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Abstract: Providing rapid access to land surface change data and information is a goal of the U.S.
Geological Survey. Through the Land Change Monitoring, Assessment, and Projection (LCMAP)
initiative, we have initiated a monitoring capability that involves generating a suite of 10 annual
land cover and land surface change datasets across the United States at a 30-m spatial resolution.
During the LCMAP automated production, on a tile-by-tile basis, erroneous data can occasionally
be generated due to hardware or software failure. While crucial to assure the quality of the data,
rapid evaluation of results at the pixel level during production is a substantial challenge because of
the massive data volumes. Traditionally, product quality relies on the validation after production,
which is inefficient to reproduce the whole product when an error occurs. This paper presents a
method for automatically evaluating LCMAP results during the production phase based on 14 indices
to quickly find and flag erroneous tiles in the LCMAP products. The methods involved two types of
comparisons: comparing LCMAP values across the temporal record to measure internal consistency
and calculating the agreement with multiple intervals of the National Land Cover Database (NLCD)
data to measure the consistency with existing products. We developed indices on a tile-by-tile basis
in order to quickly find and flag potential erroneous tiles by comparing with surrounding tiles using
local outlier factor analysis. The analysis integrates all indices into a local outlier score (LOS) to detect
erroneous tiles that are distinct from neighboring tiles. Our analysis showed that the methods were
sensitive to partially erroneous tiles in the simulated data with a LOS higher than 2. The rapid quality
assessment methods also successfully identified erroneous tiles during the LCMAP production,
in which land surface change results were not properly saved to the products. The LOS map and
indices for rapid quality assessment also point to directions for further investigations. A map of all
LOS values by tile for the published LCMAP shows all LOS values are below 2. We also investigated
tiles with high LOS to ensure the distinction with neighboring tiles was reasonable. An index in this
study shows the overall agreement between LCMAP and NLCD on a tile basis is above 71.5% and has
an average at 89.1% across the 422 tiles in the conterminous United States. The workflow is suitable
for other studies with a large volume of image products.

Keywords: LCMAP; land cover; rapid quality assessment; Landsat

1. Introduction

Land change science helps understand the interactions between people and nature that lead to
changes in the type, intensity, condition, and location of land use and cover. It seeks to provide scientific
knowledge of land use and land cover patterns and dynamics affecting the structure and function of
the Earth system [1]. Knowledge about Earth’s land cover condition and how it changes over time is a
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critical element in a variety of environmental studies [2]. For instance, land cover change information
has been widely used for assessing carbon release and sequestration [3–6], hydrologic dynamics [7,8],
forest disturbance [9–11], urban land surface temperature [12,13], and urbanization [14].

Long-term land change information derived from remote sensing imagery can be the primary
source to meet these needs. Countries and regions across the globe have produced multi-temporal land
cover products, including Canada [15,16], Brazil [17,18], Australia [19], China [20,21], Europe [22,23],
and Russia [24]. Moreover, advances like Google Earth Engine are increasingly enabling continental and
global-scale products, e.g., [9,25,26]. The U.S. Geological Survey (USGS) has a long history of producing
land cover datasets. Since the early 1970s, several major land cover datasets have been produced by the
USGS Earth Resources Observation and Science (EROS) Center at both international [27] and national
scales [28]. The USGS National Land Cover Database (NLCD) project has produced 30-m land cover
products since 1992. The products are updated every 2–3 years for the conterminous United States. and
every 10 years for Alaska [28–30]. However, research and applications about climate change and resource
sustainability require more timely land cover and land change products [1,31]. The USGS response to
this growing need is the Land Change Monitoring, Assessment, and Projection (LCMAP) initiative [32].

