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Abstract: The recent years saw an extensive use of 3D point cloud data for heritage documentation,
valorisation and visualisation. Although rich in metric quality, these 3D data lack structured
information such as semantics and hierarchy between parts. In this context, the introduction of point
cloud classification methods can play an essential role for better data usage, model definition, analysis
and conservation. The paper aims to extend a machine learning (ML) classification method with a
multi-level and multi-resolution (MLMR) approach. The proposed MLMR approach improves the
learning process and optimises 3D classification results through a hierarchical concept. The MLMR
procedure is tested and evaluated on two large-scale and complex datasets: the Pomposa Abbey
(Italy) and the Milan Cathedral (Italy). Classification results show the reliability and replicability
of the developed method, allowing the identification of the necessary architectural classes at each
geometric resolution.

Keywords: machine learning; 3D architectural heritage; multi-resolution; point cloud; classification;
Random Forest

1. Introduction

In the last 20 years, various research activities, based on active and passive sensors, provided
reliable methodologies for the acquisition and generation of dense point clouds and textured 3D
models of heritage structures [1,2]. These 3D data are typically used for accurate documentation,
digital preservation, and visualisation [3–6]. Nowadays, the amount of available 3D datasets has
exponentially increased but, at the same time, it is becoming very important to enrich point clouds with
semantic information of the digitised objects [7,8]. The association of semantic meaning to geometric
data, using machine or deep learning (ML/DL) methods, leads to a simplification in 3D reading, also
accelerating data management and interpretation. In general, 3D point clouds are coupled with RGB
colours, intensity and other information depending on the used acquisition instrument and technique.
If, on one hand, this kind of data benefits from accurate metric information, on the other hand it lacks
structured information such as semantics and hierarchy between parts. For this reason, the introduction
of semantic meaning, employing automated classification procedures, can play an important role in
the data usage and analysis, useful, e.g., for heritage understanding, restoration, valorisation, etc.
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The use of classified point clouds, i.e., 3D data with a semantic meaning, has become popular in
different fields of application, such as robotics [9,10], precision farming [11], autonomous driving [12,13],
indoor navigation [14,15], urban planning [16,17], geospatial [18,19] and Cultural Heritage (CH) [5,20].
The heritage sector is slightly behind the other fields in term of automated and reliable procedures,
due to the complexity and variability of the 3D data. Despite this, the identification of precise
architectural components in point clouds can be very useful because it allows the direct use of 3D
pint clouds for architectural interpretation inside and conservation activities planning, avoiding the
modelling phase typical of HBIM (Historic Building Information Modelling). This latter phase is a
time-consuming process which can also lead to a great simplification of detailed surfaces, losing the
metric reliability intrinsic present in the acquired point clouds.

Aim and Structure of the Paper

This paper presents and evaluates an automatic classification method, based on a multi-level and
multi-resolution (MLMR) approach combined with a machine learning (ML) algorithm. The MLMR
method hierarchically classifies 3D data at different geometric resolutions to facilitate the learning
process and optimise the classification results. To test the developed methodology, two large-scale and
complex datasets (Section 3) are used, namely the Cathedral/Duomo of Milan (Italy) and the Abbey
of Pomposa (Italy). Both heritage scenarios feature a large amount of 3D points, a great diversity of
geometries and styles, a richness in decoration and a lack in the regularity of the architectural elements.
By using such different and complex architectural structures, the paper intends to demonstrate the
applicability of the developed methodology (Section 4) to different scenarios and replicability (resolution
dependent) in the time of the methods using different series of data of the same building. The method
relies on ML and not deep learning (DL), due to the complexity of the considered 3D heritage data and
the lack of specific training samples suitable to classify such complex heritage scenarios.

Contrary to other methods that use sub-groups of classes (e.g., façade with/without shadows [21])
to facilitate the classification and then join them into a unique class, the proposed approach relies on
geometric information and hierarchically splits the data in sub-classes while the geometric details
are increasing.

2. State of the Art

In the architectural heritage field, the process of structuring and classifying 3D survey data
have seen various applications such as supporting the scan-to-BIM process [22–25], monitoring and
restoration purposes [3,6,26], maintenance architecture planning [27,28], and damage detection and
quantification [29–31].

Apart from being time consuming, in most cases, the introduction of manual intervention for
subdividing the datasets brings a certain degree of subjectivity. In recent years, relevant progress has
come in automatic classification processes by using Artificial Intelligence methods (ML and DL) that,
in contrast, are objective and replicable.

