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Abstract: Lately, with deep learning outpacing the other machine learning techniques in classifying
images, we have witnessed a growing interest of the remote sensing community in employing these
techniques for the land use and land cover classification based on multispectral and hyperspectral
images; the number of related publications almost doubling each year since 2015 is an attest to
that. The advances in remote sensing technologies, hence the fast-growing volume of timely data
available at the global scale, offer new opportunities for a variety of applications. Deep learning
being significantly successful in dealing with Big Data, seems to be a great candidate for exploiting
the potentials of such complex massive data. However, there are some challenges related to the
ground-truth, resolution, and the nature of data that strongly impact the performance of classification.
In this paper, we review the use of deep learning in land use and land cover classification based on
multispectral and hyperspectral images and we introduce the available data sources and datasets
used by literature studies; we provide the readers with a framework to interpret the-state-of-the-art
of deep learning in this context and offer a platform to approach methodologies, data, and challenges
of the field.

Keywords: remote sensing data; hyperspectral data; multispectral data; LULC classification; machine
learning; deep Learning; convolutional neural networks; end-to-end learning; feature engineering;
ground-truth scarcity; data fusion

1. Motivation

The advances in remote sensing technologies and the resulting significant improvements in the
spatial, spectral and temporal resolution of remotely sensed data, together with the extraordinary
developments in Information and Communication Technologies (ICT) in terms of data storage,
transmission, integration, and management capacities, are dramatically changing the way we observe
the Earth. Such developments have increased the availability of data and led to a huge unprecedented
source of information that allows us to have a more comprehensive picture of the state of our planet.
Such a unique and global big set of data offers entirely new opportunities for a variety of applications
that come with new challenges for scientists [1].

The primary application of remote sensing data is to observe the Earth and one of the major
concerns in Earth observation is the monitoring of the land cover changes. Detrimental changes in
land use and land cover are the leading contributors to terrestrial biodiversity losses [2], harms to
ecosystem [3], and dramatic climate changes [4]. The proximate sources of change in land covers
are human activities that make use of, and hence change or maintain, the attributes of land cover [5].
Monitoring the changes in land cover is highly valuable in designing and managing better regulations
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to prevent or compensate the damages derived from such activities. Monitoring the gradual—but
alerting—changes in the land cover helps in predicting and avoiding natural disasters and hazardous
events [6], but such monitoring is very expensive and labour-intensive, and it is mostly limited to the
first-world countries. The availability of high-resolution remote sensing data in a continuous temporal
basis can be significantly effective to automatically extract on-Earth objects and land covers, map them
and monitor their changes.

Nonetheless, exploiting the great potentials of remote sensing data holds several critical challenges.
The massive volume of raw remote sensing data comes with the so-called four challenges of Big Data
referred to as “four Vs”: Volume, Variety, Velocity, and Veracity [7]. To mine and extract meaningful
information from such data in an efficient way and to manage its volume, special tools and methods
are required. In the last decade, Deep Learning algorithms have shown promising performance
in analysing big sets of data, by performing complex abstractions over data through a hierarchical
learning process. However, despite the massive success of deep learning in analysing conventional
data types (e.g., grey-scale and coloured image, audio, video, and text), remote sensing data is yet a
new challenge due to its unique characteristics.

According to [8], the unique characteristics of remote sensing data come from the fact that such data
are geodetic measurements with quality controls that are completely dependent on the sensors adequacy, they
are geo-located, time variable and usually multi-modal, i.e., captured jointly by different sensors with different
contents. These characteristics in nature raise new challenges on how to deal with the data that comes
with a variety of impacting variables and may require prior knowledge about how it has been acquired.
In addition, despite the fast-growing data volume on a global scale that contains plenty of metadata, it is
lacking adequate annotations for direct use of supervised machine learning-based approaches. Therefore,
to effectively employ machine learning—and indeed deep learning—techniques on such data, additional
efforts are needed. Moreover, in many cases remote sensing is to retrieve geo-physical and geo-chemical
quantities rather than land cover classification and object detection, for which [8] indicate that expert-free
use of deep learning techniques is still getting questioned. Further challenges include limited resolution,
high dimensionality, redundancy within data, atmospheric and acquisition noise, calibration of spectral
bands, and many other source-specific issues.

Answering to how deep learning would be advantageous and effective to tackle these challenges
requires a deeper look into the current state-of-the-art to understand how studies have customised and
adapted these techniques to make them fit into the remote sensing context. In this work, we explore the
state-of-the-art of deep learning methodologies with the aim of finding full or partial answers to these
challenges. Since the use of deep learning in this field is recent, a review that gives a comprehensive
picture of where and how deep learning techniques are responding to these challenges is missing.
In this work, not getting into single mathematical details of a single technique, we report the advances
of deep learning in the field of land cover classification and discuss how the most used techniques
are evolved, transformed, and fused to address specific challenges. Before that, we also provide an
overview of research trends, critical terms, data characteristics, and available datasets.

The remainder of this paper is organised as follows: first, we give a short historical overview of
land use and land cover classifications of remote sensing data and explain the current trends in this field.
Then, we give a short introduction on Multispectral and Hyperspectral remote sensing data, followed
by common datasets used for evidence-based research. Afterwards, we discuss the possible machine
learning pipelines for land use and land cover classification and their pros and cons explaining how deep
learning can be integrated into such pipelines. Furthermore, we go into more details on the different
stages of the machine learning pipeline and on its common challenges explaining the use of deep learning
to tackle also sub-tasks of the classical machine learning process. As a conclusion, we highlight the gaps
and new challenges we found during this review opening the doors for further research lines in the field.
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2. Land Use and Land Cover Classification

Land mappings of Earth are traditionally categorised into land use classification and land cover
classification. Although in many studies these two concepts are interchangeable, or, as stated in [9],
are confused by each other, the proper definition of each makes them different. According to the Food and
Agriculture Organisation (FAO) [10] of the United Nations, “Land cover is the observed (bio)physical
cover on the Earth’s surface”, while “Land use is characterised by the arrangements, activities and
inputs by people to produce, change or maintain a certain land cover type”. According to the definition,
land use and land cover are tightly related, and their joint classification is almost inevitable. Therefore,
in recent studies “land use and land cover” (LULC) classification as a whole is considered as a more
general concept also covering this relationship.

There are different taxonomies for LULC, based on the targeted applications; one of the most
famous definitions belongs to FAO and offers a hierarchical land cover classification system (LCCS),
which provides the ability to accommodate different levels of information, starting with structured
broad-level classes, which allow further systematic subdivision into more detailed sub-classes [11]
(Figure 1). This definition assures a high level of mappability that also covers the user-defined land
use descriptors.

In general, studies approaching LULC classification consider a very small number of land cover
or land use categories. Depending on the target application, these categories may be at the higher
level of the hierarchy, distinguishing obvious land covers, or focussing on specific land cover sub-class
categories. The classification of wetlands [12,13], urban land-use [14,15], agriculture [16], forest [17],
and other vegetation mappings are some examples of the application-focused LULC classification
approaches that are available in the literature.

Figure 1. The three upper level categories in the land cover classification system (LCCS) hierarchy.

The earliest use of remotely sensed data for the LULC classification goes back to mid-1940s
when Francis J Marschner began to map the entire United States by associating the land uses to the
Earth surface using aerial photography [18]. Years later, just after the launch of the Earth Resources
Technologies research satellite equipped with a multispectral scanner (MSS) on July 1972 and the
start of the Landsat program, the studies using the remotely sensed imagery data to classify the
LULC stepped to a new level [19,20]. In fact, with the birth of the Landsat program and the (private)
release of data, new challenges of multi-modal data fusion, land change detection on a temporal basis,
and ecological applications of the satellite data, were introduced to the field of LULC. Some of the
early works on these topics are discussed by [21–24].

The studies over LULC classification and its further challenges are constantly and rapidly evolving
as the result of the fast improvements in the processing and storage capacity of computers and the
evolution in Artificial Intelligence (AI). Moreover, any advance in the remote sensing technologies,
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and in the quality of data, comes with new opportunities for researchers to extract new information
from the remote sensing data [25]. The growing trend of publications about the LULC classification of
remote sensing data is pictured in Figure 2. The trend has been captured searching for a set of key
terms in the title, abstract and keywords of all documents available in Scopus, grouped and filtered by
five-year intervals.

Figure 2. The publication trends over LULC classification of remote sensing data. The graph shows a
consistent increase in the number of publications. The graph also shows the portion of publications
dedicated to hyperspectral images classification and the use of deep learning techniques (data were
retrieved in May 2020).

The trends in Figure 2 contain four different search results: the first one (Blue) is the count of publications
on LULC classification/segmentation using all types of remote sensing data. The second one (Orange)
restricts publications on LULC classification/segmentation to hyperspectral data: this emphasises an
increasing number of studies working on such data in the last two decades. The third one (Green) shows
the use of “deep learning” techniques in LULC classification with all types of remote sensing data,
emerged in the last years (interested readers can find a review on such publications in [26]). The last
one (Red) restricts the latter type considering only the use of multispectral and hyperspectral remote
sensing data, which are increasingly getting attention due to their recent availability.

Hyperspectral imaging, being tied to the advances in digital electronics and computing capabilities,
was embraced later by the Earth Observation community due to its complexity in nature and the
computational limitations of the time. However, the great potentials of such data, its availability,
and the fast developments in computational technologies are increasingly attracting scientists interested
in LULC classification. Moreover, the extraordinary achievements of deep learning since the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [27], encouraged remote sensing scientists to
employ these techniques on remote sensing data as well, starting from 2015. Reference [28] devote
their study to the challenges of hyperspectral imaging technologies and review the state-of-the-art
of deep learning methodologies used for hyperspectral image classifications. Reference [29] also
presents an overview of deep learning methods for hyperspectral image classification and compare the
effectiveness of these methods on common well-known datasets.
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In this review paper, we explore this recent growing research trend in using deep learning techniques
for LULC classification of hyperspectral and multispectral images, as both data types have significant
common attributes that can be studied together. The main aim is to draw up a lively document that gives
a framework about how to read the state-of-the-art of deep learning in the field of LULC classification of
remote sensing data, with an emphasis on hyperspectral and multispectral images. The focus of this
document is to provide a platform for the readers to extract proper methods and datasets to address the
existing challenges of the field.