The USGS LCMAP has focused on implementing an innovative time-series analysis using the
data-rich Landsat archive to provide land change science information and knowledge for the United
States. LCMAP leverages the tile-based Landsat Analysis Ready Data (ARD) [33] and the Continuous
Change Detection and Classification (CCDC) algorithm [34] to create independently validated datasets
and applications to improve our understanding of natural and man-made change and address pressing
questions of land and resource management. ARD contains surface reflectance data over the United
States from the Thematic Mapper (Landsats 4 and 5), Enhanced Thematic Mapper Plus (ETM+)
(Landsat 7), and Operational Land Imager (Landsat 8) [33]. ARD is structured in a 150 × 150 km tile
scheme with the Albers Equal Area Conic projection. The CCDC algorithm builds time series models
at the pixel scale to classify land cover types and detect changes [34]. LCMAP output products are
structured using the same tiling system (Figure 2 in [29]).

LCMAP has been implemented for operational change detection and land cover mapping with
annual temporal time steps from 1985 to 2017. Tile-based results are automatically generated from
detecting day of year changes, collecting training data, and classifying time-series models. The LCMAP
product suite includes five land cover and five change map products at an annual time step, including
primary and secondary land cover classes and confidence layers for each, annual land cover change,
time of spectral change and time since last change, change magnitude, spectral stability period,
and model quality data [32]. Each product has 33 layers for 1985–2017 for the conterminous United
States (CONUS) and is organized by the 150 km by 150 km tile system [33]. The final LCMAP annual
product suite (doi:10.5066/P9W1TO6E) contains 422 tiles for CONUS [33], and each tile has 330 data
layers (a total of 12.3GB file size for each tile). During operational production, errors could occur;
for example, time series data not retrieved correctly, erroneous results due to program bugs, or results
not saved properly. Thus, a quality control procedure is needed along with the production.

Traditional product quality control activities were either based on human interpretation
during production [35,36] or relied mainly on validation after production was completed [37,38].
Most validation methods involve elements of sampling design, land cover identification, accuracy
assessment, and land cover change validation [39,40]. LCMAP also developed a randomly sampled
reference dataset at the national level to validate the final products [41]. However, it was impractical
for interpreters to evaluate, in a timely manner, the massive amount of data during production,
and inefficient to repeatedly reproduce the whole product if we rely only on the final validation.
The production process includes some automated procedures to check if results are generated, but it
does not evaluate whether results are reasonable. Thus, there is an urgent need to develop an
efficient and automatic way to evaluate the massive volume of products during the production phase.
The objective of this study is to present a methodology that automatically flags possible errors in
LCMAP products and to provide guidance for further investigation. The workflow is also suitable for
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other studies with a large volume of land surface image products. In the sections that follow, we provide
introductions and preprocessing of input data in Section 2. In Section 3, we describe the evaluation
indices derived from data and the method for error tile detection. We then present results that illustrate
the method sensitivity via simulated data and the actual quality assessment during the production
(Section 4). We conclude the paper with a discussion of the results and implications of the study.

2. Data

2.1. The Land Change Monitoring, Assessment, and Projection (LCMAP) Products

Four products from the Collection 1 LCMAP [32] were evaluated: primary land cover, time
of spectral change, annual land cover change, and model quality. The primary land cover product
mapped eight land cover types (Table 1) at the annual scale, while the time of spectral change product
mapped the day of year that spectral changes were detected. These two are major LCMAP products
that are closely related to the other products. The annual land cover change product indicated thematic
land cover changes that had occurred from the prior year to the current year. The model quality
product characterized the time series model, such as how many harmonic frequencies are used in the
model or whether a model failed to generate because of insufficient valid observations [32].

