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Abstract: The existing deep learning methods for point cloud classification are trained using abundant
labeled samples and used to test only a few samples. However, classification tasks are diverse, and not
all tasks have enough labeled samples for training. In this paper, a novel point cloud classification
method for indoor components using few labeled samples is proposed to solve the problem of
the requirement for abundant labeled samples for training with deep learning classification methods.
This method is composed of four parts: mixing samples, feature extraction, dimensionality reduction,
and semantic classification. First, the few labeled point clouds are mixed with unlabeled point
clouds. Next, the mixed high-dimensional features are extracted using a deep learning framework.
Subsequently, a nonlinear manifold learning method is used to embed the mixed features into
a low-dimensional space. Finally, the few labeled point clouds in each cluster are identified,
and semantic labels are provided for unlabeled point clouds in the same cluster by a neighborhood
search strategy. The validity and versatility of the proposed method were validated by different
experiments and compared with three state-of-the-art deep learning methods. Our method uses
fewer than 30 labeled point clouds to achieve an accuracy that is 1.89–19.67% greater than existing
methods. More importantly, the experimental results suggest that this method is not only suitable for
single-attribute indoor scenarios but also for comprehensive complex indoor scenarios.

Keywords: few labeled samples; point clouds; classification; indoor scenario

1. Introduction

Recently, indoor positioning, mapping, modeling, and location services have attracted widespread
attention in the fields of computer vision, surveying, and intelligent robotics [1–8]. The classification
of indoor component point clouds is a key technology in both theoretical research and practical
applications [9]. Combining point clouds and semantic labels can be helpful for spatial reasoning based
on scene semantic information. Using a specific classifier for an object, such as a point cloud, to assign
a semantic label to a category is the core idea of point cloud classification [10]. During point cloud
classification, different feature extraction algorithms and classifiers are adopted, and the differences
between different objects are shown at the feature level. Compared to outdoor scenes [11,12], it is difficult
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to classify indoor component point clouds, because indoor scenes have a narrow environment, various
structural features, and many occlusions. At the same time, point cloud classification is a highly active
research topic. The numerous related studies can be divided into two types: traditional classification
methods and classification methods based on deep learning.

The traditional classification methods mainly adopt manual shape descriptors as feature vectors
to train and construct a classifier based on machine learning for classification in a specific recognition
task [13–15]. Chen et al. [16] proposed local surface patches, which are a 2D histogram consisting
of shape indices calculated from the principal curvatures and angles between the reference point’s
normal and those of its neighbors. Johnson et al. [17] introduced spin images based on point
cloud distribution to describe this feature. A histogram was used to calculate the distribution of
neighbors in the local cylindrical coordinate system. Further, heat kernel signatures [18] describe
the shape around a point by describing the heat conduction from any point in the neighborhood
to another point using the conduction time as the scale. A Point Feature Histogram (PFH) [19] is a
multi-dimensional histogram with three angular values that are computed between the normal of
each point in the neighborhood and the coordinate axis in the local coordinate system. Fast point
feature histograms [20] are a simplification and optimization of PFH, reducing the calculations.
These manual shape descriptors have a poor ability to generalize, and it is not easy for them to
find the most suitable features in different tasks. For classifiers, common machine learning methods
include the support vector machine (SVM) algorithm, decision trees, random forest (RF), and other
classifiers. These methods aim to build a classification rule or probability function to determine a
label based on features. SVM seeks the optimal hyperplane that most efficiently separates the classes
using different kernel functions [21,22]. Although SVM is suitable for classification based on small
samples, it is very sensitive to the choice of parameters and kernel functions [23]. Decision trees can be
used for classification by training data and to make a hierarchical binary tree model, thus allowing
new objects to be classified based on previous knowledge [24]. This system can achieve the fast
and accurate classification of high-dimensional data, but is prone to overfitting and its information
gain is biased toward the features of numerous categories [25]. RF is an ensemble learning method that
uses a group of decision trees, provides measures of the feature importance for each class, and runs
efficiently on large datasets [26]. This method reduces overfitting but is inefficient in distinguishing
similar and different categories of features. Traditional classification methods rely on manual feature
descriptors, which can be effective only for specific problems or to meet specific conditions. Therefore,
research on point cloud classification methods based on deep learning has gained a large amount
of interest.