In supervised ML, the algorithms take some manually annotated part of the datasets and
hand-crafted features (i.e., geometric and/or radiometric attributes) as inputs, from which they learn
patterns that are then predicted to the whole dataset. On the other hand, DL refers to those processes
(neural networks—NN) that directly learn features and semantics from a large quantity of annotated
data, which is generally not available in the heritage sector. To cope with this problem, the research
proposed by [32] aims to facilitate the annotation process necessary to train DL algorithms. The authors,
through a series of rule-based functions, isolate some specific architectural classes within the point
cloud, such as columns and beams.

More specifically to the heritage field, a supervised learning approach which transfers the
classification information from 2D textures to 3D models is proposed in [21]. Grilli et al. [33] presented
a classification approach that works directly on point clouds, training a Random Forest (RF) classifier
with geometric features. The method iteratively extracts the most relevant features considering a set of
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geometric characteristics strictly related to the architectural element dimensions. The same author
has then verified the possibility to generalise the classification model across different architectural
scenarios in [34].

A popular DL approach relies on convolutional neural networks (CNN) that recombine sets of
neurons in different layers, in order to process a set of input vectors to a known set of outputs [35,36].
PointNet [37], and its later improvement PointNet++ [38], is a unified architecture that learns both
global and local point features and is suitable to perform classification, part segmentation, and semantic
scene segmentation. Results are encouraging, featuring an overall accuracy of around 90%, but the
selected classes and training sets are constituted of simple objects with replicated shapes (mug, plane,
table, car, etc.). This latter point proved to be critical when applying CNN to CH point clouds.

Due to the inherent complexity and uniqueness that each CH object has, it is really complicated to
have a well-distributed and representative heritage training set. Nonetheless, some application exists,
built for specific case studies. Malinverni et al. [5] proposed a DL approach based on PointNet++

neural network, which has been re-trained on data coming from a real survey. The dataset needs to be
manually segmented by domain experts and must be broad enough to comprise enough classes for
each case study, which in the CH context is quite tricky. Recently, a Dynamic Graph Convolutional
Neural Network (DGCNN) supported by meaningful features (normal and HSV colours) has been
employed in [39]. The DGCNN has been trained on the ArCH dataset [40], which includes 10 manually
labelled point clouds subdivided into 11 classes. The resulting model has then been tested in two
different ways—over a partially labelled dataset and on an unseen scene—providing promising results.

The first attempt of comparison between machine and deep learning approaches for heritage
classification has been presented in [41]. The authors demonstrated that, for some specific case studies,
the machine learning approaches could achieve better results in shorter times.

3. Case Studies

3.1. Milan Cathedral

Milan Cathedral (Figure 1) is one of the most important monumental heritages in Italy. It is a
late Gothic Cathedral, whose construction began in 1386 and finished in 1805, with some final details
completed in 1965. It is the largest church in Italy, the third largest in Europe and the fifth in the world.
The external length of the Cathedral is 158 m, the transept is 93 m long, and the maximum height of
the Cathedral (from the internal floor to the head of the Madonnina) is 108.50 m. Overall it covers an
area of approximately 12,000 m2 and a gross volume of 440,000 m3. As with all gothic cathedrals, it is
very rich in decorations, counting in total 3400 statues, 135 gargoyles and 700 figures that decorate
the internal spaces as capitals, altars and windows. On the external facades, there are 135 spires and
30 decorative reverse arches that seem to support the flanks of the impressive building.
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Figure 1. (a) Milan Cathedral main facade. (b) A detail of the complex roof with repetitive buttresses.
(c) Internal view of the main nave and its capitals.
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The Cathedral is built with bricks and covered with Candoglia marble. The highest parts, where the
structures are thinner and lighter, are directly made of marble. Marble is the most critical aspect
that affects the lifetime of the Cathedral and its preservation state as it degrades very quickly due
to the mineralogical composition. Therefore, many parts of the Cathedral, especially the external
ones, must be replaced periodically, which implies continuous and non-stop maintenance work.
The institution responsible for these activities is the Veneranda Fabbrica del Duomo di Milano that for
more than 630 years has been in charge of the ordinary maintenance of the structures, including
cleaning, vegetation removal, and scheduled inspections in order to guarantee the safety of the
hanging structures.