2.2. The USGS National Land Cover Database (NLCD)

We acquired the 2019 released NLCD land cover maps for 2001 [29], 2006 [42], and 2011 [28] as
reference data for evaluation. NLCD products were selected because they provide spatially explicit and
reliable information for a wide user group [28,30], making them a good resource for LCMAP in terms
of consistency. Note that the initial analysis was conducted based on previous versions of NLCD 2011
maps and did not include the 2016 land cover map. Thus, in order to make a consistent comparison
between analyses, we did not include the NLCD 2016 land cover map in this study. The NLCD
products provided 16 classes, while the LCMAP land cover scheme had eight general classes. Thus,
we translated the NLCD product to LCMAP classes (Table 1). Moreover, we removed the road network
from the translated NLCD classes to reduce potential mismatches. This is because NLCD embedded
the road features after the land cover classification from a non-remote sensing source and typically are
not rendered as complete linear features in the LCMAP annual maps.

Table 1. The translation from NLCD to LCMAP classes. Values in parentheses are the land cover
class code.

NLCD Class (Class Code) LCMAP Class (Class Code)

Water (11) Water (5)

Perennial ice/snow (12) Ice and Snow (7)

Developed, open space (21) Developed (1)

Developed, low intensity (22) Developed (1)

Developed, medium intensity (23) Developed (1)

Developed, high intensity (24) Developed (1)

Barren (31) Barren (8)

Deciduous forest (41) Tree Cover (4)

Evergreen forest (42) Tree Cover (4)

Mixed forest (43) Tree Cover (4)

Shrubland (52) Grass/shrub (3)

Grassland (71) Grass/shrub (3)

Pasture (81) Cropland (2)

Cultivated crops (82) Cropland (2)

Woody wetlands (90) Wetland (6)

Herbaceous wetland (95) Wetland (6)
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3. Method

The rapid quality assessment approach includes two major steps: (1) a list of indices is generated
to characterize the spatial and temporal reasonableness of LCMAP products in each tile. The indices
compare the LCMAP products with multiple years of NLCD products and evaluate the time series of
the LCMAP products, and (2) the indices of each tile are compared with its nearest neighbor tiles using
the local outlier analysis to evaluate the overall reasonableness, which assumes geospatially close tiles
should have similar characteristics based on indices. We first tested the sensitivity of the approach
using data with simulated errors, which also helped us to interpret the local outlier score (LOS) value.
The approach was then applied to the production data.

3.1. Index-Based Products Evaluation

Table 2 shows the list of indices for this study. The indices are designed to evaluate the LCMAP
product in three aspects: (1) the quality of products at the spatial domain by comparing the LCMAP
and NLCD land cover maps; (2) the quality of the product in the temporal domain by calculating
the variation of land cover and change products across 33 years; and (3) the prevalence of certain
cases, such as insufficient valid observations, to initialize model or conversion of developed area.
We extracted pixels that had a disagreement between LCMAP and the three translated NLCD land
cover maps for 2001, 2006, and 2011. The Disagreement large patch indicated the largest area of
cohesive disagreed pixels, while Disagreement salt pepper counted the number of single pixels that
disagreed. As with the disagreement analysis, we analyzed the spatial pattern that did not have
enough clear observations to build a CCDC model (No model large patch and No model salt pepper).
The Urban decrease index depicted the maximum year-to-year loss of developed area according to
the LCMAP land cover data, which assumed developed areas were less likely to be converted to
other land cover types. The remaining indices estimated the temporal variation of land cover and
change products. We calculated the rate of spectral changes for each year (Equation (1)) and extracted
minimum, maximum, mean, and standard deviation of the rate time series as indices. Similarly, we
evaluated the rate of land cover change from year to year (Equation (1)).

R =
Nchange

Ntotal
(1)

where R and Ntotal represent the change rate and the total number of pixels, respectively. Nchange
represents the number of pixels with recorded change in the Timing of Spectral Change product
(SCTIME), and the number of pixels with land cover changed from two consecutive years for the land
cover product.

Table 2. List of indices for each tile to characterize the reasonableness of LCMAP products in both
spatial and temporal directions.

