [80] reported in a Scots pine (Pinus sylvestris L).
plantation dbh estimates of 18.97% RMSE. The comparison of ITD biophysical estimates is complex
and caution must be taken as it is highly data dependant [81]. Comparable diameter predictions results
found in this study provides evidence that the quantile approach could be used as an alternative when
site specific h-d relationships are not available and when collecting only a few tree heights possible
due to the labour intensive nature of collecting tree heights.

4.3. BOVW Parametrisation

We consider the following aspects relevant advantages of the proposed BOVW approach:
(i) the proposed approach is structured and follows the same steps regardless of the parameters
being tuned or the person tuning it. In contrast, the steps taken, the depth and choice of parameter
exploration is predetermined by the user when using approaches such as grid searches or manual
parametrisation, requiring previous knowledge, (ii) parametrisation occurs globally. Incorporating
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multi-way parameter interactions, addresses weaknesses identified in previous studies which sought
optimal parameter sets by altering one parameter whilst keeping others constant and thereby not
integrating multi-way parameter interactions, (iii) transferability. This approach maintained successful
segmentation accuracies with minimal input changes across sites of different forest structures,
including the independent test site. The only input change between sites was selecting the dominant
tree species and (iv) training sample size. The BOVW approach requires a limited number of training
samples to achieve the same accuracy as using all the training data, implying that it could be cost
efficient in the field. However, further research is required to investigate the influence of forest structure
on the required training sample size. These advantages ensure the BOVW is easy to use, adaptable
and efficient, making it highly attractive to forest managers and research projects which require ITD
components. Thus far, BO has been is little exploited in relation to ITD parametrisation.

4.4. Future Work

Issues of automated parametrisation are addressed in this study, but the main unsolved obstacle
to ITD is still present with the difficulty of delineating suppressed and understory trees [63].
Improvements can be seen with the BOVW approach presented here when compared with the OFW
approach, however, there is still a tendency to miss smaller suppressed trees. The tendency of missing
trees will increase in multi-layered, dense forests [82]. Some methods have been developed to improve
segmentation accuracies of suppressed trees, however these are still experimental and generally
computationally expensive over large areas [83].

This framework could be further improved through including multiple segmentation methods
in the optimisation stage, allowing BO to fit the segmentation method to the forest structure.
Previous research has shown that tree segmentation approaches differ in their accuracies in regards
to forest structure [29] and therefore, allowing multiple segmentation approaches to be incorporated
should improve tree detection accuracies. Integrating multiple segmentation methods into this
approach would allow the whole processing chain to be optimised to the forest.

5. Conclusions

In this study, we compared a novel Bayesian optimisation individual tree approach to an
established and effective individual tree detection (ITD) approach over five sites in transformation to
Continuous Cover Forestry (CCF) and to a test site located in the Teakettle Experimental Forest,
California, USA. The novel method (BOVW) uses a variable search window and a Bayesian
optimisation approach of parameterisation which utilises external tree data to derive the correct
allometric relationship. The established method (OFW) uses a combination of fixed sized search
windows to smooth and identify individual trees from the canopy height model.

Our investigation demonstrated that the novel BOVW method was transferable between sites
with limited manual parameterisation and was able to achieve advantageous results in comparison
to the OFW ITD method. The BOVW was also able to achieve higher detection rates for smaller
diameter trees than in comparison to the OFW. Currently, the BOVW approach uses a variable window
search approach, however future research could be focused on integrating multiple segmentation
methods and thereby optimising the entire processing chain to the forest and further improve tree
detection accuracies.

This study presents a transferable, self-paramatising ITD method which is capable of adjusting
to changing forest structures which occur during transformation to CCF. Requiring limited training
data, little prior knowledge of optimal parameters and the use of external data sets to derive allometric
relationships results in a highly effective, easily applied and cost effective ITD method which can be
used to monitor transformation to CCF at the individual tree level.
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