3.1.1. 3D Survey

To support the exceptional maintenance activities, a number of focussed survey operations were
conducted in the last 10 years, producing 3D data and 2D classical representation at a 1:50 scale for
the Main Spire, the altars of the transept, and the Dome Cladding [42]. More recently, detailed point
clouds of the entire Cathedral at an average and uniform resolution of 5 mm (Figure 2 and Table 1)
were produced using Terrestrial Laser Scanning (TLS) for the interior spaces [43], photogrammetry for
the exteriors [44] and integrating both techniques in narrow service spaces [45,46].
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Table 1. Summary of 3D survey data acquisition and process for the Milan Cathedral.

Architectural
Elements Method # Acquisitions # 3D Points Mean Resol.

(mm)
Subsampling

(cm)

External Areas Photogrammetry,
Leica RTC360

16,080 photos,
54 scans 1.5 billion 5 2−5

Internal
Spaces

Leica HDS 7000,
Leica C10 238 scans 2.1 billion 5 2−5
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3.1.2. Classification Needs

Given the necessary continuous maintenance works and the large amount of data to be handled,
the semantic classification of the Milan Cathedral’s point cloud can become a digital support for
conservation activities. In particular, the following activities can be foreseen:

• Derivation of measurements and 2D representations from anywhere in the Cathedral.
• Identification, counting and visualisation of single architectural elements.
• A better interpretation of the architectural structures at point cloud level, avoiding long and

tedious modelling processes.
• Keeping track of every restoration activity, treating the point cloud as a complete 3D navigable

information system where it is possible to reference information, data, and a catalogue of
archive documents.

• Generation of a BIM-like web-based information system platform, usable in the field within a
mixed-reality system.

3.2. Pomposa Abbey

The IX century Benedictine monastery of Santa Maria di Pomposa is situated in the province
of Ferrara and represents one of the most important Abbeys of Northern Italy. The main building
of the complex is the Basilica, consecrated in 1026 AD, that presents a layout that recalls the typical
Ravenna style, in which the inner space is subdivided into three naves through continuous colonnades,
bounded with relative pulvini (Figure 3). The central nave ends with a hemispherical apse that
corresponds to an outer pentagonal shape. The actual framework is the result of different significant
transformations occurred through the centuries, and that have basically changed the original Roman
aspect [47,48]. Several survey campaigns have been conducted in the past [49,50] in order to analyse
and monitor the structural behaviour, preserving the Abbey from possible damages. These inspections
verified that the massive bell tower caused distortions of the church. In order to reduce this structural
problem, a sequence of walls was added in the side aisles [51,52]. The actual church frame represents a
non-regular case study from the geometric point of view, including columns inserted in transverse
masonries, irregular structural walls and roof elements, and roto-translation of single beams.
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3.2.1. 3D Survey

A 3D survey campaign of the Abbey was conducted to acquire the global structure of the church
and its annexed buildings. The survey project was an opportunity to test different approaches and
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technologies, aiming at finding the best solution for the high-resolution documentation of a big
architectonic complex [53]. The survey campaign included both image- and range-based techniques.

The photogrammetric technique was devoted to roofs data acquisition with a UAS platform, while
laser scanning was used for the internal and external architectural elements. The exterior was digitized
with a pulsed TOF Leica C10 from 21 stations, selecting a 0.5-cm sampling step for the main façade and
a 2-cm sampling step for the other parts. On the other hand, the interior spaces were digitized using a
phase-shift TOF Faro Focus X 120 placed in 31 different positions (Figure 4 and Table 2). The final point
cloud was obtained with an ICP alignment of internal and external clouds, subsampled at 2 and 5 cm
in order to optimise data management.Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW 7 of 30 
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coloured point cloud of the Abbey.

Table 2. Summary of 3D survey data acquisition and process for the interior of the Pomposa Abbey.

Architectural
Elements Instruments # Acquisitions # 3D Points Mean Resol.

(mm)
Subsampling

(cm)

External Areas Leica C10 21 161 mil. 5, 20 2, 5

Internal Spaces Faro Focus X
120 31 580 mil. 10 2, 5

3.2.2. Classification Needs

The point cloud classification has considered only the interior datasets of the church (Table 2),
which presents several interesting architectural features and a more complex geometric framework
compared with the exterior part. The enrichment of the point cloud with semantic information can be
useful in particular for the following:

• Derivation of measurements and 2D representations.
• Monitoring the building behaviour over time, by verifying masonries, columns and roof

roto-translations: a comparison of 3D point clouds acquired over time can be considered a
valuable solution to exactly and completely describe the whole fabric.