INDEX DESCRIPTION

Least agreement The least agreement between NLCD and LCMAP in 2001, 2006, and 2011.
Disagreement large patch Largest size of cohesive pixels that disagree between NLCD and LCMAP in 2001, 2006, and 2011.
Disagreement salt pepper Number of single pixels that disagree between NLCD and LCMAP in 2001, 2006, and 2011.

No model large patch Largest size of cohesive pixels that have insufficient observation to initialize model.
No model salt pepper Number of single pixels that have insufficient observation to initialize model.

Urban decrease Maximum urban area decreases in 30+ years.

SCTIME max Maximum annual spectral change rate across time series of the Timing of Spectral Change
product (SCTIME).

SCTIME mean Mean annual change spectral rate across time series.
SCTIME min Minimum annual change spectral rate across time series.
SCTIME std Standard deviation annual spectral change rate across time series.

LC Change max Maximum annual land cover change rate across time series.
LC Change mean Mean annual land cover change rate across time series.
LC Change min Minimum annual land cover change rate across time series.
LC Change std Standard deviation annual land cover change rate across time series.
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3.2. Comparing with Neighbor Tiles

To integrate the above indices and find erroneous tiles, the distance (reach-distk(p, o)) from the tile
p to its neighbor tile o is defined as Equation (2), while the density (lrdk(p)) at the tile p is the inverse of
the average distance based on the N nearest neighbors (Equation (3)).

reach− distk(p, o) = max
{
distk(o), d(p, o)

}
(2)

where d(p, o) represents the Euclidean distance between tile p and o, derived from indices. distk(o) is
the kth nearest distance to the tile p, which is used to ensure the distance is not too small, so the result
is stable.

lrdk(p) =
1∑

reach−distn(p,o)
N

(3)

The local outlier score (LOS) at the tile p is then defined as the average ratio of the local density at
the tile p and the local density of its neighbors (Equation (4)).

LOSn(p) =
1
N

∑ lrdn(o)
lrdn(p)

(4)

An LOSn(p) of approximately 1 or less suggests that tile p is comparable to its neighbors, while
LOSn(p) that is significantly larger than 1 suggests the neighbor tiles are clustered and the tile p is
an outlier. In this study, we estimated LOS for each tile in relation to the 8 nearest tiles based on all
indices. Because those indices have diverse ranges of values, we normalized them to a mean equal to 0
and standard deviation equal to 1 based on its neighbors, so each index has the same contribution to
the LOS.

3.3. Sensitivity Test Using Simulated Data

To investigate the sensitivities of this approach in responding to potential errors, we simulated
two possible conditions (Figure 1):

1. Randomly erroneous pixels in one year
2. Randomly erroneous pixels in all years

These data simulated possible production problems at random pixels, in which actual value of
primary land cover, time of spectral change was replaced by 0 to represent invalid outputs. We increased
the portion of randomly erroneous pixels at every 5% step in a tile, and each simulation was evaluated
by the LOS based on all indices.

3.4. Implementation to the Production

The rapid quality assessment approach was applied to the actual products repeatedly during the
production phase to identify problematic tiles. The production was conducted by dividing CONUS into
four mega ecoregions (East, East Central, West Central, and West) [10], and the production started from
the eastern ecoregions of the United States each time. Thus, we applied the approach once the results
were ready for the eastern ecoregions. The products were also intensively evaluated by members of
the LCMAP team during production. Their evaluation was also used to assess the performance of this
approach. Moreover, this approach provided auxiliary information for the evaluation procedure.
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Figure 1. Illustration of land cover types in one tile (150 km by 150 km) at panel (a), and synthetic data
with 5% failed pixels (black color) at panel (b) or 15% failed pixels at panel (c). The lower-left corner of
each panel displays the zoom-in view of the image center.