With the popularity of deep learning, numerous classification methods based on deep learning
have emerged and provide good performance. Deep learning methods are based on the neural
network model and adjust their parameters through training to obtain the parameters of each layer.
The input data can be characterized on different feature levels according to each layer in the neural
network. In this way, deep learning methods automatically convert raw data into their simplest
feature representations. Finally, they realize classification tasks through the fully connected layer
and the activation function. There are three types of deep learning methods for point cloud classification:
classifying by expressing point clouds using voxels, converting point clouds into 2D images for
classification, and directly performing deep learning classification for points. Using voxels to represent
point clouds, Wu et al. [27] and Maturana et al. [28] constructed a framework for voxel classification
and achieved this classification by learning complex feature distribution. The classification accuracy
of both studies on the ModelNet40 dataset reached 77% and 83%, respectively. Shi et al. [29]
and Su et al. [30] used 2D convolution and networks for classification by projecting onto a 2D plane,
and achieved better classification performance with an accuracy of 77.63% and 90.01%, respectively,
on ModelNet40. Further, Qi et al. [31] first proposed a deep learning method for processing point
clouds directly and achieved a classification accuracy of 89.2% on ModelNet40. This method learns
the features of each point through a multi-layer perceptron and then uses the global max pooling
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layer to obtain the global features for classification. However, PointNet is inefficient at capturing local
features in different feature spaces, which limits its ability to recognize the local structure of point
clouds and generalize under complex scenarios [32]. The authors in [33] also proposed PointNet++,
which recursively uses PointNet on a nested set of input point clouds. This method improved PointNet
by adding the capabilities to integrate the local features of point clouds. PointNet++ offers better
performance with an accuracy of 91.9% in point cloud classification on ModelNet40. Subsequently,
Li et al. [34] presented a PointCNN that regularized the input data through X transformation to
achieve invariable point permutation and achieved a classification accuracy of 92.2% on ModelNet40.
Deep learning methods automatically extract and learn the features of point clouds to achieve the task
of point cloud classification. However, they require many labeled point clouds for training. In practice,
the most important factors are that not all problems have their own substantial labeled data and that
the cost of obtaining labeled data is high [35,36].

It is necessary to use few samples in the case of few available data for training to help the machine
to learn like a human. The processes of classification using small sample learning involves feature
extraction and designing a classifier for classification. Small sample learning was first applied to 2D
image classification. Semantic transfer is used to solve the problem of insufficient training samples.
Some supervised learning algorithms and unsupervised learning algorithms have also been applied
to small sample learning. Mensink et al. [37,38] utilized clustering and metric learning to classify
ImageNet, explored the K-Nearest Neighbor and Nearest Class Mean classifiers, and achieved transfer
while sharing semantic descriptions and the learned metrics between testing and training. Afterwards,
deep learning techniques were applied to small sample learning, such as using data enhancement
to increase the number of samples [39], extracting image features through the attention mechanism
and memory mechanism [40], and designing the mapping relationship between the network of
the feature extraction and classifier. At present, there are many small sample learning methods for 2D
image classification, whereas there is a research gap in studies using few labeled samples to complete
point cloud classification.

The present study proposes a 3D point cloud classification method for indoor components using
few labeled samples, which is inspired by the 2D image classification methods [37,38,41]. This method
directly combines deep learning for points with unsupervised learning methods. Unlike the existing
deep learning methods, few labeled samples are mixed with the samples to be classified in our
method. A deep learning framework is employed to extract the mixed features of point clouds
directly. Subsequently, manifold learning is utilized to map high-dimensional mixed features towards
a low-dimensional metric space. The point clouds with different features are then divided into distinct
clusters according to their feature consistency. Finally, semantic assignment is performed in each
cluster in the low-dimensional space. Classification is implemented by calculating the distance between
the unlabeled point clouds and the few labeled point clouds by a distance metric and neighborhood
search. Compared with traditional methods for 3D point cloud classification, the proposed method
automatically extracts the high-dimensional features of the point clouds and has a strong generalization
ability. Likewise, compared to the deep learning methods, the proposed method does not require
substantial numbers of labeled samples for training for new classification tasks. Conversely, using
only a few labeled samples can be sufficient to achieve 3D point cloud classification. Moreover,
this method not only reduces the cost of labeling data but also improves classification accuracy.
The main contributions of our paper are as follows:

1. A novel framework is proposed to achieve the point cloud classification of indoor components
using a few labeled samples. In this framework, a neural network and unsupervised methods are
used for feature extraction and feature learning, respectively.

2. A combination of dimensionality reduction based on manifold learning and clustering is
introduced to feature learning. The high-dimensional deep features are embedded into
low-dimensional space by using the manifold learning. This reduces the difficulty of quantifying
the similarities and differences of point cloud features. Moreover, the improved clustering
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algorithm, learning from low-dimensional features, is implemented to assign labels to unlabeled
the point clouds to achieve classification.

3. An extensive comparison is made between the performance of the proposed method and three
state-of-the-art deep learning methods by using open-source datasets. Case studies in different
indoor scenarios demonstrate that the proposed method can reduce the cost of labeling samples
and generate better classification accuracy.

The remaining parts of this paper are organized as follows. In Section 2, the main methodology
is described in detail. Section 3 describes the experimental data, evaluation criteria, and design of
the experiments. Section 4 presents comparative experiments based on different scenarios, including
the evaluations and analyses of the results. Section 5 discusses the experimental results. Finally,
Section 6 summarizes the results and proposes future directions of research.

2. Methods

The workflow of the proposed method in four parts is shown in Figure 1. In the classification
preparation stage, unlike current deep learning methods, many unlabeled point clouds are mixed
with few labeled point clouds to obtain a labeled–unlabeled mixed point cloud set. Next, a deep
learning framework is used to extract the mixed features. Then, manifold learning is utilized for simple
feature representation by mapping from a high-dimensional space to a low-dimensional space. Finally,
an improved clustering algorithm is utilized for semantic assignment in each cluster.