Considering Figure 2, this paper reviews the papers highlighted in red (LULC classification of
hyperspectral and multispectral remote sensing images using deep learning techniques) obtained
with the search query: TITLE-ABS-KEY(“deep learning” OR “convolutional neural network” AND
“land cover” OR “landcover” OR “land use” OR “landuse” OR “lulc” AND “multispectral” OR
“multi spectral” OR “hyperspectral” OR “hyper spectral”). We considered the documents that
were cited by these selected articles and other works that these selected articles were cited by. Going
through these sources helped us sketch the general schema of the state-of-the-art you find in the
following, focusing on the position of deep learning in the whole picture. As a side note, we stress
here a clarification for the reader about the use of the term “land cover classification” in literature as in
several works it actually refers to “land cover segmentation”. In other words, the classification term
refers to the pixel level, hence the final targeted result is a segmented map. In some works, the aim of
classification is instead a patch-based classification, where a fixed size patch of an image is assigned
to a specific class. In this review paper, for clarity, these approaches are referred to as “pixel-level
classification” and “patch-level classification”, respectively. For the sake of simplicity, we adopt the
term “land cover classification” for pixel-level classification, when not explicitly specified.

From a formal point of view, the LULC classification process is defined as f : X → Y, with input
space X ⊆ NW×H×K where W, H, K are respectively the width, height and number of spectral bands for
each input image, which the output space for pixel-level land cover classification and patch-level land
cover classification is represented as Y ⊆ CW×H and Y ⊆ C respectively, where C = {Ω0, Ω1,. . . Ωk} is
the set of possible land use and land cover categories.

3. Multispectral and Hyperspectral Remote Sensing Data

Remotely sensed images are usually captured by optical, thermal, or Synthetic Aperture Radar
(SAR) imaging systems. The optical sensor is sensitive to a spectrum range from visible to mid-infrared
of the radiations emitted from the Earth’s surface, and it produces Panchromatic, Multispectral or
Hyperspectral images. Thermal imaging sensors, capturing the thermal radiations from the Earth surface,
are instead sensitive to the range of mid to long-wave infrared wavelengths. Unlike thermal and optical
sensors that operate passively, the SAR sensor is an active microwave instrument that illuminates the
ground scattering microwave radiations and captures the reflected waves from the Earth’s surface.

The panchromatic sensor is a monospectral channel detector that captures the radiations within
a wide range of wavelength in one channel, while multispectral and hyperspectral sensors collect
the data in multiple channels. Therefore, unlike the panchromatic products that are mono-layer 2D
images, hyperspectral and multispectral images share a similar 3D structure with layers of images,
each representing the radiations within a spectral band. Despite the similarity in the 3D structure,
the main difference between multispectral and hyperspectral images is in the number of spectral bands.
Commonly, images with more than 2 and up to 13 spectral bands are called multispectral, while the
images with more spectral bands are called hyperspectral. Nevertheless, the main difference is that the
hyperspectral acquisition of spectrum for each image pixel is contiguous, while for multispectral it is
discrete (Figure 3—Left).
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Figure 3. Left: The wavelength acquisition of spectral bands for multispectral (below) and hyperspectral
sampling (above) (taken from [30]). Right: a schema of multispectral and hyperspectral images in the
spatial-spectral domain.

Having hundreds of narrow and contiguous spectral bands, hyperspectral images (HSI) come with
specific challenges intrinsic to their nature that do not exist with multispectral (MSI) and panchromatic
images. These challenges include: (1) High-dimensionality of HSI, (2) different types of noise for each
band, (3) uncertainty of observed source, and (4) non-linear relations between the captured spectral
information [31]. The latter is explained to result from the scatterings of surrounding objects during the
acquisition process, the different atmospheric and geometric distortions, and the intra-class variability
of similar objects.

Despite the mentioned differences in the nature of MSI and HSI, both share a similar 3D cubic-shape
structure (Figure 3—Right) and are mostly used for similar purposes. Indeed, the idea behind LULC
classification/segmentation relies on the morphological characteristics and material differences of
on-ground regions and items, which are respectively retrievable from spatial and spectral information
available in both MSI and HSI. Therefore, unlike [32] that review methodologies designed for spectral-
spatial information fusion for only hyperspectral image classifications, in this review we consider
both data types as used in the literature for land cover classifications using deep learning techniques
focusing on the spectral and/or spatial characteristics of land cover correlated pixels.

Data Sources and Datasets

There are many satellite and airborne imagery providers that release timely and high-resolution
remote sensing data to the public without any cost. USGS [33,34], NEO [35], Copernicus open access
hub [36], NASA Earth data [37], NOAA [38,39] and IPMUS Terra [40] are among the most popular open
access remote sensing data providers. In the literature, satellite images used for deep learning purposes
are mostly obtained from Landsat-7, Landsat-8, Sentinel-1, Sentinel-2, WorldView-2, WorldView-3,
QuickBird, EO-1, PROBA-1, and SPOT-6 satellites. Table 1 presents a short overview of the status of these
satellites and their image products. Except for Sentinel-1, EO-1, and PROBA-1 that produce both SAR
and hyperspectral images, the products of the other satellites listed in the table are multispectral images.
As explained before, panchromatic band images (black and white) are captured by a single channel
detector that is sensitive to a broad wavelength range, coinciding with the visible range, which collects a
higher amount of solar radiation. Therefore, the spatial resolution of panchromatic images is usually
higher than the MSI. Landsat, WorldView, SPOT-6 and QuickBird capture panchromatic images together
with MSI. Among the MSI providers, Sentinel-2, with the highest number of spectral bands (13 bands)
and highest orbital altitude among these satellites, is the only mission that can provide data with global
coverage data in five days.

Among the satellites in Table 1, the highest resolution images are obtained by WorldView-3 and
WorldView-2, followed by QuickBird and SPOT-6 satellites. All these satellites are commercial, therefore
their images are expensive and available in open access with limited land coverage. In the literature,
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very high resolution multispectral and hyperspectral images used for object detection, building and road
extraction, or crop analysis, are mainly airborne images captured by digital sensors, such as AVIRIS and
ROSIS. The spatial resolution of images of such sensors may vary depending on the altitude of the aircraft.

To exploit airborne or spaceborne images, supervised techniques are usually utilised. Such techniques
infer the logic for classification based on labelled training data. However, explicitly labelling the data
and collecting ground-truth for such supervised approaches is a complex and time-consuming task. Few
available databases come with ground-truth. The most used datasets in the literature, already labelled,
for land cover classification using deep learning techniques are graphically shown in Figure 4, and detailed
in Table 2. In some of these datasets, the images are also properly cropped, corrected and archived in a
way that is easy for the machine to retrieve and process.

Table 1. A short overview of satellites and their remote sensing image products that have been frequently
used in literature for deep learning practices.

Name Launch Orbital Still Active Image Type Pixel Spatial Resolution
Year Altitude (2019) SAR Pan MSI HSI

EO-1 2000 705 km NO NO NO NO YES 30 m

LANDSAT 7 1999 705 km YES NO YES YES NO Panchromatic resolution: 15 m
MSI resolution: 30 m

LANDSAT 8 2013 705 km YES NO YES YES NO Panchromatic resolution: 15 m
MSI resolution: 30 m

QuickBird 2001 482 km NO NO YES YES NO 2.44 m

Sentinel 1 * 2014 693 km YES YES NO NO NO Depends on the operational mode. The best
resolution id for stripmap mode (5 m)

Sentinel 2 * 2015 785 km YES NO NO YES NO Depending on the band, 10 m to 60 m
RGB-NIR resolution is 10 m

SPOT-6 2012 694 km YES NO YES YES NO Panchromatic resolution: 1.5 m
MSI resolution: 6 m

WorldView-2 2009 770 km YES NO YES YES NO Panchromatic resolution: 0.46 m
MSI resolution: 1.84 m

WorldView-3 2014 617 km YES NO YES YES NO Panchromatic resolution: 0.31 m
MSI resolution: 1.24 m

PROBA-1 2001 615 km YES NO NO NO YES Visible bands resolution: 15 m
Other bands resolution: 30 m

* Each of the Sentinel-1 and Sentinel-2 missions has a couple of satellites on orbits for better global coverage
(up to 2019).

Figure 4. The most popular datasets for land cover classification purposes employing deep learning
techniques. This graph is based on the number of papers referencing the datasets by May 2020.
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Table 2. Summary of the most popular multispectral and hyperspectral datasets.

Dataset Source Mapping type Labelling No. Samples Image Size Resolution No. Bands No. Classes Ref(pixel) (meter/pixel)

Botswana EO-1 Spaceborne Pixel 377,856 pixels 1476× 256 30 242 14
Brazilian coffee scenes SPOT-5 Spaceborne Patch 50,004 images 64× 64 10 3 3 [41]

DeepGlobe (Mix) Spaceborne Pixel 5,836,893,696 pixels 2448× 2448 0.5 3 7 [42]
Cuprite AVIRIS Airborne Pixel 314,368 pixels 614× 512 20 224 25

GRSS 2013 CASI Airborne Pixel 15,029 pixels 349× 1905 2.5 144 15
Indian pines AVIRIS Airborne Pixel 9234 pixels 145× 145 20 224 16

Kennedy space centre (KCS) AVIRIS Airborne Pixel 5250 pixels 614× 512 18 224 13
Pavia centre ROSIS Airborne Pixel 103,476 pixels 610× 340 1.3 102 9

Salinas AVIRIS Airborne Pixel 54,129 pixels 512× 217 3.7 224 16
SAT-4 NAIP program Airborne Patch 500,000 images 28× 28 1 4 4 [43]
SAT-6 NAIP program Airborne Patch 405,000 images 28× 28 1 4 6 [43]

UCMerced OPLS Airborne Patch 2100 images 256× 256 0.3 4 21 [44]
University of Pavia ROSIS Airborne Pixel 43,923 pixels 610× 610 1.3 103 9

Indian pines [45] and University of Pavia [45] datasets are used in many papers. Both datasets contain
pixel-level ground-truth, and the images are captured by airborne hyperspectral imaging sensors.
Indian pines dataset is taken by the AVIRIS sensor, which captures 224 band hyperspectral images.
The dataset targets LULC in the agriculture field. Commonly, the studies using the Indian pines dataset
remove the water absorption bands and consider only 200 spectral bands for the images. Salinas [45]
data types are very similar to Indian pines, captured by the same sensor, targeting different agriculture
classes. The University of Pavia dataset is captured by the ROSIS airborne sensor: resulting images
have 103 spectral bands. The dataset is very similar to Pavia city centre [45], just a couple of classes are
different (Pavia city centre has water and tile classes, while Pavia University has gravel and painted sheet
classes). University of Pavia dataset is more popular as it has more samples for training.

GRSS 2013 [46], Kennedy space centre (KSC) [45], Botswana [45] and Cuprite [45] single images are
other airborne pixel-level labelled imagery datasets used for land cover classification. DeepGlobe [47]
(the land cover dataset) is a new pixel-level labelled dataset introduced in 2018 for the CVPR2018
challenge. It provides a huge number of pixel training samples, with high pixel resolution, but it
contains only the RGB channels. The images of DeepGlobe dataset are the result of different commercial
satellite image fusion, but there is no accurate indication on which sensors are used and how the
images are fused.