• Geometric quality check of the individual elements belonging to the same class, highlighting
possible alterations in the structural composition of the building.
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• Quantification of the building from a material and functional point of view, a crucial step for both
a conservative intervention and damage evaluation (e.g., after a destructive event).

4. Developed Methodology

The complexity and uniqueness of the chosen dataset highlighted some limits in applying a DL
approach for these specific studies. Indeed, the richness in elements and their variety, even among
the same classes (i.e., all the capitals of the Milan Cathedral are unique and different from each other)
pointed out the difficulty in collecting a representative annotated dataset which was large enough to
train a neural network. Moreover, even considering the possibility to find representative datasets [41],
the time necessary to manually annotate them would exceed the time required to classify the case
studies entirely.

Starting from these considerations, the developed classification method uses a Random Forest (RF)
classifier [54], following the successful supervised approach based on geometric features introduced
in [34] and the study on features importance in Random Forest [20,33]. Compared to DL approaches,
RF methods do not need a significant amount of manually annotated datasets to be effective. On the
other hand, it becomes fundamental to select features able to highlight the discontinuities between the
different architectural elements.

The high-density, high-resolution point clouds considered in this paper allow for a precise
geometrical description of the CH object. However, if these the 3D representations allow the richness
of construction details (i.e., decoration, small statues, beams, etc.) to be appreciated, on the other hand
huge point clouds of large and complex structures have two main problems:

• The size of the dataset and the number of geometrical features to be extracted makes the
computational process challenging. If the latter can be solved choosing only essential features, a
subsampling of the acquired point cloud could help to handle the high number of points, but it
would lower the details visible in the dataset.

• The large number of semantic classes to be identified might induce misclassification issues: initial
experiments have shown that with a higher number of classes a lower accuracy of the classification
is achieved (Sections 7.1.1 and 7.2.1).

Considering these problems, it becomes difficult to classify very large datasets in one single step,
as traditional classification approaches do. Therefore, a multi-level and multi-resolution (MLMR)
approach is proposed (Figure 5), which follows these steps:

1. The full-resolution point cloud is subsampled in various geometric levels.
2. Given certain manually annotated areas corresponding to the classes of interest of the first

geometric level, a RF model is trained and then all classes are predicted on the entire point cloud.
3. Classification results coming from this first step are back interpolated (BI) on a higher resolution

version of the dataset, using a nearest neighbourhood algorithm. To do so, the class value assigned
to each point is transferred to a certain number of elements evaluated inside a specific cluster;
the number of nearest neighbourhoods to be evaluated depends on the point cloud resolution.
The higher the resolution, the higher the number of points in the neighbourhood.

4. The next geometric level is considered with its new classes (e.g., columns are divided in base,
shaft and capitals) and a new classification procedure is applied.

5. Classification results are again back interpolated on a higher resolution version of the point cloud
until the full geometric resolution is reached.

It should be mentioned that each architectural element can be classified in more and more details,
according to the employed point cloud resolution at the corresponding level, and then back interpolated
on a higher resolution version. The process is iterative, and the last classification level will correspond
to the full-resolution point cloud. Moreover, the subsampling of the point cloud will depend on both
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the complexity of the object to be classified and the elements to be recognised. Macro-categories of
objects allow for a lower resolution, while the higher resolution is used for details.

The proposed hierarchical methodology is graphically summarised in Figure 5. The diagram
aims also to provide for a general indication in terms of geometric resolution of the point cloud and
geometric feature ready to be used at each classification step. These values, and the methodology itself,
can be considered sufficiently generalisable to be used for the classification of architectural elements in
the monumental field. The parameters (resolution and feature radii) can vary case by case according to
the characteristics and dimensions of the objects. However, it can be seen that they correspond to the
smallest detail that can be represented at a given representation scale and its metric tolerance, in a
logic of representation at an increasing level of detail.Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW 9 of 30 
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Figure 5. Multi-level and multi-resolution (MLMR) workflow. The diagram provides also general
indications in terms of point cloud resolution and minimum/maximum search radius of the geometric
features, which have to be chosen at each step of the classification process. BI stands for Back
Interpolation, i.e., classification results at a certain level are back interpolated to a higher resolution
level of the point cloud until the full geometric resolution is reached.