Figure 1. Workflow of the proposed point cloud classification. The details of feature extraction,
dimensionality reduction, and semantic classification are described in Sections 2.1–2.3.
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2.1. Mixed Feature Extraction for the Point Clouds of Indoor Components

We adapted PointNet as our backbone to extract point cloud features because PointNet directly
processes point clouds and respects the permutation invariance of points in the input. Assume that
there are N1 labeled point clouds of indoor components denoted as L = {La|a = 1, . . . , N1} and N2

unlabeled point clouds denoted as U = {Ub|b = 1, . . . , N2}. Let S = L∪U = {Sc|c = 1, 2, . . . , N1 + N2}

be the mixed point cloud set. Each point cloud consists of n points, and each point is represented
by 3 dimensions (x, y, z) [31,42]. If the point cloud is used as the input to extract the feature directly,
n! permutations of the input set are obtained. The framework of feature extraction is primarily
composed of a simple symmetric function and a mini-network of a predictive transformation matrix
in feature space. This framework can directly extract the global features from an unordered point cloud.
This system uses the global max pooling layer as its primary symmetric function. Thus, the framework
is invariant to input permutation and will not be affected by an unordered point cloud. Moreover,
it contains a spatial transformer network (STN) [31,43] of the predictive transformation matrix in feature
space, and learns the transformation matrix from the input points. The dimensions of the transformation
matrix are consistent with the feature dimensions. Thus, the matrix is multiplied with the original
points to realize the transformation of the input feature space. This framework can be defined as a
general function on the point cloud set S:

f ({x1, x2, · · · , xn}) ≈ γ(h(x1), h(x2), · · · , h(xn)) (1)

where xi(i ∈ [1, n]) is a point in each point cloud Si(i ∈ [1, N1 + N2]) in S. f is a continuous function
that maps the point cloud set to a matrix. Empirically, h is approximated by a multi-layer perceptron
and γ by the composition of a single variable function and the global max pooling function.

Figure 2 shows the feature extraction structure for a point cloud. The input is a point cloud
containing n points. The system predicts a 3 × 3 transformation matrix from the STN. This matrix works
on the original points to achieve data alignment. Each point is represented as a 64-dimensional feature
by a multi-layer perceptron (mlp) (64, 64) with shared parameters. Then, another alignment network is
employed with the point features and predicts a feature transformation matrix to align the features.
Further, it uses a three-layer perceptron (64, 128, 1024) for feature extraction, and the dimension of
the feature becomes 1024. Finally, it aggregates the point features by the global max pooling layer,
and this point cloud can be represented by a 1 × 1024 global feature.

Figure 2. Architecture of the global feature extraction network. STN: spatial transformer network; mlp:
multi-layer perceptron.

2.2. Dimensionality Reduction for Mixed Features

Although the aforementioned network provides global features, high-dimensional global features
have correlation and redundancy [44]. To further alleviate these problems and improve the accuracy
and robustness of feature learning, a variety of methods were tested to learn features (such as multiple
dimensional scaling [45], principal component analysis [46], locally linear embedding [47], isometric
mapping [48], and so on), and the most effective dimensionality reduction method was determined.
In this subsection, an automatic feature grouping method based on manifold learning for an embedded
dimensionality reduction algorithm is proposed.
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Suppose that the high-dimensional global features to be taken are located on a statistical manifold.
A probability distribution is used to describe the global features, and the conditional probability
distribution function between any two global features in the high-dimensional or low-dimensional
space can be obtained. The high-dimensional global features can be defined as F = {F1, F2, . . . , FN} ∈ RD

(D is the dimension of high-dimensional global features), with N global features. The dimension
of every global feature is 1024. There is a G = {G1, G2, . . . , GN} ∈ Rd (d < D) that has a mapping
relationship with F in low-dimensional space, where d is the dimension of the low-dimensional space.

First, the similarity between any two global features is characterized by the conditional probability
in the same space. In high-dimensional space, the similarity between Fi and F j (i, j ∈ [1, N]) can
be expressed as the conditional probability p j|i, and the distribution function obeys the Gaussian
distribution. The larger p j|i is, the higher the similarity between the global features. The global
features Fi and F j in the high-dimensional space are mapped to Gi and G j in the low-dimensional
space. Likewise, the similarity between Gi and G j can be described as the conditional probability q j|i.
Mathematically [49], p j|i and q j|i are given by

p j|i =

exp
(
−
‖Fi−F j‖

2

2σ2
i

)
∑

k,i exp
(
−
‖Fi−Fk‖

2

2σ2
i

) (2)

q j|i =
exp

(
−‖ Gi −G j ‖

2
)

∑
k,i exp

(
−‖ Gi −Gk ‖

2
) (3)

where σi is the variance of the Gaussian distribution [49].
Second, to further explore the distribution correlation between high-dimensional

and low-dimensional space, the joint probabilities pi j and qi j are used in the same space, as shown
in Equations (4) and (5) [49].

pi j =
pi| j + p j|i

2N
(4)

qi j =

(
1 + ‖ Gi −G j ‖

2
)−1

∑
k,l

(
1 + ‖ Gk −Gl ‖

2
)−1

(5)

Then, the loss function C is utilized to represent the similarity between the joint probability
distribution in low-dimensional space and high-dimensional space. By arbitrarily selecting two global
features in the high-dimensional space, the joint probability is given as pi j. Correspondingly, the joint
probability in low-dimensional space is qi j. The loss function C is given by [49]

C = KL(P ‖ Q) =
∑

i

∑
j

pi jlog
pi j

qi j
(6)

where the Kullback–Leibler divergence (KL) is relative entropy, which is used to measure the similarity
of two probabilities in the same event space; and P and Q are the probability distributions of global
features in the high-dimensional and low-dimensional spaces, respectively. The loss function C is
designed to minimize the KL distance between pi j and qi j to ensure that the two distributions P and Q
have the highest degree of matching. The partial derivative C sub Gi, i.e., the gradient, is calculated.
It is then iteratively updated by the gradient descent method until the function values converge.
In other words, the matching of the two probability distributions is maximized.