Training samples with pixel-level labels are used for image segmentation. Therefore, the aforementioned
datasets are in general adopted to classify the map pixels and to generate a segmented map. On the
other hand, there exist also some datasets for which image patches are labelled with single or multiple
tags. Sat-4 [48], Sat-6 [48], UCMerced [49], and Brazilian Coffee scenes [50] datasets are among the most
popular patch-level labelled datasets. In addition to the commonly used datasets, some tools provide the
users with access to annotated/semi-annotated databases, which are usually collected by combining
information from different resources that target particular uses, for example, crops [51,52], forests [53],
or wetlands [54] monitoring.

In general, almost all available labelled MSI and HSI datasets come with common limitations to
apply supervised machine learning techniques. Effective use of supervised machine learning techniques
requires a large number of training samples that should also cover different in-class variations. Since
labelling of such data is quite slow, costly and labour intensive, these datasets are usually limited in the
number of samples, lack variety and are too case-specific. Such limitations are mainly referred to as the
limited ground-truth challenge, which will be discussed later in this paper.

4. Machine Learning for LULC

Conventional supervised LULC machine learning pipelines usually include four major steps:
(1) pre-processing, (2) feature engineering, (3) classifier training and (4) post-processing (Figure 5—top).
Each of these stages may be composed of a set of sub-tasks. A good break down of the whole process into
its sub-tasks, with an explicit statement of their assumptions, helps to define standalone sub-problems that
can be studied independently and have solutions or models that can be incorporated into an LULC pipeline
to accomplish the targeted classification/segmentation. Over the last years, with the growing popularity of
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deep learning as a very powerful tool in solving different types of AI problems, we are witnessing a surge
in demand of research to employ deep learning techniques in tackling these sub-problems.

Specific sub-tasks are defined to tackle the needs of the above four stages of a machine learning
pipeline; usually, the pre-processing stage includes the sub-tasks within which the input data get
prepared for the following stages (i.e., feature engineering and classifier training). The preparation
may require to correct, de-noise, synchronise, or fuse the data to come up with an enhanced version
of the original input and to improve the whole process performance. The feature engineering phase
is usually referred to as a set of feature extraction, selection, and transformation tasks, to remove
redundant information from the processed input data, reducing its dimensionality, and defining a set
of good representations (features) for the input, based upon which the machine can build a model
to predict the target classes. The heart of the workflow is the classifier training, where the machine
builds a mathematical model based on the training samples and understands the correlation between
the training data features/representation and its pre-defined classes. The model, after being trained,
tested and validated, is used to predict and classify the new data. Finally, the post-processing phase,
in pixel-level classification, is usually a set of methods applied to enhance the final segmented image,
by emphasising the morphological properties of classes or objects.

Figure 5. The machine learning classification frameworks. The upper one shows the common steps
of the conventional approaches, and the lower one shows the modern end-to-end structure. In the
end-to-end deep learning structure, the feature engineering is replaced with feature learning as a part
of the classifier training phase.

With the increased computational capacity in the new generation of processors, over the last decade,
the end-to-end deep learning approach received lots of attention from the scientists. The end-to-end learning
pipeline—taking the source data as the input-end and the classified map as the output-end—is a modern
form of re-designing the process workflow, that is taking advantage of deep learning techniques in solving
complex problems. Within the end-to-end deep learning structure, the feature engineering is replaced
by feature learning as a part of the classifier training phase (Figure 5-bottom). In this case, instead of
defining the inner steps of the feature engineering phase, the end-to-end architecture generalises the
model generation involving feature learning as part of it. Such improved capacity of deep learning has
promoted its application on many research works where well-known, off-the-shelf, end-to-end models
are directly applied to new data, such as remote sensing. However, there are some open-problems,
complexities, and efficiency issues in the end-to-end use of deep learning in LULC classification, that
encourages us to adopt a new approach for investigation of the state-of-the-art in deep learning for
LULC classification.

In the next sections, we have collected the state-of-the-art in using deep learning techniques for
the LULC classification of HSI and MSI, considering their use in an end-to-end approach or in one of
the phases of the traditional approach, including the training of land-cover classifier, the ground-truth
generation, data fusion, data pre-processing and output post-processing stages. In particular:

• In Sections 4.1 and 4.2 we explain the feature learning property of an end-to-end approach and its
limitations that lead us to consider the conventional machine learning model including feature
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engineering steps. Then we explain the concept of feature engineering, its components, and the
common methodologies, as well as deep learning techniques employed in literature to accomplish
them. We also discuss the importance of defining the feature space and its direct impact on shaping
the process pipeline.

• In Section 4.3 we explore the choices of MSI and HSI classifiers for the LULC classifications and
discuss the effectiveness of deep learning techniques for this task. We also explain different types
of deep learning approaches in classifying MSI and HSI used in the state-of-the-art.

• Focusing on the well-know challenge of limited ground-truth, in Section 4.4 we explain how it
impacts the performance of deep learning models for HSI and MSI. Then, we report the research
works facing this challenge.

• In Section 4.5 we discuss the challenge of data fusion as faced by many state-of-the-art studies. We explain
the main concerns in data fusion and how deep learning is facilitating their accomplishments.

• Finally, in Section 4.6 we discuss other potential pre-processing and post-processing techniques in
literature that can improve the LULC classification performance.

4.1. End-To-End Deep Learning

As explained before, the increased computational capacity has popularised the end-to-end deep
learning approaches, wherein instead of engineering the features, the features are automatically learnt
by the classifier (Figure 5—bottom). In other words, in such approaches, the gradient-based learning is
applied to the system as a whole. The end-to-end use of deep learning models has been very popular
within the remote sensing community over the last years. The majority of the works compare the
performance of such architecture with classical techniques, like for example, Support Vector Machine
(SVM) and Random Forest (RF) classifiers [16]. However, the use of deep learning as an end-to-end
approach comes with some complexities and inefficiencies in the processing time.

One insight is based on the Wolpert’s “No Free Lunch” (NFL) theorem [55] (the theorem was later
developed in collaboration with Macready [56]), which states that “any two optimisation algorithms
are equivalent when their performance is averaged across all possible problems” [56]. This implies that
there is no single supervised learning algorithm, out of a set of uniformly distributed possible functions,
that performs the best for all kinds of problems. This theorem refutes the idea of a generalised single
machine learning algorithm for all types of problems and data, and underlines the need to check all
assumptions and if they are satisfied in our particular problem. In practice, such deep learning models
have shown a great capacity to generalise well, which is theoretically unclear and it is still getting
questioned [57–60].

A second open issue is that, to automatically generate a hierarchy of abstractions, the deep
learning models require a massive amount of training samples annotated with the targeted classes.
In the case of end-to-end approaches for land cover classification of HSI and MSI, the massive amount
of training samples should well cover the output-end’s class distributions. However, as stated in the
previous section, due to difficulties in the collection of LULC ground-truth, it is subjected to the issue
of the limited number of training samples.

Even if we could find an effective solution to increase the size of training datasets, for example,
via unsupervised or semi-supervised learning, the issue of processing efficiency remains. As discussed
in Section 1, the complexities in the nature of remote sensing data, such as multi-modality, resolution,
high-dimensionality, redundancy and noise in data make it even more complex and challenging to
model an end-to-end workflow for the LULC classification of MSI and HSI. The more complex the
model architecture becomes, the more difficult the learning problem gets. In other words, increasing the
complexity of deep learning architectures leads to more difficult optimisation problems and dramatically
decreases the computational efficiency.

Therefore, despite the substantial attempts in applying end-to-end deep learning in LULC
classification problems, the challenges of such structure open up the floor for alternative approaches
and make the former four-stage machine learning pipeline structure a debatable candidate. Indeed,
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defining the process according to a conventional workflow format makes it easier to shape, customise,
and adapt the system to meet the targeted needs and, at the same time, it reduces the model optimisation
complexity and computational time of the learning process. Breaking down the assumptions, needs,
and targets into a set of sub-tasks, the empirical process of choosing an effective algorithm for each
sub-task becomes easier and more diagnosable. Indeed, we can employ deep learning techniques more
effectively and transparently to accomplish single sub-tasks of a classical machine learning pipeline
with smaller problems to solve. All the solutions and trained models for each sub-task can be then
employed in parallel streams or in sequential order at different steps of the conventional workflow.
For instance, the authors in [61] propose a model seeing the feature selection problem as a feature
reconstruction problem using a deep belief network and compare its efficiency in time with a deep CNN
end-to-end model. Or to deal with the ground-truth scarcity problem, the work in [62] proposes the use
of deep learning in a semi-supervised generative framework that can deal with feature extraction from
a small number of samples.

4.2. Feature Engineering

Feature engineering is one of the steps in the conventional LULC machine learning pipeline,
before the classifier training, that deals with the definition of features (or representations) that better fit
the classifier requirements. “Features are the observations or characteristics on which a model is built,
and the process of deriving a new abstract feature based on the given data is broadly referred to as
feature engineering” [63]. Feature engineering aims to reduce the size of input data and to transform
it into a set of representations that carry only its relevant meaningful information. Building a model
on large raw datasets, with a large number of attributes per data possibly with some redundancies,
is computationally expensive and inefficient. Therefore, transforming the raw data into a manageable
set of meaningful representations is very critical to build a model effectively. Commonly, different forms
of feature engineering are referred to as feature selection, feature transformation, and feature extraction.

Feature selection and feature transformation are usually referred to as dimensionality reduction techniques.
In particular, the aim of feature selection is to remove the irrelevant or redundant information of the data,
possibly without altering the rest of the information in data. On the other hand, feature transformation maps
the input into an alternative space, to make the process easier. Selecting and transforming features may
be a manual task dealt with based on expert prior knowledge or can be automated employing machine
learning techniques.

Feature extraction is mainly used to reduce the number of data features, by creating a new set of
features out of the existing ones. In classical machine learning approaches, the feature extraction task,
also called hand-crafting features, calculates the set of new representations using predefined algorithms.
Thanks to deep learning, feature extraction can be also conducted automatically, without dealing with
the complexity of designing and formulating proper algorithms.

The HSI and MSI are cubic types of data [64] that contain two spatial dimensions (the width and
height of channels) and one spectral dimension (number of channels). The spatial domain contains
the morphological information and the spectral one is to distinguish material that corresponds to a
pixel on the ground. Indexing the data in the time order adds another dimension to the data space,
and it comes with time-series challenges. Transferring such a complex 3 or 4-dimensional space into a
feature space with relevant information is very critical. The dimension of the feature space is defined
based on the interrelation among the spatial, spectral, and temporal aspects of data. In some works, all
these aspects are considered independent, while others are considered partially or fully dependent.
The prior assumption on the dependency or independence of such features plays a crucial role in the
design of the machine learning pipeline, the choice of the classifier, and the feature engineering steps.