As a final and additional step, after the full classification of the point cloud, it is possible to apply
the so-called instance segmentation to each architectural class. In this way, for example, each column
of the dataset can have its own index. To do so, the label connected component function available
in CloudCompare [55] was used. Still, instead of working on pixels arranged in a grid, the octree
structure of the point cloud from which it defines the grid step is used to perform the search in the 3D
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space. The tool separates the cloud into smaller ones based on a minimum distance between elements
and a minimum number of points that a component must have.

5. Semantic Classes and Classification Levels

5.1. Milan Cathedral

Following the Veneranda Fabbrica conservation and restoration rules as well as the hierarchical
subdivision of the monument in areas, zones, sectors, architectural elements and marble blocks reported
in [56], we consider an automatic classification of the cathedral into three different levels (Figure 6).
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Figure 6. Classification levels and classes for the Milan Cathedral.

The first level of classification has the function to identify macro-architectonic elements.
The classification process is performed on the point cloud at a 5-cm resolution, extracting geometric
features with radii between 20 cm and 2.5 m.

In the second level of classification, the previously identified architectural elements are divided
into sub-components (e.g., columns are split in its bases, capitals and shafts). This step is performed
using a 2-cm resolution point cloud, reducing to 10 cm and 1 m the min/max feature search radii.

Finally, the third and most challenging level of classification aims at the subdivision of each
component in its ashlars (i.e., monolith elements as statues, gothic decoration, holes, etc.). For this,
the full resolution point cloud is used with a min and max search radius of 0.5 and 5 cm, respectively.

5.2. Pomposa Abbey

Considering monitoring needs, the classification has been subdivided into three different levels
(Figure 7).
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The first level refers to the main structural framework of the church, defining a global functional
subdivision of the entire dataset: floor, façades, columns, arches, and roof. In order to recognise these
macro-categories, the point cloud has been processed at a 5-cm resolution.

The second level is devoted to a more in-depth classification process, recognising multiple
sub-classes within the categories coming from the first level of classification. Façades are divided into
walls and windows, columns into bases, shafts and capitals, and roof are broken down into dome, side,
central and front cover. At this level, each architectural element was recognised at the 2-cm resolution
point cloud.

The third level refers to the roof which presents complex and variable structures. A diverse
classification process was run for each different roof structure, highlighting its main structural elements
(e.g., rafters, purlins, panels, tie beams, wall plates, crown posts, etc.). To finalise this structural study,
the suitable resolution of the point cloud was 2 cm.Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW 11 of 30 
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6. Data Processing

6.1. Geometric Features Extraction

The necessary features for the classification are based on the covariance matrix [57] computed
within a local neighbourhood of a 3D point. For both case studies, the considered local neighbourhoods
are directly related to the dimension of the architectural elements. Moreover, as various features affect
the classification results in different ways, the geometric features with the smallest impact on the
training process have been iteratively removed [33]. The experiments showed that, independently
from the object to be classified and the point cloud resolution, the features with a more significant
impact on the classification results are (Figure 8):

• Anisotropy: allows the recognition of 3D elements such as columns, buttresses and spires over
2.5D elements such as walls and vaults.
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• Planarity: highlight linear and planar items such as chains and floors and their vertical counterparts
such as column shaft and walls.

• Linearity: similarly to planarity, it helps in identifying linear structures.
• Surface variation: it emphasises changes in the shapes allowing, for example, to detect corners

or edges.
• Sphericity: similarly to surface variation, it helps in identifying spherical and cylindrical elements,

such as columns.
• Verticality: it points out vertical and horizontal surfaces allowing the recognition of walls and

floors as well as column shafts.Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW 12 of 30 
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The used search radii are reported in brackets.

Among these covariance features, planarity and linearity, and surface variation and sphericity
behave pairwise similarly. However, all of them have been used at the same time to improve the
performance of the RF classifier. In fact, as the algorithm splits all the available information among its
decision trees, redundancy in geometric features allows us to have the correct relations in every tree,
allowing for a better classification.