Further, in low-dimensional space, the similarity is expressed using the Student-t distribution for
two reasons [49]. First, the distribution of manifold data groups is asymmetrical and heavy-tailed.
Second, these data do not entirely obey standard Gaussian distribution. The tail of the t-distribution
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becomes higher as the degree of freedom increases. When mapping from a high-dimensional space
to a low-dimensional space, there is a large distance between the different global features under
t-distribution. Hence, the crowding problem is avoided. The gradient has a surprisingly simple form:

δC
δGi

= 4
∑

j

(
pi j − qi j

)(
Gi −G j

)(
1 + ‖ Gi −G j ‖

2
)−1

(7)

Finally, the parameter called “perplexity” is a smooth measure of the effective number of neighbors,
sigma = {σ1, σ2, . . . , σN}, for N global features. The binary search algorithm is used to search for the value
of σi that produces a Pi with a perplexity [49]. This perplexity is defined as

perp(Pi) = 2H(Pi) = 2
−

∑
j

p j|ilog2p j|i
(8)

where H(Pi) is the Shannon entropy of Pi used to characterize the uncertainty of the global features;
it is also a quantitative indicator of the degree of chaos. The larger the entropy, the greater the confusion.

The pseudocode of the proposed dimension reduction algorithm is shown in Algorithm 1.

Algorithm 1: Dimensional reduction algorithm.

Inputs: A set of global features of point clouds F = {F1, F2, . . . , FN} ∈ RD; perplexity perp; the dimension to be
reduced d; number of iterations T, learning rate η; momentum α(t).

Compute pairwise affinities p j|i with the fixed perplexity perp using (2).
Set pi j =

(
p j|i + pi| j

)
/2N.

Initialize low-dimensional data G(0) = {G1, G2, . . . , GN}withN
(
0, 10−4I

)
For t = 1 to T do

Compute low-dimensional affinities qi j with (5)
Compute gradient δC

δGi
using (7)

Iterative optimization, update low-dimensional data with G(t) = G(t−1) + η δC
δY + α(t)

(
G(t−1)

−G(t−2)
)

End for

Outputs: A set of low-dimensional features G = {G1, G2, . . . , GN} ∈ Rd.

2.3. Semantic Assignment with Few Labeled Samples

After dimensionality reduction by manifold learning, clustering is combined with a neighborhood
search to label the unlabeled point clouds. Clustering is utilized before the neighborhood search
instead of directly finding the labeled samples and directly classifying with the neighborhood search
for the reasons shown in Figure 3. Taking the 2-D dimensionality reduction result as an example,
many unlabeled point clouds in cluster 5 are labeled with the few labeled samples in cluster 1 without
first applying clustering. Since the relationship between the features of few labeled point clouds
and the features of unlabeled point clouds in the feature space cannot be predicted, it is necessary to
utilize a clustering algorithm before the neighborhood search.

The strategy of combining clustering and neighborhood search is used in this method. After trying
a variety of clustering methods (such as K-means [50], mixture-of Gaussian [51], agglomerative
nesting [52], spectral clustering [53] and so on), the clustering algorithm of density-based spatial
clustering of applications with noise (DBSCAN) [54] was applied and improved. This method examines
the connectivity between samples from the perspective of sample density, and continuously expands
the clusters based on reachable samples to obtain the final clustering results. This clustering algorithm
assumes that the clustering structure can be determined by the tightness of the sample distribution,
and clusters of various shapes and sizes are found in the samples with noise. This algorithm
has been proven to achieve excellent results in both spherical data clustering and non-spherical data
clustering [54]. However, these cluster labels are not the semantic labels required by the unlabeled
point clouds. Thus, neighborhood search is employed to improve the clustering algorithm to complete
the semantic assignment.
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Figure 3. An example of clustering in a low-dimensional space. Each dot represents a feature.
Each cluster obtained by clustering is marked with a circle.

Assume that the result G = {G1, G2, . . . , GN} ∈ Rd of dimensionality reduction is used as the input
sample set of the clustering algorithm. There are two thresholds that describe the closeness of
the samples in the neighborhood. One is the distance threshold ε of the neighborhood, and the other is
the threshold MinPts of the number of samples in the neighborhood.