Feature engineering is very challenging for HSI data. There are three problems to be considered:
(1) the high number of spectral bands leads to the problem of high-dimensionality, the so-called curse of
dimensionality [65]: with limited training samples it implies that much of the hyperspectral data space
is empty, i.e., it does not have any observation upon which it can build a model; (2) the correlation
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between the spectral bands is not necessarily linear; and (3) the similarity between some spectral bands
denotes the high spectral interband redundancy in a way that reducing some spectral bands does not
cause significant loss of information. Therefore, to extract proper representations from the spectral
domain of HSI data, feature transformation and feature selection should be considered together with
the feature extraction. In this way, it is possible to reduce dimension and to remove redundancy,
which helps translate data into manageable and learnable representations. The work in [66] deeply
discusses the differences in techniques and tools to implement the feature extraction of HSI.

Feature engineering of data is of high value when the amount of training samples does not satisfy
the end-to-end learning requirement, or when the learning of representations through the end-to-end
approach is not computationally efficient. Nevertheless, the feature engineering stage can still benefit
from deep learning and other machine learning techniques to find good representations for the data.
In the next subsections, we explain feature selection, transformation and extraction for HSI and MSI
data, and we discuss the common machine learning techniques, including deep learning techniques,
used to tackle these tasks.

4.2.1. Feature Selection and Transformation

Feature selection and feature transformation of data are mostly referred to as dimensionality reduction
techniques. Feature selection aims at removing redundancy by selecting the relevant attributes of the data,
while feature transformation maps the data into another simpler space with possibly smaller dimension.
Although, selecting and transforming the data into a set of relevant manageable representations that
are compatible to the classifier requirements can significantly improve the performance of the machine,
reduce the overfitting possibility, and cut down the training time, an excessive reduction of information
can also go in the opposite way. Therefore, transformation and selection of features are quite challenging
and sensitive.

The most common dimensionality reduction algorithm used for HSI data is the Principal Component
Analysis (PCA) [67–69]. PCA projects the data into a new space within which the dimensions are linearly
independent (orthogonal), and they are ranked in such a way that the principal axis is the one that the
data is more spread in [70]. Therefore, PCA transforms the data into a simpler space for analysis, tackling
feature transformation to reduce the feature dimension upon which the model is built.

Feature selection, also referred to as data cleaning or data filtering, removes redundancies in data and
keeps the most relevant attributes to create a set of features for building a model. It reduces the chance of
overfitting and the time of training, and eventually improves the accuracy of the classification. In almost
all stochastic learning techniques, the importance of the features is calculated automatically through
the classifier training phase. Feature importance ranking shows the importance of input data attributes,
so it makes clear which attributes of the input data are potentially removable. Feature selection for
complex HSI and MSI data, with a huge amount of attributes, is two-fold; With classical machine learning
classifiers, such as SVM, the feature selection is crucial as defining the hyper-parameters for massive
input types is too complex and impractical [71,72]. However, with the modern classifiers designed to
avoid the overfitting problem, the necessity to reduce information from input data is questionable [73,74].

The use of deep learning in the feature engineering phase is mainly referred to as feature extraction.
A feature engineering deep learning model learns how to optimally transform the input space into a
smaller coded space that includes all its important information. Usually, the important information
is referred to as the coded features that are enough to reconstruct the input with. In the following
subsection, the feature extraction methodologies based on deep learning techniques are discussed.

4.2.2. Feature Extraction

Feature extraction defines a new set of representations, or abstractions, for data based on all existing
attributes in it, to make the training process easier for the machine. A good set of representations contains
all relevant information that fits the classification requirement. Such representations can be hand-crafted,
using algorithms that calculate a new set of features. For instance, the well-known NDVI (Normalised
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Difference Vegetation Index) is a simple example of hand-crafting features, simply combining NIR
(Near Infrared) and red bands of the image, and is very informative for detecting vegetation on land
cover. Refs. [13,75] use NDVI masks and other indices to guide the Convolutional Neural Network
(CNN)-based model (the technique is explained in Section 4.3) in detecting vegetation, water and other
elements which are highlighted by these masks. Hand-crafting features can be also obtained by using
image processing techniques, such as edge detection, smoothing, or segmentation.

Unsupervised, semi-supervised, and supervised machine learning techniques can also extract
relevant features for the classifier. The best known unsupervised machine learning techniques to extract
features automatically are the deep learning Autoencoder (AE) techniques (the technique is explained in
Section 4.3). Over the last few years, AE algorithms have become very handy and popular to extract
the optimised abstraction of HSI and MSI data for the classifier [76–78]. Although such unsupervised
algorithms can find the data representations without any hint or label, ref. [79] underline the advantages
of using supervised algorithms, pointing out that not only the global mutual information but also the
in-class discriminative projections have to be explored in HSI data. Supervised algorithms using labelled
samples can learn metrics that keep data points within a class together and separate them from the other
classes [80]. Since the preparation of labelled data for supervised techniques is quite labour-intensive,
conventional supervised algorithms can be extended to the semi-supervised variants [81]. The main
supervised/semi-supervised dimension reduction algorithms applied on HSI data are based on different
types of discriminant analysis, for example, Linear Discriminant Analysis (LDA), Stochastic Discriminant
Analysis (SDA), and Local Fisher Discriminant Analysis (LFDA), ref. [82–84] and Local Discriminant
Embedding (LDE) and Balanced Local Discriminant Embedding (BLDE) [80,85].

4.3. Classifier

Despite the growing popularity of deep neural networks, the classic supervised classifiers are still
popular within the remote sensing community. RF and SVM are the most-common classic classifiers
used in literature for the land cover classification of remote sensing data. Like the other non-parametric
supervised classifiers, these algorithms do not make any assumption regarding the distribution of data
and they have shown promising results in classifying remote sensing data overtaking the field’s earlier
classifiers adopted such as Linear Regression (LG), Maximum Likelihood (MLC), K Nearest Neighbor
(KNN) and Classification and Regression Tree (CART).

RF is an ensemble classifier made of a set of tree-structured predictors (CARTs) such that each tree
depends on a random set of training observations that are sampled independently with replacement [86]
and, at each splitting node of the trees, a subset of features is randomly selected to grow the tree [87].
RF is pretty popular for classifying remote sensing data due to its simplicity and its power in reaching
robust models. It has been broadly used to classify the land cover [88–90], and many other applications as
reported in [91]. However, like the majority of supervised classifiers, RF requires an adequately big set of
reference data to learn the class distributions, which is often a critical problem.

SVM is another popular classifier for remote sensing data that works well with a relatively small
amount of training samples. The algorithm aims at finding an optimal separating hyperplane that
separates the observations into target classes so that the boundaries among the classes minimise the
misclassification rates [92]. The regularisation parameter in SVM plays a critical role in its performance;
with well-tuned regularisations, SVMs tend to be resistant to overfitting and do not have any inherent
problem when the number of observations is less than the number of attributes [93,94]. Relying on
such characteristics, SVM has been very popular for land cover classification of MSI and HSI [95–97].

However, when it comes to complex problems such as classification of HSI images, deep learning
approaches with the capability to learn from hierarchies of features, outperform the other classifiers.
Deep learning models are composed of multiple layers such that each layer computes a new data
representation from the representation in the previous layers of artificial neurons creating a hierarchy of
data abstractions [98]. CNNs are a group of deep learning techniques that are composed of convolution
and pooling layers that are usually concluded by a fully connected neural network layer and a proper
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activation function, i.e., in models that directly reconstruct an output image prediction, such as U-Net
and generative models (explained later on), the fully connected network and activation function is
not needed. CNNs, being very successful in classifying complex contextual images, have been widely
used to classify remote sensing data too.

CNNs are feedforward neural networks (artificial neural networks wherein no cycle is formed by
the connections between its nodes/neurons) that are designed to process the data types composed
of multiple arrays (e.g., images, which have layers of 2D-array of pixels) [98]. Each CNN, as shown
in Figure 6, contains multiple stages of convolution and pooling, creating a hierarchy of dependant
feature maps. The example in the figure shows convolutional neural networks with two layers of
convolution and two layers of pooling, for (a) patch-level classification, (b) pixel-level classification and
(c) an image reconstructive model. In (a) and (b) a fully connected network is fed with the flattened
feature maps of the latest pooling layer. In (b) the central part is shown in red is the pixel to which
the class is assigned. In (c), the model does not include any fully connected network and activation
function, but the right half part of the model directly reconstructs an output image predication.

At each layer of convolution, the feature maps are computed as the weighted sum of the previous
layer of feature patches, using a filter with a stack of fixed-size kernels, and then pass the result into
non-linearity, using an activation function (e.g., ReLU). In such a way, they detect local correlations (fitted
in the kernel size), while keeping invariance to the location within the input data array. The pooling layer
is used to reduce the dimension of the resulted feature map by calculating the maximum or the average
of neighbouring units to create invariance to scaling, small shifts, and distortions. Eventually, the stages
of convolution and pooling layers are concluded by a fully connected neural network and an activation
function, which are in charge of the classification task within the network.

The process of training a CNN model, using a set of training samples, finds optimised values
for the model learnable parameters, by reducing the cost calculated via a loss function (e.g., Minimum
Square Error, Cross Entropy, or Hinge loss). In CNNs, learnable parameters are the weights associated
with both convolution layer filters and connections between the neurons in the fully connected neural
network. Therefore, the aim of the optimiser (e.g., Stochastic Gradient Descent, RMSprop, or Adam) is
not only to train the classifier, but it is also responsible to learn data features by optimizing convolution
layers parameters.

The size and dimension of filters for each convolution layer are the so-called model hyper-parameters.
Although choosing the kernel size for the filters is usually an inductive process, the dimension of filters
can be directly driven from a prior knowledge over the input space (e.g., time-series, one channel
image, multi-channel image, or time-series of multi-channel images) and over the expectations on the
type of features to be extracted (e.g., spatial, spectral, spatial-spectral, or spatial-spectral-temporal
features). The CNNs used in the literature for classifying remote sensing data can be categorised into
three sub-types: CNN with one-dimensional filters (1D-CNN), CNN with two-dimensional filters
(2D-CNN), and CNN with three-dimensional filters (3D-CNN), shown in Figure 7. The differences in
the mentioned sub-types of CNN are at the convolution layers. These networks may be used jointly in
parallel streams to extract different independent features.