6.2. Training and Classification

Beside extracting geometric features, some portion of each dataset—at each classification level—has
been manually annotated in order to train the RF algorithm. Figures 9 and 10 show the training
sets used at the first level of classification (5-cm resolution) of Milan Cathedral and Pomposa Abbey,
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respectively. For the first case study (30 mil. points), the training sample is composed of ca 2.5 mil.
annotated points for the exterior surfaces and ca 2.6 mil. points for the interior spaces. For the Pomposa
Abbey, some 115,444 points are used for the training set out of ca 1.1 mil. points composing the
whole cloud.

Table 3 reports numbers of used points in the training and classification times for all three
classification levels. Figure 11 indicates the percentage of time spent in each working phase. It is
important to say that the computation time for the extraction of the geometric features varies in relation
to the dimension of the point cloud, the number of features and their search radius. Even if the
processing time increases with the dimension of a given training sample, it can still be considered
negligible if compared to DL approaches. Regarding the first level of classification, on an 18-core
processor workstation, the training phase for the Milan Cathedral took about 5 min (2.5 mil. points),
while 43 s were necessary to classify the remaining exterior point cloud (12 mil. points). With regards
to the Pomposa Abbey, the training and classification processes took 5 and 3 s, respectively.
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Table 3. Examples of training and classification times in relation to the number of used points in some
areas of the two case studies.

Level 1 Level 2 Level 3

Milan
Cathedral
(Exteriors)

Pomposa
Abbey

Milan
Cathedral
(Pillars)

Pomposa
Abbey

(Columns)

Milan
Cathedral
(Capitals)

Pomposa
Abbey

(Central Roof)

# of Training
Points 2,580,368 115,444 1,011,994 21,389 3,309,947 62,258

Training
Time (Sec) 363 5 17 0.65 142 4.25

# of Classified
Points 12,680,681 1,102,569 14,645,986 47,006 47,651,835 832,549

Classification
Time (Sec) 43.5 2.7 12.62 0.15 174.89 29.8
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7. Results and Discussion

Considering the reduced dimension of the manually annotated portions used to train the classifier,
the achieved results in both case studies were successful (Table 4 and Table 7). The metrics used to
evaluate these results are Precision, Recall and F1-score. They were computed by comparing, for each
dataset, a manually annotated portion with the same portion automatically predicted.

In the next sections, the achieved results will be discussed, focussing on advantages and criticalities
related to the semantic segmentation of such complex architectures. Sections 7.1.1 and 7.2.1 will show
the classification results achieved with a traditional classification approach (non-hierarchical, but in
one step with all semantic classes) in comparison to the proposed MLMR method.

7.1. Milan Cathedral

7.1.1. One-Step Classification

The Cathedral dataset was classified in one step using a Random Forest method and all 18 semantic
classes (see Figures 13 and 14). To perform a one-step (non-hierarchical) classification, due to the huge
dimension of the dataset (more than 3 bil. points), the data were subsampled at a 5-cm resolution,
unavoidably lowering its details. The training dataset contained all 18 classes and the classification
result got an average F1-score of 67%. Results (Figure 12) show that with this approach it is difficult to
distinguish elements with similar geometry but belonging to different classes (e.g., ornaments on the
capitals of the main nave and ornaments on the choir area). Furthermore, many detailed elements
present discontinuities that are equal or smaller than 5 cm, making their recognition complicated.
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Table 4. Milan Cathedral: the F1-scores average values for all three classification levels (in brackets
the geometric resolutions of the point clouds). Please consider that each level has a different number
of classes.

Level 1 (5 cm) Level 2 (2 cm) Level 3 (0.5 cm)

F1 (%) 93.75 99.35 91.80

Therefore, dividing the classification into different geometric levels facilitates the distinction of
similar elements as well as allows to process only specific parts of the dataset at the full 5-mm resolution.

7.1.2. MLMR Classification

Figures 13 and 14 show some examples of the subsequent levels of classification, relative to both
Cathedral interiors and exteriors. Table 4 shows an average of the F1-score values, computed at each
classification level. The classification results, applied to the whole dataset, are shown in Figure 15.
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Figure 15. Classification results (nine classes) at level 1 for the entire Milan Cathedral.

At the first level of classification, it was possible to identify the main elements of the construction
visible in a 5-cm resolution point cloud (i.e., for the interior: floors, columns, chains, vaults, walls, and
choir; for the exterior: walls, buttresses, roofs, and street). The use of a low-resolution point cloud
allowed us to process the whole dataset at once. This kind of operation would have been critical from
the hardware and computation point of view if using the full resolution point clouds. In Tables 5 and 6,



Remote Sens. 2020, 12, 2598 16 of 27

it is possible to observe the classification metrics achieved per class in the first level of classification
(level 1).