4. Results and Discussion

4.1. Sensitivity Test Result Using Simulated Data

The LOS was calculated for simulated data with randomly failed pixels (Figure 2). As can be seen
from Figure 2, 5% scattered errors raised the LOS from 1 to around 2. The LOS value of 2 suggested
that some indices were twice as high as neighboring tiles in the simulated data, which suggested the
approach was highly sensitive to the simulated mistakes whenever they occurred in a single year or
through all years (Figure 2). The LOS did not continue to increase dramatically with more failed pixels,
though the value remained high. This is because the increased failed pixels could turn to cohesive
patches, which weakens the effectiveness of salt pepper related indices. Moreover, the failed pixels
could also reduce the incidence of urban decrease or insufficient clear pixels.
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Figure 2. Local outlier scores estimated for synthetic data with random pixels failed in one year (left)
or all years (right).

4.2. Quality Assessment for the Products

The rapid quality assessment approach was applied when the LCMAP products were first
generated for the East mega ecoregion (Figure 3). Most of the tiles showed LOS less than 1.22, while two
coastal tiles (H27V18 at West Palm Beach, Florida, and H26V20 at Key West, Florida) were above 2
(Figure 3). The primary land cover confidence map showed that the two tiles did not have time
series models saved at the land pixels, and LCMAP land cover classes were filled using the translated
NLCD 2001 map (Figure 4). The high LOS suggested the approach successfully identified these
problematic tiles.
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Figure 4. The primary land cover confidence of two outlier tiles. Red means no stable time series
models were produced for this pixel, so the land cover classes of translated NLCD 2001 were used.
Cyan represents the ocean.

The problematic tiles successfully identified in West Palm Beach and Key West were later
reproduced. Figure 5 shows the LOS values of H27V18 and H26V20 were reduced to 1.06 and 1.09,
respectively, while the maximum LOS (1.5) came from tile H25V15. The indices suggested tile H25V15
had the smallest cohesive disagreement pixels with NLCD, but the highest SCTIME maximum, mean,
and standard deviation (Table 3). A comparison of the LCMAP and NLCD land cover products showed
that the primary disagreement came from the fragmented tree or grass-shrub (Figure 6). Both LCMAP
and NLCD indicated this tile had intensive forest harvest activities, while trees in this region only took
about 6 years to grow back. Thus, a possible reason for the disagreement is that NLCD often searches
surrounding years of Landsat images for clear observations, which could cause the temporal shift of
the tree regrowth estimation in NLCD. Moreover, the Okefenokee Swamp (across Georgia and Florida)
in tile H25V15 had two large fires in 2007 and 2011 [43], which resulted in a distinctive annual change
rate (Figure 7).
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Table 3. Results of indices for H25V15 and its neighboring tiles.

Tile H25V15 H24V14 H24V15 H24V16 H25V14 H25V16 H26V14 H26V15 H26V16

Least agreement 82.6% 80.5% 78.9% 90.8% 79.9% 79.0% 88.2% 94.4% 85.5%

Disagreement
(km2)