One-dimensional CNNs, mostly used for time series modelling, have also been used to extract
the spectral features of pixels in HSI data [99–101]. This technique is sometimes called spectral curve
classification [101]. Stacking the spectral layers of an HSI corresponding to three seasons on top of each
other, ref. [102] apply 1D-CNN to also distinguish the seasonal change feature in the spectral-temporal
domain. Reference [103] propose a hybrid model of 1D-CNN and RNN that learns the spectral dependencies
automatically. In particular, it is composed of layers of convolution and pooling (to extract locally-invariant
features), followed by recurrent layers (to retrieve the spectrally-contextual information from the latter
extracted features), and concluded by a fully connected neural network and an activation function.
Reference [104] use 1D-CNN in a generative adversarial network (1D-GAN) to generate fake spectral
data, and also as a discriminator to classify the spectral features.
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Two-dimensional CNN is the common type of CNN, used to classify images where there is a correlation
between the morphological details and the target classes. In remote sensing, 2D-CNN is typically adopted
to extract the spatial features of the HSI and MSI, considering the continuity of land covers in the spatial
domain [105].Well-known CNN pre-defined models, developed for image understanding, are sometimes
used in literature to classify land covers, including LeNet5 [106], AlexNet [107], VGGNet [108], CaffeNet [109],
GoogLeNet [110] and ResNet [111] models. In [8,112], authors have compared the mentioned models
in the context of land cover classification of HSI. In general, as the relation among spectral bands of HSI
is not linear, 2D-CNNs are usually used jointly with 1D-CNNs to cover the spectral-spatial domain of
features of HSI data [99]. In such cases the models extract spatial and spectral features separately in
parallel, then their extracted features are normally put together and fed to a fully connected classifier
followed by an activation function. However, since combining the extracted features in such a structure is
an additional empirical process, fine-tuning the model gets even more complex [113]. Three-dimensional
CNN is an alternative approach that can reduce this complexity by simply leaving the features as tensors
in a 3D space, considering also potential correlations between the spatial and spectral aspects of data.

Figure 6. An example of convolutional neural network with two layers of convolution and two layers
of pooling, for (a) patch level classification, (b) pixel level classification and (c) an image reconstructive
model. The resulting cubes after each layer of convolution and pooling are called feature maps.

Figure 7. An illustration of different convolution operations: (a) 1D convolution (with 1D filter) (b) 2D
convolution (with 2D filter) and (c) 3D convolution (with 3D filter). For each of the images, the left part
is the input of convolution and the right is the output. The filter is shown in red.
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Three-dimensional CNN is mostly used for multi-frame image classification in which the temporal
dimension is added to the domain (spatio-temporal classification). In the case of remote sensing, 3D CNNs
are used to extract spectral-spatial [114,115] and spatial-temporal [113] features. In such classifications,
the features are assumed as tensors in 3D domains, and each layer of convolution- pooling affects the size
of feature volume in depth, width and length. Authors in [73], focusing on the full utilisation of spectral
and spatial information in input HSI data, propose an end-to-end model that contains four sequential
residual blocks with 3D CNNs to extract the spectral and spatial features, respectively. Through a
training-validation cycle in the proposed model and changing the CNN parameters, the features of the
HSI data get learned. The authors of [116] introduce the attention network structure for hyperspectral
image classification that includes 3D-CNN based spatial, spectral and attention modules; the latter one
is designed to extract the discriminative features from attention areas of HSI cubes.

Normally, convolution and pooling layers apply linear operations involving the multiplication of
a set of weights with the input to generate the input representations. However, good representations
are generally highly non-linear functions of the input data as stated by [117], and modelling such
complexity with the conventional convolution feature mapping strategy requires to get very deep with
the stack of convolution and pooling, which is prone to overfitting and computational inefficiency
problems. To solve them, the authors of [117] introduce the concept of Network in Network structures
(NiN) or Inception networks, which can replace the linear convolution filters with “micro-networks” in
order to deal with non-linear approximations. Inception network uses 1 × 1 filters that reduce the
complexity of 3D-CNNs by decreasing the computational cost and the number of output features.
Reference [118] employ this idea to realise the interaction of spectral information and the integration of
specific bands in MSI data. GoogLeNet model, with nine inception modules, has been also popularly
used in the literature for classification of MSI and HSI [119–122].

One of the main concerns of deep learning is the overfitting problem. Residual blocks, introduced
by ResNet network [111], have been proven to be a good replacement for the conventional convolution
and pooling blocks to avoid this overfitting problem. The residual blocks (Figure 8) are networks
composed of convolutions and pooling layers with skip connections. The skip (or identity) connection
provides the training process with the possibility to simply skip layers of convolution and pooling,
if not needed. In some models the residual blocks are used in a customised network [73,74,123] and
in many others, the well-known ResNet models are directly employed to perform the land cover
classification of MSI and HSI [120–122,124,125].

To output a segmented map, some works suggest the use of U-Net, which was initially introduced
by [126] for biomedical image segmentation. U-Net (Figure 9) is composed of three steps: (1) contraction
with convolutional layers and max pooling, (2) bottleneck with a couple of convolutional layers and a
drop-out, and (3) expansion with some deconvolutional (or transpose of convolution) for up-sampling,
convolutional layers, and feature map concatenations. The architecture of U-Net, as also pictured in
Figure 9, looks like a ’U’, from which the name is derived. The contraction path behaves as an encoder,
trying to find the latent representations or the coded values for the input. The expansion part behaves
as a decoder, recovering the information. Since within the contraction path, the positional information
gets lost, to precisely recover information at every step of the expansion, skip connections are used to
pass a copy of corresponding encoded feature map from the contraction path. These copies of encoded
feature maps are concatenated with the result of deconvolutions to force the model to learn more
precise outputs. In the context of remote sensing, U-Net has shown very promising results in extracting
buildings [127,128], roads [129,130], clouds [131,132], and to classify other land covers [133–135] using
high resolution MSI data.

As a final note, the process of learning the substantial parameters of convolutions and deconvolutions
within complex architectures comes with an important problem: choosing a viable optimiser with efficient
computational complexity and its corresponding cost function that can evaluate it. The authors of [136]
provide a review discussing the optimisation methods vs. lost functions in detail and explain the potential
issues and their computational complexities.
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Figure 8. The general schema of a residual block with the skip or identity connection. The skip connection let
the training process bypass learning the inner weight layers (of convolutions with/without pooling) parameters.

Figure 9. The U-Net model for semantic segmentation. The model is composed of three steps: Contraction
with convolutional layers and max pooling, Bottleneck with a couple of convolutional layers and a drop-out,
and Expansion with some deconvolutional and convolutional layers and feature map concatenations.

4.4. The Challenge of Limited Ground-Truth

As explained before, for deep learning to outperform other approaches, a large quantity of training
data with ground-truth is required. That is why sometimes the classical machine learning techniques,
such as SVM, show better or comparable performance in LULC classification of MSI and HSI. As an
example, the authors of [137] evaluate the performance of Sparse Auto-Encoder (SAE) and SVM in
classifying popular datasets, concluding that with the common situation of a limited number of samples,
SVM with fewer parameters to be learned, not only performs better than SAE but also requires a more
reasonable computational time.

To deal with the aforementioned problem, ref. [138] propose a data augmentation approach which adopts
image transformations (e.g., flip, translation, and rotation) to generate additional and more diversified data
samples upon original data, which improve the performance of its CNN model (Figure 10). An alternative
approach consists of using semi-supervised learning methods that utilise unlabelled data. One way is to
use self-labelling techniques by using a pre-trained labelling classifier [139], and another recent way is to
use Generative Adversarial Networks (GAN) including generative models together with discriminative
evaluation methods [62] (shown in Figure 11).
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Figure 10. Data augmentation approach to enlarge the training dataset (ground-truth). The augmented
dataset is composed of the original dataset together with its rotated, flipped or translated versions.

Transfer learning is another approach proposed to deal with the challenge of limited ground-truth.
The transfer learning methodology employs a pre-trained classifier to extract an initial set of representations
for a new dataset (Figure 12). According to [140], with transfer learning, the model can expect a higher
start, higher slope and higher asymptotic performance during the training process. References [141,142]
use a classifier pre-trained on the ImageNet dataset to transfer knowledge into a land cover classification
problem. Another example is the methodology proposed by [143], which pre-trains a classifier on the
datasets from VOC and PASCAL challenges, which is then used to extract initial representations of
GoogleMap images for remote sensing object detection. Reference [144] propose a model that is based on
the idea of combining transfer learning and semi-supervised methods, which can deal with the challenge
of limited ground-truth. In this methodology, a pre-trained model on a labelled multi-modal dataset
(MSI-HSI or SAR-HSI) is used to label a single-modal dataset (only MSI or only SAR).

Figure 11. A general schema of generative adversarial network (GAN) depicting how a generative
model gets trained and how the trained generator is used to create the ground-truth.
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Figure 12. Transfer learning approach: a pre-trained model on another dataset is employed as a starting
point to extract the initial representations from another (smaller) dataset.

Another approach to tackle the lack of labelled data is unsupervised learning. For instance, without any
labelled data, the work in [145], being inspired by [146], proposes an unsupervised deep learning method
for HSI segmentation that initially exploits 3D convolutional Auto-Encoders (AE) (Figure 13) to learn
embedded features, and uses the learnt representations in a clustering layer to segment an input image.
The AE is composed of two stages: the encoding path and the decoding path. The encoding path uses
convolutional layers together with pooling layers to transfer the input data into a latent representation
space, or coded values. The decoder part evaluates how good the encoded representations are for
recovering data, using up-sampling and convolutional layers. Autoencoders aim to extract meaningful
information from the data in an unsupervised way. Although this methodology could dramatically
facilitate the ground-truth generation process and could be useful for high-level applications such as
anomaly detection, training these models is computationally expensive.

Figure 13. An example of a 3D auto-encoder with a couple of convolution layers followed by pooling
layers at the encoder and a couple of up-sampling layers followed by convolutional layers at the
decoder part, which learns the representations from an unlabelled set of data. In such an unsupervised
learning strategy, the learning process takes place to encode the data into a set of representations,
and the decoder evaluates how the representations are good enough to reconstruct the original data
using the same convolutions.

Labelled datasets are not only limited in number but are also very limited in terms of variety.
In other words, the majority of available HSI and MSI labelled datasets are not sufficient to train a
generalised model, as they are specific to time and location. This causes the common issue where
the classifier trained using one dataset usually does not perform as well over other datasets. Indeed,
the seasonal land cover changes, lighting effects, and intra-class variability in different regions are
factors that are not considered in the majority of datasets with ground-truth. Moreover, each dataset has
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a limited number of classes that are mostly specific to the context, location and its original application
target, which makes it difficult to mix them and generate a bigger comprehensive dataset.