An arbitrary sample Gi is selected at first, and all neighbors with a distance less than or equal
to ε from Gi are determined. If the number of neighbors is less than MinPts, Gi is marked as noise.
If the number of neighbors is greater than or equal to MinPts, Gi is marked as a core sample, and a
new cluster label is assigned. Second, all the neighbors of Gi are traversed. If they are yet unlabeled,
the new cluster label of Gi is assigned to them. If they are core samples, their neighbors are traversed
in turn, and so on. The cluster gradually grows until there are no more core samples within ε.
Then, an unvisited sample is selected. The same process is then repeated until all samples in G are
visited. Subsequently, each cluster Ck is traversed. The unlabeled objects u = {u1, u2, . . . , um1} ⊆ U
and labeled objects l = {l1, l2, . . . , lm2} ⊆ L are then selected in Ck. Next, u is traversed. For each ui ∈ u,
five labeled objects closest to ui in l are found. The labels of these five labeled objects are recorded
as D = {d1, d2, . . . , d5}. As shown in Figure 3, taking C3 as an example, u comprises all grey dots,
and l comprises all red dots. The ui in u will choose the closest five labeled objects, which are labeled
d1, d2, . . . , d5. Finally, the unlabeled ui is assigned the label that most frequently occurs in D.

The pseudocode of the semantic assignment algorithm is presented in Algorithm 2.

Algorithm 2: Semantic assignment algorithm

Inputs: A set of samples G = {G1, G2, . . . , GN} ∈ Rd; neighborhood parameter ε and MinPts.

Initialize G as unvisited, C = ∅, k = 0, SL = ∅ Add g to Ck
For Gi in G do End if

Mark Gi as visited, determine the neighbors Nε(Gi)

of Gi

k = k + 1
End for

If
∣∣∣Nε(Gi)

∣∣∣ < MinPts then End if
Mark Gi as noise End for

Else For Ci in C do
Create new cluster Ck, add Gi to Ck Determine a set of the labeled samples u, and
For g in Nε(Gi) do a set of the unlabeled samples l

If g is not visited then For ui in u do
Mark g as visited Find five labeled samples nearest to ui in l,
If

∣∣∣Nε(g)
∣∣∣ ≥MinPts then and take their labels as D = {d1, d2, . . . , d5}

Nε(Gi) = Nε(Gi)∪Nε(g) Determine the label d that appears the
End if most in D, add d to SL

End if End for
If g not yet a member of any cluster End for

Outputs: Semantic labels SK
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3. Experiments

For performance assessment of the proposed method, experiments using open-source datasets
were designed and implemented, and the results were evaluated with the evaluation criteria.

3.1. Experimental Data

The experimental point clouds were derived from some of the indoor components
in the open-source datasets ShapeNetCore [55] and ModelNet40 [27]. Because current deep learning
classification networks were selected as baseline methods, the objects of the two datasets were
combined to ensure the presence of sufficient training samples. As not all objects in ModelNet40
and ShapeNetCore belong to the components in the indoor scenarios, not all components involved
in these two datasets were employed in the experiments. Fourteen categories of components were
chosen, as shown in Figure 4, to form a new dataset for the experiments. The remaining categories were
used for the pre-training of the feature extraction network in our method. Thus, the point clouds used
for the pre-trained feature extraction network did not duplicate the categories used in the experiments.

Figure 4. A sample point cloud from each category of the new dataset.

The new dataset was divided into three parts: the labeled set, the unlabeled set (test set),
and the training set, as shown in Table 1. The labeled set consisted of few labeled point clouds which
were randomly selected from each class in the new dataset. The proposed method used the labeled set
and unlabeled set (test set). In contrast, the baseline methods used the training set and the test set
(unlabeled set) for the comparative experiments. As shown in Table 1, the number of labeled objects
used in our method is far less than the number of objects used for training by deep learning methods.

Table 1. Dataset descriptions and training details.

Category Labeled Unlabeled/test Train Category Labeled Unlabeled/test Train

bookshelf 30 400 757 monitor 20 310 1273
chair 30 300 1478 pillow 10 40 176
cup 10 100 200 sofa 20 190 1317
desk 10 86 200 table 10 90 392

keyboard 10 50 180 trashcan 10 90 392
laptop 10 200 429 bed 5 56 515

flowerpot 10 168 571 nightstand 6 86 200

During the experiments, each true category label of each point cloud was retained to facilitate
evaluation. The confusion matrix, precision, recall, F1 score and accuracy were selected as the evaluation
criteria. The formulas and explanation can be seen in [11,56,57].

3.2. Design of Experiments

The experiments were then designed using the new dataset. First, every selected component
was sampled into a point cloud consisting of 1024 points. Next, three different indoor scenarios (office,
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living room, and bedroom) were selected, with six typical categories in each for the experiments.
Additionally, all categories were merged, and a comprehensive classification experiment of
the 14 categories was performed. The statistics of the categories for each experiment are shown
in Table 2. These three indoor scenarios are typical areas where human activities are frequently engaged
in and cover common categories of indoor components. Some categories have unique scene attributes.
This comprehensive experiment can show the applicability of the method in complex indoor scenes.
Finally, semantic classification was performed for each experiment according to the method described
in Section 2. To compare the advantages and disadvantages of the proposed method, PointNet [31],
PointNet++ [33], and PointCNN [34] were used. During execution, point clouds with the number
of training fields shown in Table 1 were used to train for these three deep learning methods. Then,
our method and the baseline methods were used to test the unlabeled/test data.

Table 2. Dataset descriptions and training details.