large patch 1.37 1.53 4.23 3.81 1.38 4.12 4.26 3.29 4.32

salt pepper 170.50 159.48 154.56 93.01 184.40 163.02 117.25 56.42 109.49

No model (km2)
large patch 0.28 0.13 0.20 0.58 0.23 0.56 0.14 0.76 1.19

salt pepper 0.97 2.42 0.66 3.20 1.59 2.29 1.56 7.68 8.13

Urban decrease (km2) 10.96 57.18 24.35 2.56 111.89 23.16 14.18 7.55 14.42

SCTIME

max 0.125 0.074 0.071 0.066 0.071 0.093 0.056 0.066 0.084

mean 0.057 0.037 0.034 0.035 0.049 0.052 0.036 0.041 0.041

min 0.009 0.003 0.004 0.005 0.011 0.004 0.009 0.011 0.006

std 0.025 0.013 0.013 0.012 0.015 0.020 0.011 0.013 0.016

LC Change

max 0.038 0.034 0.028 0.022 0.035 0.042 0.024 0.031 0.033

mean 0.028 0.025 0.018 0.016 0.028 0.032 0.017 0.023 0.023

min 0.014 0.012 0.010 0.006 0.017 0.014 0.012 0.016 0.012

std 0.004 0.004 0.004 0.003 0.004 0.006 0.002 0.003 0.004
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Figure 6. Example of the LCMAP and NLCD products at tile H25V15 in corresponding years:
(a) LCMAP-2001; (b) NLCD-2001; (c) difference between LCMAP and NLCD in 2001; (d) LCMAP-2006;
(e) NLCD-2006; (f) difference between LCMAP and NLCD in 2006; (g) LCMAP-2011; (h) NLCD-2011;
(i) difference between LCMAP and NLCD in 2011. The major land cover classes include Tree (green),
Wetland (light blue), Grass/Shrub (yellow), Developed (red), and Cropland (brown).
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Figure 7. The (a) annual change rate and (b) annual land cover change rate of H25V15 (red line)
compared to the neighboring tiles (black lines).

Figure 8a shows the final LOS map for the whole CONUS. The lowest agreement between
the NLCD and LCMAP land cover products was at least 71.5% and averaged 89.1% (Figure 8b).
The coasts and borders show high agreement between the two products because they are dominated
by water bodies. The average and median LOS were both 1.0, while the maximum LOS was 1.72 at
H18V05. According to Table 4, H18V05 had the lowest agreement with NLCD (79.3%), the highest
single pixels with no model initialized, and the highest SCTIME maximum, mean, and standard
deviation. However, compared to H25V15, tile H18V05 had much lower SCTIME and LC Change
indices (Tables 3 and 4), which means land cover in H18V05 was much more stable. The primary
disagreement between LCMAP and NLCD in tile H18V05 was woody wetland in NLCD, but tree cover
in LCMAP (Figure 9). The disagreement is a result of the differences in classification methods. NLCD
used hierarchical classification and integration, which assigned higher priority to wetland cover than
forest [44]. In contrast, LCMAP relied mainly on the seasonal variation of surface reflectance, in which
woody wetland and trees are similar. Changes were detected in many wetlands in this tile for 1990,
but the cover type remained the same in 1991 for most of those pixels, which resulted in a high spike in
the annual spectral change rate (Figure 10a) but moderate land cover change rate (Figure 10b). Another
reason for the distinction of H18V05 is the metropolitan area (Minneapolis and St. Paul) that covers
a large portion of tile H18V05 and is the only metropolitan area in the 3 by 3 tile grid. The highest
land cover change rate occurred in 1988, and the most common change type was the conversion from
cropland to developed, which mainly occurred in the southeastern part of Minneapolis and St. Paul,
Minnesota, along the Mississippi River.
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Table 4. Results of indices for H18V05 and its neighbor tiles.

Tile H18V5 H17V4 H17V5 H17V6 H18V4 H18V6 H19V4 H19V5 H19V6

Least agreement 79.3% 80.5% 86.8% 90.1% 83.0% 87.2% 86.4% 83.0% 85.4%

Disagreement
(km2)