Generating labelled datasets requires manual intervention. Yet, in comparison to the pixel-level
labelled datasets, the patch-level datasets are relatively easier to get prepared as labelling is less
sensitive to fine details. EuroSAT introduced by [122] (multi-labelled patches) and SAT-4 and SAT-6
datasets by [43] (single-labelled patches), are some examples of patch level labelled datasets released
to the community. On the other hand, the pixel-level labelling is still a challenge, and it is usually done
by field experts. Crowd-sourcing approaches can highly facilitate the generation of ground-truth maps;
how to engage citizens for micro-tasks through gamification and competitions, is studied by [147,148].
The potential challenges and required assessments in using such approaches are also discussed in [149].

In addition to the aforementioned limitations, we have to take into account that almost all the
available datasets have a fixed spatial resolution. Sensor specifications, as well as the choice of airborne
versus spaceborne directly impact the resolution of the image. The spatial resolution of data may be
insufficient or misleading for the classifier depending on the targeted classes. For instance, in conventional
models, normally the Visual saliency [150], i.e., the selective perceptual quality of the human visual and
cognitive system, which allows some items to immediately stand out among others within a scene, is not
considered in feature extractions from high-resolution images. One common solution is multi-scale learning:
the authors of [151] propose a multi-scale CNN framework in which a pyramid of differently scaled
versions of the high-resolution image sample is fed to the machine to capture the different conceptual
information. On the other hand, low-resolution images lack enough details to be extracted. Usually,
to deal with such a problem, data from other sources may be injected into the model pipelines to assist the
machine in capturing the relevant features. In other words, one of the possible tasks that can be carried
out by fusing different types of data (multi-modal data fusion), is to improve the resolution of the images.
This aspect is explained in more detail in the following subsections.

4.5. Multi-Modal Data Fusion

Data fusion is the process of combining data from multiple sources to improve the potential values
and interpretation performance of the source data, and to produce a high-quality visible representation
of the data [152]. In remote sensing, data fusion is commonly used to improve the spatial and spectral
resolution of data. Although data fusion has a long history in the remote sensing community, the advent
of machine learning and in particular deep learning techniques has dramatically changed the way the
data are fused.

The initial step for any geo-data fusion is geo-coordinates matching. Then, having the paired
data from the same scene, data fusion may take place in one of the following three stages: (1) at the
data preparation stage, (2) at the feature engineering stage, or (3) at the decision stage (all shown in
Figure 14).

Data fusion at the data preparation stage (also called Early Fusion) (Figure 14a) is usually referred
to as super-resolution transformation. In this process, the aim is to increase the resolution of a targeted
dataset by using another, sometimes temporary, source of data. A very traditional form of super-resolution
transformation is pan-sharpening where the panchromatic data is employed to increase the resolution
of MSI or HSI data. Different studies show that deep learning techniques outperform conventional
pan-sharpening approaches by automatic extraction of features that indicate the correlations between
the two data types [153–156].

Super-resolution generation using deep learning is obtained by a model in which two versions
of an image (high resolution as the target and low resolution as the input) are used to learn how to
reconstruct a higher resolution image out of a low resolution one [157–159]. These types of models are
getting popular to increase the resolution of remote sensing data too [160,161]. In addition to the spatial
resolution, the authors of [162] apply the same idea using 3D-CNNs on HSI to also provide higher
spectral quality. By the launch of Sentinel 1 and Sentinel 2, many questions were raised regarding
the fusion of SAR and MSI to increase the resolution of data in terms of filling the gaps caused by the
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atmospheric conditions. For instance, on a cloudy day, optical sensors can not capture the ground
surface. To approach this problem, the authors of [163] propose a deep learning-based methodology
using Sentinel 1 and Sentinel 2 time-series to estimate high-resolution NDVI time-series for monitoring
agricultural changes. Another approach targeting the inner multi-modality of MSI data is by [164],
wherein the proposed model super-resolves lower resolution spectral bands of Sentinel-2 data, using
its higher resolution spectral bands.

Figure 14. The general schema of multi-modal data fusion at three major stages of the machine learning
pipeline: (a) Data fusion at the data preparation stage (early fusion). (b) Data fusion at the feature
engineering stage (feature fusion). (c) Data fusion at the very final decision making level (late fusion).

Data fusion at the feature engineering stage (also called Feature/Representation Fusion) is a very
common and efficient way of using multi-modal data. As also pictured in Figure 14b, instead of generating
a new version of the input, the data sources from a scene are processed in parallel for the feature extraction.
Then the extracted features of each pipeline are put together and fed to the classifier. Deep learning has
been a breakthrough in this process. Using parallel convolutional streams, References [165,166] fuse LiDAR
and MSI/HSI data at the feature engineering stage for the crop and land cover classification. Similarly,
ref. [167] fuse SAR and MSI data to collect more ground details for classifications. Another interesting
work belongs to [168], where the authors use OSM (Open Street Map) maps for semantic labelling of Earth
Observation images. Panchromatic and MSI data are also commonly fused in many studies [169].

Another stage in which data fusion may take place is at the decision level (also called Late Fusion).
As shown in Figure 14c, parallel streams leading to predictions are considered for each source of
data, and the final decision is made based on all the streams’ predictions. Generally, the decision
level data fusion stands out when the input data types and formats are not auto-correlated. Indeed,
when the input data are heterogeneous, multi-modal, and multi-source at the same time, it is difficult
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to extract correlatable information at the earlier stages. Due to the large number of neurons in the
architectures with data fusion at the decision stage, the required time to train, and hence to test
the model, is significantly higher than the other data fusion architectures. Therefore, in the case of
correlatable data types, as discussed in [167], the decision level data fusion is not the best approach.
This is also stated in the work in [170], which compares the late fusion results with those of early fusion
over aerial multispectral and LiDAR data and evaluates them with the same inference. On the other
hand, a more heterogeneous input types situation has been explored by [171]: they adopt multi-modal
(MSI and SAR), multi-source (aerial images, Sentinel 2 and Sentinel 1), and multi-temporal (for Sentinel
1 and 2) data types to rapidly extract flooded buildings.

Sometimes, data fusion targets the temporal resolution as well. The work in [172], published in
2018, is a review on the state-of-the-art of spatio-temporal multi-modal data fusion studies. In our
review work, no study has been reported that tackles this problem using deep learning techniques.
However, the authors predict a potential opening by emerging deep learning in the field.

4.6. Pre and Post-Processing

The aim of pre-processing is basically to enhance the raw input data for the analysis. Within this
stage of the machine learning pipeline, many methodologies, as well as deep learning techniques, can be
employed to generate an improved dataset from the raw data. As discussed earlier, data fusion can also
happen during a pre-processing stage to generate super-resolution data. Furthermore, when pre-trained
models on different datasets exist, transfer learning may also be considered within the data pre-processing
stage. Also, the authors of [173] use transfer learning to overcome the problem of noises with the newly
launched Chinese satellite hyperspectral images. Major pre-processing tasks given by the models in the
literature focus on denoising, cloud detection, and resolution assessment. Besides data resolution assessment,
deep learning has been also successful in HSI denoising [174,175], and in detecting clouds [176,177] for both
MSI and HSI data.

Post-processing is an optional stage that is used to fine-tune the classifier output by usually
employing image processing techniques. Based on prior knowledge about the expected output or about
the potential classifier errors and noise, post-processing applies a set of adjustments to the output to
enhance the model performance. In the context of remote sensing, the pre-processing stage is very useful
to vectorise or create the shapefiles of on-Earth man-made objects (e.g., buildings) [170], for which the
morphological characteristics of the expected output is known. Conditional random fields (CRFs) is the
main technique used for this end [178], and it has been successfully practised by many studies jointly
with deep learning models targeting semantically segmented maps [75,179,180].

5. Conclusions

Currently, the majority of the attempts to apply deep learning techniques on remote sensing data
are proposed by non-machine learning experts. In this review, we addressed the critical challenges in
employing such techniques and underlined the need for a deeper understating of machine learning
as a complex problem. Focusing on the land use and land cover classification of multispectral and
hyperspectral images, we provided a review on the state-of-the-art by converging a wide range of different
approaches reported in the literature into a generic machine learning framework, which encompasses
different aspects of the whole problem. We discussed how deep learning techniques have been utilised
in different stages of the framework to target different tasks and challenges, standing out among the
other approaches.

There is a growing interest in employing deep learning techniques for a wide spectrum of remote
sensing applications, which encourages industries to invest in this field. Accordingly, fast developments in
the ground knowledge and an increase in the number of open opportunities are expected. Going through
the state-of-the-art, there seemed to be promising areas in which the implementation of deep learning can
be of high potential:
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• For the majority of the commercially viable applications, the spatial resolution of remote sensing
images is required to be higher than what any satellite can provide. Therefore, aerial remote sensing
images are more popular due to their higher spatial resolution. Yet, the limited coverage and low
temporal resolution of such aerial images come with some challenges for many applications that
leave room for the use of satellite images as well. Therefore, the trade-off between temporal and
spatial resolution lays the ground for further discussion on this matter.

• The ground-truth scarcity is yet a challenge. An accurate annotated data set could open the doors to
new opportunities for researchers. Most of the available solutions suffer from lack of funding and
difficulty in assessment of their accuracy. Indeed, the use of IoT and the open science framework
that supports the integration of citizen science, gamification, incentives and competitions, is still to
be explored.

• Despite the constant increase in the number of geospatial data providers, for many years there has
been no standardised way to release and to get hold of the data. Commonly, processing and analysis
of data are carried out on local machines, on the locally replicated instance of data. With the fast
growth of data in volume and the limitation in memory, relying on conventional infrastructures
appear not to be feasible and efficient anymore. Recently, data providers have introduced the cloud
platform to access and analyse data directly, which offers the possibility of integration of data from
different sources in the near future. Certainly, getting aligned with the advances in infrastructure
opens up new opportunities to be investigated.

• The recent idea of on-board data processing could introduce new challenges: as announced by
NASA and ESA, the future satellites are planned to carry more powerful processors that can process
data before transferring them to the Earth. However, the power-scale and energy management is a
crucial problem for the on-board processes. Therefore, reducing the complexity of the models is a
crucial matter to be considered for future works. The recent study by [181], which proposes the
Firefly Harmony Search (FHS) tuning algorithm for its Deep Belief Network model, also proves
that simplifying the models can also improve the accuracy of classifications.

Lastly, deep learning has an enormous capacity to act as an indispensable tool to tackle some of
the most serious and urgent environmental concerns of our time. There is a sense of urgency to channel
the direction of research activities to address such matters and there exist substantial potential scopes
to be further developed in this area. Moreover, the effective use of deep learning deliberates new case
studies and requires determined efforts to tackle the technical challenges that come with remote sensing
data and the problem of resource-constrained machines. Memory management, data preparation,
and data loading are of these technical challenges that call for further endeavours in applications of
deep learning. Furthermore, deep learning studies in the field of remote sensing lack an established
framework that can categorise and optimally group the models. Future efforts may consider the need
for setting up such a framework that can set the ground for a rational and proper assessment of the
effectiveness of the models.
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91. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions.

ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]
92. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm.

Remote Sens. 2011, 66, 247–259. [CrossRef]
93. Cawley, G.C.; Talbot, N.L. Preventing over-fitting during model selection via Bayesian regularisation of the

hyper-parameters. J. Mach. Learn. Res. 2007, 8, 841–861.
94. Cawley, G.C.; Talbot, N.L. On over-fitting in model selection and subsequent selection bias in performance

evaluation. J. Mach. Learn. Res. 2010, 11, 2079–2107.
95. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines.

IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [CrossRef]
96. Fauvel, M.; Chanussot, J.; Benediktsson, J.A.; Sveinsson, J.R. Spectral and spatial classification of

hyperspectral data using SVMs and morphological profiles. In Proceedings of the 2007 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS2007), Barcelona, Spain, 23–27 July 2007; pp. 4834–4837.

97. Mitra, P.; Shankar, B.U.; Pal, S.K. Segmentation of multispectral remote sensing images using active support
vector machines. Pattern Recognit. Lett. 2004, 25, 1067–1074. [CrossRef]

98. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
99. Zhang, H.; Li, Y.; Zhang, Y.; Shen, Q. Spectral-spatial classification of hyperspectral imagery using a

dual-channel convolutional neural network. Remote Sens. Lett. 2017, 8, 438–447. [CrossRef]
100. Mou, L.; Ghamisi, P.; Zhu, X.X. Fully conv-deconv network for unsupervised spectral-spatial feature

extraction of hyperspectral imagery via residual learning. In Proceedings of the 2017 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5181–5184.

101. Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image
classification. J. Sens. 2015, 2015, 12. [CrossRef]

http://dx.doi.org/10.1109/JSTARS.2016.2517204
http://dx.doi.org/10.1016/j.neucom.2015.11.044
http://dx.doi.org/10.1109/MSP.2013.2279894
http://dx.doi.org/10.1109/TGRS.2016.2543748
http://dx.doi.org/10.1109/TGRS.2012.2230445
http://dx.doi.org/10.1109/TGRS.2011.2165957
http://dx.doi.org/10.1109/LGRS.2008.2001282
http://dx.doi.org/10.1109/LGRS.2017.2751559
http://dx.doi.org/10.1109/TGRS.2014.2333539
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1080/01431160412331269698
http://dx.doi.org/10.3390/rs70809655
http://dx.doi.org/10.1109/JSTARS.2013.2253089
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
http://dx.doi.org/10.1109/TGRS.2004.831865
http://dx.doi.org/10.1016/j.patrec.2004.03.004
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1080/2150704X.2017.1280200
http://dx.doi.org/10.1155/2015/258619


Remote Sens. 2020, 12, 2495 28 of 31

102. Guidici, D.; Clark, M. One-Dimensional convolutional neural network land-cover classification of multi-
seasonal hyperspectral imagery in the San Francisco Bay Area, California. Remote Sens. 2017, 9, 629. [CrossRef]

103. Wu, H.; Prasad, S. Convolutional recurrent neural networks for hyperspectral data classification. Remote
Sens. 2017, 9, 298. [CrossRef]

104. Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Generative adversarial networks for hyperspectral image
classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [CrossRef]

105. Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the
art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [CrossRef]

106. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

107. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems (NIPS); ACM: New York, NY, USA, 2012; pp. 1097–1105.

108. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings
of the ICLR 2015, San Diego, CA, USA, 7–9 May 2015.

109. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on
Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678.

110. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9.

111. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 770–778.

112. Nogueira, K.; Penatti, O.A.; dos Santos, J.A. Towards better exploiting convolutional neural networks for
remote sensing scene classification. Pattern Recognit. 2017, 61, 539–556. [CrossRef]

113. Ji, S.; Zhang, C.; Xu, A.; Shi, Y.; Duan, Y. 3D convolutional neural networks for crop classification with
multi-temporal remote sensing images. Remote Sens. 2018, 10, 75. [CrossRef]

114. Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional
neural network. Remote Sens. 2017, 9, 67. [CrossRef]

115. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral
images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251.
[CrossRef]

116. Sun, H.; Zheng, X.; Lu, X.; Wu, S. Spectral-Spatial Attention Network for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote Sens. 2019. [CrossRef]

117. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
118. Hu, Y.; Zhang, Q.; Zhang, Y.; Yan, H. A Deep Convolution Neural Network Method for Land Cover Mapping:

A Case Study of Qinhuangdao, China. Remote Sens. 2018, 10, 2053. [CrossRef]
119. Castelluccio, M.; Poggi, G.; Sansone, C.; Verdoliva, L. Land use classification in remote sensing images by

convolutional neural networks. arXiv 2015, arXiv:1508.00092.
120. Scott, G.J.; England, M.R.; Starms, W.A.; Marcum, R.A.; Davis, C.H. Training deep convolutional neural

networks for land–cover classification of high-resolution imagery. IEEE Geosci. Remote Sens. Lett. 2017,
14, 549–553. [CrossRef]

121. Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE
2017, 105, 1865–1883. [CrossRef]

122. Helber, P.; Bischke, B.; Dengel, A.; Borth, D. Eurosat: A novel dataset and deep learning benchmark for land
use and land cover classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019. [CrossRef]

123. Lee, H.; Kwon, H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans.
Image Process. 2017, 26, 4843–4855. [CrossRef]

124. Mahdianpari, M.; Salehi, B.; Rezaee, M.; Mohammadimanesh, F.; Zhang, Y. Very deep convolutional neural
networks for complex land cover mapping using multispectral remote sensing imagery. Remote Sens. 2018,
10, 1119. [CrossRef]

125. Wang, Q.; Liu, S.; Chanussot, J.; Li, X. Scene classification with recurrent attention of VHR remote sensing
images. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1155–1167. [CrossRef]

http://dx.doi.org/10.3390/rs9060629
http://dx.doi.org/10.3390/rs9030298
http://dx.doi.org/10.1109/TGRS.2018.2805286
http://dx.doi.org/10.1109/MGRS.2016.2540798
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.patcog.2016.07.001
http://dx.doi.org/10.3390/rs10010075
http://dx.doi.org/10.3390/rs9010067
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1109/TGRS.2019.2951160
http://dx.doi.org/10.3390/rs10122053
http://dx.doi.org/10.1109/LGRS.2017.2657778
http://dx.doi.org/10.1109/JPROC.2017.2675998
http://dx.doi.org/10.1109/JSTARS.2019.2918242
http://dx.doi.org/10.1109/TIP.2017.2725580
http://dx.doi.org/10.3390/rs10071119
http://dx.doi.org/10.1109/TGRS.2018.2864987


Remote Sens. 2020, 12, 2495 29 of 31

126. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In Proceedings of the International Conference on Medical image computing and computer-assisted
intervention (MICCAI), Munich, Germany, 5–9 October 2015; pp. 234–241.

127. Xu, Y.; Wu, L.; Xie, Z.; Chen, Z. Building extraction in very high resolution remote sensing imagery using
deep learning and guided filters. Remote Sens. 2018, 10, 144. [CrossRef]

128. Hamaguchi, R.; Fujita, A.; Nemoto, K.; Imaizumi, T.; Hikosaka, S. Effective use of dilated convolutions for
segmenting small object instances in remote sensing imagery. In Proceedings of the 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1442–1450.

129. Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 2018,
15, 749–753. [CrossRef]

130. Shi, Q.; Liu, X.; Li, X. Road detection from remote sensing images by generative adversarial networks. IEEE Access
2017, 6, 25486–25494. [CrossRef]

131. Mohajerani, S.; Krammer, T.A.; Saeedi, P. Cloud Detection Algorithm for Remote Sensing Images Using Fully
Convolutional Neural Networks. arXiv 2018, arXiv:1810.05782.

132. Zhang, Z.; Iwasaki, A.; Xu, G.; Song, J. Cloud detection on small satellites based on lightweight U-net and
image compression. J. Appl. Remote Sens. 2019, 13, 026502. [CrossRef]

133. Li, R.; Liu, W.; Yang, L.; Sun, S.; Hu, W.; Zhang, F.; Li, W. DeepUNet: A deep fully convolutional network
for pixel-level sea-land segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3954–3962.
[CrossRef]

134. Papadomanolaki, M.; Vakalopoulou, M.; Karantzalos, K. A Novel Object-Based Deep Learning Framework
for Semantic Segmentation of Very High-Resolution Remote Sensing Data: Comparison with Convolutional
and Fully Convolutional Networks. Remote Sens. 2019, 11, 684. [CrossRef]

135. Rakhlin, A.; Davydow, A.; Nikolenko, S.I. Land Cover Classification From Satellite Imagery With U-Net and
Lovasz-Softmax Loss. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 262–266.

136. Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065.
[CrossRef]

137. Liu, P.; Choo, K.K.R.; Wang, L.; Huang, F. SVM or deep learning? A comparative study on remote sensing
image classification. Soft Comput. 2017, 21, 7053–7065. [CrossRef]

138. Yu, X.; Wu, X.; Luo, C.; Ren, P. Deep learning in remote sensing scene classification: A data augmentation
enhanced convolutional neural network framework. GIScience Remote Sens. 2017, 54, 741–758. [CrossRef]

139. Triguero, I.; García, S.; Herrera, F. Self-labeled techniques for semi-supervised learning: Taxonomy, software
and empirical study. Knowl. Inf. Syst. 2015, 42, 245–284. [CrossRef]

140. Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends:
Algorithms, Methods, and Techniques; IGI Global: Hershey, PA, USA, 2010; pp. 242–264.

141. Marmanis, D.; Datcu, M.; Esch, T.; Stilla, U. Deep learning earth observation classification using ImageNet
pretrained networks. IEEE Geosci. Remote Sens. Lett. 2015, 13, 105–109. [CrossRef]

142. Zhou, W.; Newsam, S.; Li, C.; Shao, Z. Learning low dimensional convolutional neural networks for high-
resolution remote sensing image retrieval. Remote Sens. 2017, 9, 489. [CrossRef]

143. Chen, Z.; Zhang, T.; Ouyang, C. End-to-end airplane detection using transfer learning in remote sensing
images. Remote Sens. 2018, 10, 139. [CrossRef]

144. Hong, D.; Yokoya, N.; Xia, G.S.; Chanussot, J.; Zhu, X.X. X-ModalNet: A semi-supervised deep cross-modal
network for classification of remote sensing data. ISPRS J. Photogramm. Remote Sens. 2020, 167, 12–23. [CrossRef]

145. Nalepa, J.; Myller, M.; Imai, Y.; Honda, K.i.; Takeda, T.; Antoniak, M. Unsupervised Segmentation of
Hyperspectral Images Using 3D Convolutional Autoencoders. arXiv 2019, arXiv:1907.08870.