Category
Bookshelf Chair Cup Desk Keyboard Laptop Flowerpot Monitor Pillow Sofa Table Trashcan Bed NightstandExperiment

Experiment 1 4 4 4 4 4 4

Experiment 2 4 4 4 4 4 4

Experiment 3 4 4 4 4 4 4

Experiment 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

All the experiments were based on the deep learning framework, Tensorflow [58], and performed
on a Dell workstation with an Intel Xeon E5-2630 v3 CPU, NVIDIA GTX-1080Ti GPU (11 GB memory)
and 32 GB RAM. The workstation’s operating system was Ubuntu 16.04. We trained the network using
a batch size of 32 for 250 epochs, with an initial learning rate of 0.001 and exponential decay of 0.7 after
each epoch. Moreover, 3D coordinate information was used as the network input.

4. Experimental Results and Analyses

In this section, we report the extensive experiments that were conducted in different indoor
scenarios to evaluate the performance of the proposed method. The effectiveness of the proposed
method was verified by carrying out a comprehensive comparison with several 3D point cloud
classification methods based on deep learning.

4.1. Experiment 1: Office Scenario

A bookshelf, chair, cup, table, keyboard, and laptop are common components in an office scenario.
Therefore, this experiment was mainly used to verify the applicability of the proposed method for
the semantic classification of typical components in an office scenario. Figure 5 shows the confusion
matrices for the predictions of all methods on the unlabeled set (test set) in the office scenario.
Every 6 × 6 matrix exhibits the results of the framework predictions. The rows were equal to the true
labels of the point clouds, while the columns corresponded to the predicted labels. The value of each
element in the confusion matrix was the number of predictions of the samples in a class corresponding
to each column, and the true labels of these samples were represented by the row. The diagonal
elements in the matrix represent the number of samples that were predicted as the correct class for
each class, and the off-diagonal elements show the predicted errors. The performance shows that,
in an office scenario, our method based on a small number of labeled samples can effectively capture
the salient features of point clouds, as it has a relatively small number of errors and can obtain better
results than the baseline methods.

Figure 6 displays the results of the quantitative assessment of all methods in the office scenario
using recall, precision, F1 score, and accuracy. It can be seen from Figure 6a–c that the four methods’
predictions of the three categories of chair, cup, and laptop were similar. For the other categories,
there were differences among the methods. The recall, precision, and F1 scores of each class in our
approach were slightly higher than those under the baseline methods. The three measurements of
the keyboard were better than the other methods because the baseline methods confused the keyboard
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with the bookshelf, desk, and laptop. As seen in Figure 6d, comparing our proposed method with
the baseline methods, our approach offers improved accuracy of 6.07% (PointNet), 3.87% (PointNet++),
and 1.94% (PointCNN). This experiment thus validates the applicability of the proposed method in an
office scenario.

Figure 5. Confusion matrices for the methods on the dataset corresponding to the office scenario: (a) our
method, (b) PointNet, (c) PointNet++, and (d) PointCNN. The value of each element in the confusion
matrix is the number of samples in each category. The darker the color, the more number of samples
in corresponding category.

Figure 6. Experimental results of the methods on the dataset corresponding to the office scenario:
(a) Recall; (b) Precision; (c) F1 score; (d) Accuracy.
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4.2. Experiment 2: Living Room Scenario

A flowerpot, monitor, pillow, sofa, table, and trashcan are typical components in a living room
scenario. Therefore, this experiment was mainly used to verify the applicability of the proposed
method for the semantic classification of typical components in a living room scenario. The confusion
matrices for the predictions of all methods on the unlabeled set (test set) in the living room are shown
in Figure 7. These four 6 × 6 confusion matrices display the point cloud prediction results. Clearly,
there were fewer errors in our framework than the baseline methods. This suggests that our method
can effectively capture the distinguishing features of point clouds. It was particularly difficult for
the baseline methods to correctly classify the table and the trashcan. Moreover, baseline methods
confused the table with the flowerpot, monitor, and trashcan, while the trashcan was confused with
the flowerpot.

Figure 7. Confusion matrices for the methods on the dataset corresponding to the living room
scenario: (a) our method, (b) PointNet, (c) PointNet++, and (d) PointCNN. The value of each element
in the confusion matrix is the number of samples in each category. The darker the color, the more
number of samples in corresponding category.

As is clearly shown in Figure 8, the four measurements of these methods were recorded to
assess the classification results. These three measurements (recall, precision, and F1 score) of our
method for most categories remained at a relatively high level that was higher than the baseline
methods, specifically for the table. The baseline methods regarded the table as a monitor, flowerpot,
or trashcan. Similarly, our method predicted the flowerpot and table as a pillow; thus, the precision of
the pillow in our method was lower than that under the baseline methods. For accuracy, compared
with the baseline methods, our method achieved the best performance with an accuracy of 97.29%.
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The most accurate baseline method was PointNet++, with an accuracy of 86.47%, which was 10.82%
lower than our method. Our approach outperformed PointNet by 14.31% and PointCNN by 12.06%.
This shows that the proposed method had the best applicability in a living room scenario.

Figure 8. Experimental results of the methods on the dataset corresponding to the living room scenario:
(a) Recall; (b) Precision; (c) F1 score; (d) Accuracy.

4.3. Experiment 3: Bedroom Scenario

Typically, a bed, chair, nightstand, pillow, table, and trashcan are common components in a
bedroom scenario. Therefore, this experiment was mainly used to verify the applicability of the proposed
method for the semantic classification of typical components in a bedroom scenario. Figure 9 shows
the confusion matrices of all methods on the unlabeled set (test set) in the bedroom scenario. Among
the four methods, our method had the fewest errors. Notably, it identified the components of the bed
and table relatively correctly, while the baseline methods incorrectly identified the bed as a chair,
nightstand, pillow, or trashcan, and recognized the table as a bed, chair, nightstand, or trashcan
(or failed to recognize the table entirely).