Table 5. Classification metrics at level 1 for the interiors of Milan Cathedral.

Chains Choir Walls Floor Columns Vaults AVERAGE WEIGHTED
AVERAGE

PREC. (%) 67.52 85.19 94.08 98.03 90.15 98.28 88.88 93.05

RECALL
(%) 89.96 85.41 93.42 94.37 94.85 94.54 92.09 93.05

F1 (%) 71.14 85.30 93.75 96.17 92.45 96.37 90.46 93.02

Table 6. Classification metrics at level 1 for the exteriors of Milan Cathedral.

Buttresses Walls Street Roofs AVERAGE WEIGHTED
AVERAGE

PREC. (%) 92.75 97.34 99.66 99.03 97.19 96.44

RECALL (%) 92.62 97.47 99.06 98.42 96.89 96.44

F1 (%) 92.68 97.40 99.36 98.72 97.04 96.44

The main classification errors in the first level of classification were due to the following areas:
(i) too small with respect to the resolution level, (ii) ambiguous from a geometrical point of view,
or (iii) too similar to elements belonging to a different class. For example, it has been difficult to classify
chains, which are approximately 8 cm thick, at a 5-cm resolution point clouds.

A second type of problem was found in the area which surrounds the choir. The class choir
comprises different architectural elements including pipe organs, benches and altars. The decision to
classify them in one class is coherent with the Veneranda Fabbrica rules. However, the heterogeneity
of its parts and noise in the 3D point model caused classification problems in neighbouring regions.
In fact, as the RF classifier relies on geometrical features of the local points to classify them, it was not
able to easily distinguish classes with similar characteristics. An analogue issue has been encountered
on the outside part of the Cathedral. Here, the RF classifier could classify only those buttresses that
were entirely surveyed. Errors appeared in those parts where, due to building site requirements, it was
impossible to survey one of the two buttresses’ faces. In that case, the classifier confused the buttresses
with walls, both being 2.5D. In Figure 16, it is possible to see the different behaviour of the same
geometric features on complete and incomplete elements.
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Before transferring the classification results from levels 1 to 2, misclassification errors have been
manually adjusted. In fact, errors at top levels would severely affect classification at the subsequent,
more detailed steps.
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At the second level of classification, the precision of the results increased (see also Table 4) as the
geometric resolution of the point cloud increased. This allowed to identify more peculiar architectural
elements. Finally, the third classification level (5-mm resolution) included the most complex shapes to
be classified (e.g., statues incorporated inside the capitals): the accuracy metrics slightly decreased
due to the complex shapes but also the presence of occlusions in the point clouds as well as geometric
similarities between elements (e.g., statues and gothic pyramids).

The final step of the classification process was the instance segmentation, applied to all the single
and repeated elements belonging to the same classes (Figures 17 and 18). The instance segmentation
allowed to associate a different index to an architectural component of the same class (e.g., statues,
capitals, bases, shafts, etc.). This indexing allows for (i) a better management in a HBIM context
and (ii) a quick and precise identification of the elements on which to intervene (in accordance to
Veneranda Fabbrica intervention rules).
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7.2. Pomposa Abbey

7.2.1. One Step Classification

A traditional non-hierarchical classification was applied to the Abbey dataset searching for
18 classes of architectural interest (see Figure 21). Results, shown in Figure 19, seems quite encouraging,
with an average F1-score of 75%. However, in order to be used in daily practice, the classification
results need some manual misclassification adjustments (Figure 20). The relative acceptable results can
be explained by the fact that Pomposa Abbey, even if complex, present less ambiguity among classes
with respect to the Milan’s Cathedral. The RF can distinguish among walls and structural parts in the
trusses because they are geometrically different (contrary to the statues on the choir and those on the
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capitals in Milan’s Cathedral). Moreover, the point cloud resolution is low and does not necessarily
requires an initial subsampling step.
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7.2.2. MLMR classification

The developed MLMR classification approach was applied with three levels (Figure 21). Table 7
reports the F1-scores achieved in the three levels, with an accuracy always over 90%. Working on
different levels has facilitated the process of architectural content recognition, avoiding errors that are
common when more classes share the same properties (e.g., columns and crown posts). The slight
decrease in accuracy for level 3 is due to the fact that, despite an increase of the classes (from 9 to 18),
the geometric resolution of the point cloud is like level 2 (2 cm).