large patch 5.43 6.25 6.21 1.91 5.13 5.10 4.43 5.19 2.98

salt_pepper 134.93 118.20 79.46 55.61 154.00 84.46 77.35 130.14 169.88

No model (km2)
large patch 0.34 0.19 0.25 0.13 0.26 0.39 0.83 0.62 0.51

salt_pepper 6.81 1.82 2.03 1.63 1.11 4.42 2.20 5.05 3.21

Urban decrease (km2) 0.37 2.17 5.21 9.67 0.18 0.27 1.33 1.20 3.52

SCTIME

max 0.024 0.010 0.010 0.009 0.014 0.013 0.007 0.006 0.005

mean 0.007 0.005 0.004 0.002 0.005 0.003 0.004 0.003 0.003

min 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.000

std 0.005 0.002 0.002 0.002 0.003 0.002 0.001 0.001 0.001

LC Change

max 0.007 0.002 0.003 0.002 0.003 0.003 0.003 0.002 0.002

mean 0.003 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001

min 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.001 0.001

std 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000
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Traditional product quality control activities were based on export interpretation [35,36,45] or
validation after the production was completed [37,38]. Most validation methods involve elements
of sampling design, land cover identification, and accuracy assessment [39,40]. However, it was
impractical for interpreters to evaluate the massive amount of data during production, and inefficient
to reproduce the whole product if we rely only on the final validation. This study presents a workflow
to consistently, automatically, and rapidly assess the quality of LCMAP results during production.
We assessed the stability of LCMAP products both spatially and temporally. While multiple years
of NLCD land cover maps were used to ensure that the overall results were consistent with existing
products, the temporal stability was estimated for both land cover and change products. We removed
the road network from the translated NLCD classes to reduce potential mismatches. This is because
NLCD embedded the road features after the land cover classification from a non-remote sensing source,
while we focus on the agreement between the classification results of the two products. This study
does not provide a statistical validation of the LCMAP land cover results using NLCD products.
Any disagreement between the two land-cover datasets does not necessarily indicate an error in the
LCMAP results. For the purpose of validation, LCMAP has developed an independent reference
dataset at the national level to validate the final products [37]. The rapid quality assessments discussed
here were conducted for each ARD tile and results were compared with the surrounding tiles to identify
anomalous tiles. In the simulated data tests, we found that tiles with random noises have LOS higher
than 2, given the 14 indices. Thus, we use the threshold 2 as a flag for erroneous tiles. However, when
all tiles have a LOS lower than the threshold, we still evaluate tiles with relatively high LOS to ensure
the quality of the product. The approach successfully detected erroneous tiles during production and
provided auxiliary information for future investigation to remedy the problems.

The comparison procedure integrated multiple independent indices that can be easily adjusted
to meet future concerns. The method developed for evaluating LCMAP products in a rapid manner
could be useful for other time series land cover change-related research and large-scale applications.
However, users should be aware of some limitations of the method. One limitation is that the LOS is
hard to interpret in order to decide the threshold of the outlier. Thus, instead of relying on the threshold,
we use the LOS as a guide in evaluating tiles with a relatively high score. Another solution is the
extension of the local outlier factor analysis, which scaled the LOS to a value range of [0:1]. The result
is directly interpretable as a probability of outlier. Another limitation is that this workflow only flags
outlier tiles with potential hardware or software failure, rather than algorithm deficiency. For example,
if the algorithm had lower accuracy in the 1980s for all tiles, the workflow would not derive high LOS
related to the problem. Thus, the approach should not be used as an accuracy assessment. For the
LCMAP project, an independent validation study was conducted to estimate the annual land cover
and change accuracy [41].
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5. Conclusions

In this paper, we described a procedure for automatically and rapidly monitoring the quality of
extensive results during the production of land cover and land surface change products. We developed
methods involving 14 indices to assess the stability of LCMAP products, both spatially and temporally.
The 14 indices allow us to find and flag potential anomalous tiles in the suite of 10 LCMAP products by
comparing them with neighboring tiles using local outlier analysis. The methods successfully identified
erroneous results from the simulated data and during the LCMAP production, in which erroneous
tiles had LOS greater than 2. The calculated indices also suggest directions for further investigation of
anomalous tiles. The local outlier analysis is flexible to input indices, which allows us to extend the
indices’ metrics for distinct characteristics, such as land cover change patterns or consistency with
existing products. Our results showed all LOS values are below 2 in the final products, and overall
agreements between LCMAP and NLCD are at least 71.5% and average 89.1%. A large volume of
land cover data available globally is a significant benefit for ecosystem study and environmental
management. However, quickly assessing production quality is challenging. Our approach offers the
potential to automatically evaluate product quality from the perspective of multiple characteristics.
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