146. Guo, X.; Liu, X.; Zhu, E.; Yin, J. Deep clustering with convolutional autoencoders. In Proceedings of the
International Conference on Neural Information Processing (ICONIP), Guangzhou, China, 14–18 November
2017; pp. 373–382.

147. Laso Bayas, J.; See, L.; Fritz, S.; Sturn, T.; Perger, C.; Dürauer, M.; Karner, M.; Moorthy, I.; Schepaschenko, D.;
Domian, D.; et al. Crowdsourcing in-situ data on land cover and land use using gamification and mobile
technology. Remote Sens. 2016, 8, 905. [CrossRef]

148. Fritz, S.; Fonte, C.; See, L. The role of citizen science in earth observation. Remote Sens. 2017, 9, 357. [CrossRef]

http://dx.doi.org/10.3390/rs10010144
http://dx.doi.org/10.1109/LGRS.2018.2802944
http://dx.doi.org/10.1109/ACCESS.2017.2773142
http://dx.doi.org/10.1117/1.JRS.13.026502
http://dx.doi.org/10.1109/JSTARS.2018.2833382
http://dx.doi.org/10.3390/rs11060684
http://dx.doi.org/10.1109/ACCESS.2019.2912200
http://dx.doi.org/10.1007/s00500-016-2247-2
http://dx.doi.org/10.1080/15481603.2017.1323377
http://dx.doi.org/10.1007/s10115-013-0706-y
http://dx.doi.org/10.1109/LGRS.2015.2499239
http://dx.doi.org/10.3390/rs9050489
http://dx.doi.org/10.3390/rs10010139
http://dx.doi.org/10.1016/j.isprsjprs.2020.06.014
http://dx.doi.org/10.3390/rs8110905
http://dx.doi.org/10.3390/rs9040357


Remote Sens. 2020, 12, 2495 30 of 31

149. Basiri, A.; Haklay, M.; Foody, G.; Mooney, P. Crowdsourced geospatial data quality: Challenges and future
directions. Int. J. Geogr. Inf. Sci. 2019, 33, 1588–1593. [CrossRef]

150. Li, G.; Yu, Y. Visual saliency based on multiscale deep features. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5455–5463.

151. Zhao, W.; Du, S. Learning multiscale and deep representations for classifying remotely sensed imagery.
ISPRS J. Photogramm. Remote Sens. 2016, 113, 155–165. [CrossRef]

152. Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5–24.
[CrossRef]

153. Huang, W.; Xiao, L.; Wei, Z.; Liu, H.; Tang, S. A new pan-sharpening method with deep neural networks.
IEEE Geosci. Remote Sens. Lett. 2015, 12, 1037–1041. [CrossRef]

154. Yuan, Q.; Wei, Y.; Meng, X.; Shen, H.; Zhang, L. A multiscale and multidepth convolutional neural network
for remote sensing imagery pan-sharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 978–989.
[CrossRef]

155. Wei, Y.; Yuan, Q.; Shen, H.; Zhang, L. Boosting the accuracy of multispectral image pansharpening by
learning a deep residual network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1795–1799. [CrossRef]

156. Vitale, S.; Scarpa, G. A detail-preserving cross-scale learning strategy for CNN-based pansharpening.
Remote Sens. 2020, 12, 348. [CrossRef]

157. Ma, X.; Hong, Y.; Song, Y. Super resolution land cover mapping of hyperspectral images using the deep
image prior-based approach. Int. J. Remote Sens. 2020, 41, 2818–2834. [CrossRef]

158. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 38, 295–307. [CrossRef]

159. Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolutional networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV,
USA, 27–30 June 2016; pp. 1646–1654.

160. Lei, S.; Shi, Z.; Zou, Z. Super-resolution for remote sensing images via local–global combined network. IEEE Geosci.
Remote Sens. Lett. 2017, 14, 1243–1247. [CrossRef]

161. Liebel, L.; Körner, M. Single-image super resolution for multispectral remote sensing data using
convolutional neural networks. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 883–890.
[CrossRef]

162. Mei, S.; Yuan, X.; Ji, J.; Zhang, Y.; Wan, S.; Du, Q. Hyperspectral image spatial super-resolution via 3D full
convolutional neural network. Remote Sens. 2017, 9, 1139. [CrossRef]

163. Scarpa, G.; Gargiulo, M.; Mazza, A.; Gaetano, R. A CNN-based fusion method for feature extraction from
Sentinel data. Remote Sens. 2018, 10, 236. [CrossRef]

164. Lanaras, C.; Bioucas-Dias, J.; Galliani, S.; Baltsavias, E.; Schindler, K. Super-resolution of Sentinel-2 images:
Learning a globally applicable deep neural network. ISPRS J. Photogramm. Remote Sens. 2018, 146, 305–319.
[CrossRef]

165. Xu, X.; Li, W.; Ran, Q.; Du, Q.; Gao, L.; Zhang, B. Multisource remote sensing data classification based on
convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2017, 56, 937–949. [CrossRef]

166. Chen, Y.; Li, C.; Ghamisi, P.; Jia, X.; Gu, Y. Deep fusion of remote sensing data for accurate classification.
IEEE Geosci. Remote Sens. Lett. 2017, 14, 1253–1257. [CrossRef]

167. Piramanayagam, S.; Saber, E.; Schwartzkopf, W.; Koehler, F. Supervised classification of multisensor remotely
sensed images using a deep learning framework. Remote Sens. 2018, 10, 1429. [CrossRef]

168. Audebert, N.; Le Saux, B.; Lefèvre, S. Joint learning from earth observation and OpenStreetMap data to
get faster better semantic maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 67–75.

169. Gaetano, R.; Ienco, D.; Ose, K.; Cresson, R. A two-branch CNN architecture for land cover classification of
PAN and MS imagery. Remote Sens. 2018, 10, 1746. [CrossRef]

170. Audebert, N.; Le Saux, B.; Lefèvre, S. Beyond RGB: Very high resolution urban remote sensing with
multimodal deep networks. ISPRS J. Photogramm. Remote Sens. 2018, 140, 20–32. [CrossRef]

171. Rudner, T.G.; Rußwurm, M.; Fil, J.; Pelich, R.; Bischke, B.; Kopackova, V.; Bilinski, P. Multi3Net: Segmenting
Flooded Buildings via Fusion of Multiresolution, Multisensor, and Multitemporal Satellite Imagery. arXiv
2018, arXiv:1812.01756.

http://dx.doi.org/10.1080/13658816.2019.1593422
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.004
http://dx.doi.org/10.1080/19479830903561035
http://dx.doi.org/10.1109/LGRS.2014.2376034
http://dx.doi.org/10.1109/JSTARS.2018.2794888
http://dx.doi.org/10.1109/LGRS.2017.2736020
http://dx.doi.org/10.3390/rs12030348
http://dx.doi.org/10.1080/01431161.2019.1698079
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://dx.doi.org/10.1109/LGRS.2017.2704122
http://dx.doi.org/10.5194/isprsarchives-XLI-B3-883-2016
http://dx.doi.org/10.3390/rs9111139
http://dx.doi.org/10.3390/rs10020236
http://dx.doi.org/10.1016/j.isprsjprs.2018.09.018
http://dx.doi.org/10.1109/TGRS.2017.2756851
http://dx.doi.org/10.1109/LGRS.2017.2704625
http://dx.doi.org/10.3390/rs10091429
http://dx.doi.org/10.3390/rs10111746
http://dx.doi.org/10.1016/j.isprsjprs.2017.11.011


Remote Sens. 2020, 12, 2495 31 of 31

172. Zhu, X.; Cai, F.; Tian, J.; Williams, T. Spatiotemporal fusion of multisource remote sensing data: Literature
survey, taxonomy, principles, applications, and future directions. Remote Sens. 2018, 10, 527.

173. Zhong, Y.; Li, W.; Wang, X.; Jin, S.; Zhang, L. Satellite-ground integrated destriping network: A new perspective
for EO-1 Hyperion and Chinese hyperspectral satellite datasets. Remote Sens. Environ. 2020, 237, 111416.
[CrossRef]

174. Xing, C.; Ma, L.; Yang, X. Stacked denoise autoencoder based feature extraction and classification for
hyperspectral images. J. Sensors 2016, 2016. [CrossRef]

175. Xie, W.; Li, Y. Hyperspectral imagery denoising by deep learning with trainable nonlinearity function.
IEEE Geosci. Remote Sens. Lett. 2017, 14, 1963–1967. [CrossRef]

176. Xie, F.; Shi, M.; Shi, Z.; Yin, J.; Zhao, D. Multilevel cloud detection in remote sensing images based on deep
learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3631–3640. [CrossRef]

177. Shi, M.; Xie, F.; Zi, Y.; Yin, J. Cloud detection of remote sensing images by deep learning. In Proceedings of the
2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July2016;
pp. 701–704.

178. Lin, G.; Shen, C.; Van Den Hengel, A.; Reid, I. Efficient piecewise training of deep structured models for
semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3194–3203.

179. Kampffmeyer, M.; Salberg, A.B.; Jenssen, R. Semantic segmentation of small objects and modeling of
uncertainty in urban remote sensing images using deep convolutional neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition workshops (CVPR), Las Vegas, NV, USA,
26 June–1 July 2016; pp. 1–9.

180. Kemker, R.; Salvaggio, C.; Kanan, C. Algorithms for semantic segmentation of multispectral remote sensing
imagery using deep learning. ISPRS J. Photogramm. Remote Sens. 2018, 145, 60–77. [CrossRef]

181. Gavade, A.B.; Rajpurohit, V.S. Sparse-FCM and deep learning for effective classification of land area in
multi-spectral satellite images. Evol. Intell. 2020. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rse.2019.111416
http://dx.doi.org/10.1155/2016/3632943
http://dx.doi.org/10.1109/LGRS.2017.2743738
http://dx.doi.org/10.1109/JSTARS.2017.2686488
http://dx.doi.org/10.1016/j.isprsjprs.2018.04.014
http://dx.doi.org/10.1007/s12065-020-00362-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Motivation
	Land Use and Land Cover Classification
	Multispectral and Hyperspectral Remote Sensing Data
	Machine Learning for LULC
	End-To-End Deep Learning
	Feature Engineering
	Feature Selection and Transformation
	Feature Extraction

	Classifier
	The Challenge of Limited Ground-Truth
	Multi-Modal Data Fusion
	Pre and Post-Processing

	Conclusions
	References