Four measurements were recorded in Figure 10. As can be seen, our approach achieved superior
performance compared to the baseline approaches, especially for the bed, nightstand, and table.
Just as PointNet++ did not recognize the table, PointCNN did not recognize the bed and table, so
the corresponding recall and precision were zero. Although the proposed method provided good
performance in the prediction of the bed, the precision and F1 scores of the pillow were lower than those
of other methods because this method predicted part of the bed as a pillow. The most accurate baseline
method was PointNet with an accuracy of 81.39%. Our method offered the best accuracy of 96.22%
compared with the baseline methods. Our approach significantly outperformed PointNet by 14.83%.
This experiment suggests that the proposed method has good applicability in the bedroom scenario.



Remote Sens. 2020, 12, 2181 14 of 22

Figure 9. Confusion matrices for the methods on the dataset corresponding to the bedroom scenario:
(a) our method, (b) PointNet, (c) PointNet++, and (d) PointCNN. The value of each element
in the confusion matrix is the number of samples in each category. The darker the color, the more
number of samples in corresponding category.

Figure 10. Experimental results of the methods on the dataset corresponding to the bedroom scenario:
(a) Recall; (b) Precision; (c) F1 score; (d) Accuracy.
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4.4. Experiment 4: Comprehensive Classification

To further explore the proposed method, a comprehensive complex indoor scenario was simulated.
The four methods were used to classify all categories in the new dataset, and the results were recorded,
as shown in Figure 11. The baseline methods classified the table and bed improperly. Conversely,
our proposed method could correctly identify each category. Due to similarities in their geometric
structures, our method was slightly confused in distinguishing the table and the bed (e.g., the bookshelf
and monitor, chair and sofa, desk and nightstand, and table and bookshelf). Nevertheless, compared to
the baseline methods, the proposed method still obtained better classification results in this experiment
because it could accurately predict the table and bed.

Figure 11. Confusion matrices for the methods on the dataset: (a) our method, (b) PointNet,
(c) PointNet++, and (d) PointCNN. The value of each element in the confusion matrix is the number of
samples in each category. The darker the color, the more number of samples in corresponding category.



Remote Sens. 2020, 12, 2181 16 of 22

The performance of all approaches is provided in Figure 12. For our approach, each category
was predicted relatively accurately with better performance than the baseline approaches. However,
the number of correctly predicted bookshelf, sofa, and monitor objects was lower than the baseline
methods. Hence, the recall of the bookshelf, sofa, and monitor was also lower than other methods.
Moreover, some beds were misclassified as pillows, resulting in a lower precision for the pillow
than that achieved by the baseline methods. However, for the baseline methods, the table and bed
were predicted like other categories, resulting in zero recall and precision. Therefore, the accuracy
of our method was higher than that of the baseline methods. PointCNN had the highest accuracy
among the baseline methods, with an accuracy of 85.73%. The accuracy of our approach was 87.62%,
which was higher than that of PointCNN by 1.89%. These results demonstrate that even under a
comprehensive complex indoor scenario, the proposed method remains practical.

Figure 12. Experimental results of the methods on the dataset: (a) Recall; (b) Precision; (c) F1 score;
(d) Accuracy.

5. Discussion

5.1. Influence of the Dimensionality Reduction and Clustering on the Accuracy

In dimensionality reduction and semantic assignment, the classification accuracy is affected by
the algorithms of dimensionality reduction and clustering. Various algorithms of dimensionality
reduction (such as multiple dimensional scaling [45], principal component analysis [46], locally
linear embedding [47], isometric mapping [48] and T-distributed stochastic neighbor embedding [49])
and clustering algorithms (such as K-means [50], mixture-of Gaussian [51], agglomerative nesting [52],
spectral clustering [53] and density-based spatial clustering of applications with noise [54]) were tried.
After many comparisons, the methods with best performance were chosen. Most of the dimensional
reduction algorithms learned the similarity between the features poorly in the high-dimensional space,
so they failed to distinguish the different features in the low-dimensional space. Moreover, the shape
of each cluster in the low-dimensional space was various, and compared to other clustering methods,
DBSCAN performed better in this respect.

5.2. Influence of the Geometric Contrast on the Classification Accuracy

In reality, objects in different scenarios have more varied types and are more structurally complex
in indoor scenarios. There are both similarities and dissimilarities among the geometric structures of



Remote Sens. 2020, 12, 2181 17 of 22

different classes of objects. Similar geometric structures of several categories of objects will increase
the difficulty in correctly distinguishing those objects during classification (for both the proposed
and baseline methods). Consider the chair and sofa in the fourth experiment as an example (as shown
in Figure 13). In open-source datasets such as ShapeNetCore and ModelNet40, the structures of some
sofas and chairs are very similar. For the proposed method, the semantics of some objects in the datasets
are too close, which increases the difficulty of classification. Hence, establishing a strict semantic
system for indoor scene components is required to reduce the overlap among different categories
of indoor components for semantics. Further, the existing indoor components’ point clouds require
semantic standardization according to the semantic system.

Figure 13. Comparison of the chairs and sofas in different open source datasets.

5.3. Influence of the Semantic Assignment Parameters on Classification Accuracy

In the semantic assignment stage, the classification accuracy was affected by ε, MinPts
and the number of nearest neighbors. During the experiments, ε and MinPts were determined
by visualizing clustering results in two-dimensional space. Different experiments had different values
of ε and MinPts. In the future work, we will try to determine the two thresholds using an effective
adaptive method. To study the relationship between the classification accuracy of the proposed method
and the number of nearest neighbors, we conducted more extensive research. Different numbers
of nearest neighbors (1, 3, 5, 7, 9) were selected to verify their impact on classification accuracy
in experiment 4.

Table 3 lists the distinct classification accuracy values corresponding to different nearest neighbors.
When the value of the nearest neighbor parameter ranged from 1 to 9, the accuracy fluctuated
within about 1%. The highest accuracy was 87.62% at 5. Meanwhile, the parameter of nearest
neighbors had different optimal values in different experiments. If there was significant variation
among the geometrical structures of several categories, the number of nearest neighbors had only a
slight effect on the classification results.

Table 3. Classification accuracy of the different nearest neighbor parameters for our method
in experiment 4.

Nearest Neighbor Parameters 1 3 5 7 9

Accuracy 87.48% 87.11% 87.62% 86.51% 86.51%

5.4. Robustness in Point Density

Another critical issue for the robustness of our framework is addressed in this subsection.
In practice, dealing with point clouds with different densities is a common situation. Under such
circumstances, it is important to investigate the robustness and generalization ability of the framework
in different density situations.

The point clouds of indoor components were sampled into different points in the living
room scenario. The number of employed points was selected as 32, 64, 128, 256, 512, and 1024,
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respectively (as shown in Figure 14a). The proposed method was compared with the baseline methods.
The classification results are shown in Figure 14b. It was observed that data of different densities
can significantly reduce the performance of PointCNN and PointNet++. For instance, when there
are 512 points, the accuracy of PointCNN decreases by about 50%; when 256 points are available,
the accuracy of PointNet++ is lower than 60%. The classification accuracy of PointNet decreases
with the number of input points. The proposed method has a synchronous downward trend with
PointNet, but the accuracy is higher. Our method remains stable under different point densities.
When the number of input points is 1024, 512, 256, and 128, the overall accuracy is maintained at 95%.
Here, the system maintains relatively good performance and only drops by about 2% when 64 points
are used for testing the accuracy, while the accuracy of the PointNet drops by about 13%. There are
two reasons for this stability: one is that the parameters of our feature extraction framework are more
accurately able to discriminate between point cloud features than the baseline methods; the other is that
dimensionality reduction and semantic assignment can distinguish similar features from dissimilarities
according to feature consistency. This effectively reduces the impact of point clouds with different
densities. The experimental results and comparisons demonstrate the point density robustness of
our method.

Figure 14. Comparison of different numbers of input points: (a) examples of the point clouds with
different numbers of points; (b) accuracy of our method and the baseline methods.



Remote Sens. 2020, 12, 2181 19 of 22

5.5. Number of Categories of Labeled Samples

As shown in Figure 3, if the categories of the point clouds to be classified are known, they can
be directly classified using few labeled point clouds of the known categories. For a new task of
point cloud classification, our method uses open-source dataset for pre-training. Then, just a few
labeled point clouds in each category can achieve effective classification for this specific task. However,
for the existing deep learning methods, it is necessary to label sufficient point clouds per class for
training in this specific task. This process takes time and effort. If the categories of the point clouds to
be classified are unknown, as many categories of point clouds as possible should be labeled. This is
required for all classification methods. Classification methods based on deep learning require a
sufficient number of labeled point clouds with various categories. Our method differs from previous
methods in that only a few labeled point clouds in each category are labeled here.

6. Conclusions

In this study, a novel classification method of point clouds for indoor components using few labeled
samples was proposed. The novelty of this method lies in: (1) mixing few labeled samples with a large
number of unlabeled samples to extract mixed features; and (2) using few labeled samples to achieve
classification through the dimensionality reduction algorithm based on manifold learning and semantic
label assignment. This method reduces the difficulty of quantifying the similarities and differences
of point cloud features and effectively distinguishes similar features from dissimilar features. It can
achieve point cloud classification using only a few labeled samples. In the four experiments—three
single-attribute indoor scenarios and one comprehensive complex indoor scenario—the results indicate
that the proposed method not only has higher classification accuracy but also reduces the cost of labeling
the training samples. Compared with existing deep learning methods, the proposed method does
not separate the training set from the test set when classifying and only requires few labeled samples
to achieve classification. Furthermore, it has a higher generalization ability. For any classification
task, only two conditions are required. The first is to train the framework using an open-source
dataset similar to the classified object, and the second is to label a small number of multi-class
samples to be classified. Therefore, the proposed method is suitable for many classification tasks using
open-source datasets.

Although the classification results of the proposed method were good in typical indoor scenarios,
these categories do not cover all indoor components. For future studies, we will attempt to classify
more categories of components to simulate real complex indoor scenarios. The proposed method
extracts global features for classification. Thus, we will focus on further optimizing the network
structure (such as introducing an attention mechanism, tensor, etc.) to extract local features.
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