Table 7. Pomposa Abbey: the F1-scores average values for all three classification levels (in brackets the
geometric resolutions of the point clouds). Please consider that each level has a different number of
classes. The classification levels 2 and 3 are performed on the point cloud at a 2-cm resolution, i.e.,
the native resolution.

Level 1 (5 cm) Level 2 (2 cm) Level 3 (2 cm)

F1 (%) 95.1 97.8 94.6

At the first classification level, the most complex parts to classify were those columns that
are directly inserted in the transverse walls. As shown in Figure 22a, geometric features such as
planarity or linearity, that generally help in highlighting columns, responded differently on columns
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and semi-columns. Still, the integration with other covariance features, such as Surface Variation
(Figure 22b), allows quite precise identification of semi-columns.
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Once columns and semi-columns have been isolated (Figure 23), the subsequent level of
classification, based on a higher resolution, allowed the identification of further elements and details,
such as base, capital, shaft, etc. (Figure 24).
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Figure 24. Classification results (11 classes) at level 2 for the entire Abbey (a). A closer view of a column
with its sub-elements (b).

The second classification level split the roof into the dome, central, front and side cover, as each
part presents a different structural behaviour. Therefore, these roof parts and wooden structures were
considered in the last classification level. The parts could be further subdivided, extracting all their
various components (Figure 25), but using specific features for each part.

In all cases, the Surface Variation, extracted at radii proportional to the size of the beams, has been
essential to highlight the various elements. But, after a strategic re-orientation of the parts, the X and
Y coordinates were used as features for the central and front cover, respectively, to distinguish the
principal rafters. This latter strategy allowed us to notice the presence of deformations in the central
cover, starting from the observation of some anomalies in the classification results (Figure 26).
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results of the wooden roof. Some closer views: (A) correct; (B) error in properly distinguishing
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With regards to the side cover classification, in early stages of experimentation, different problems
were encountered as complete and incomplete beams (coming from occlusions in the dataset) responded
differently to the feature extraction (Figure 27a). To cope with this issue, a temporary rotation was
applied to the side covers, to make them horizontal, so that we could benefit from the Z coordinates
for distinguishing rafters, purlins, and panels (Figure 27b,c).
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Figure 27. Bottom-up views with relative sections of the side cover: (a) surface variation behaviour
with critical areas highlighted; (b) scalar field of the original and (c) rotated Z coordinates.

Classification metrics per classes at level 3 are reported in Tables 8–10. This level includes very
fine details of the roof (purlins, tie beams, etc.) which were classified at the same geometric detail of
level 2; hence, the reached accuracy metrics are slightly worse.

Table 8. Classification metrics at level 3 for the central cover of the Pomposa Abbey’s roof.

Purlin Panel Wall
Plate

Tie
Beam

Principal
Rafter
(Right)

Principal
Rafter
(Left)

Crown
Post AVERAGE WEIGHTED

AVERAGE

PREC.
(%) 96.66 86.99 95.71 97.21 90.11 94.54 86.44 89.67 88.05

RECALL
(%) 61.53 92.29 95.09 97.64 92.10 93.12 89.41 88.74 89.04

F1 (%) 68.27 89.56 95.40 97.43 91.09 93.82 87.90 89.20 88.39

Table 9. Classification metrics at level 3 for the front cover of the Pomposa Abbey’s roof.

Panel Purlin Crown
Post

Principal
Rafter
(Left)

Tie
Beam

Principal
Rafter
(Right)

AVERAGE WEIGHTED
AVERAGE

PREC.
(%) 96.86 97.13 83.87 67.36 99.57 87.52 88.72 95.77

RECALL
(%) 98.47 93.70 92.24 68.63 99.36 87.87 90.05 95.79

F1 (%) 97.66 95.38 87.86 67.99 99.46 87.70 89.34 95.77

Table 10. Classification metrics at level 3 for the side cover of the Pomposa Abbey’s roof.

Panel Principal
Rafter Purlin AVERAGE WEIGHTED

AVERAGE

PREC. (%) 97.25 98.41 97.7 97.79 97.46

RECALL (%) 100.00 96.16 85.23 93.80 97.45

F1 (%) 98.61 97.27 91.04 95.64 97.38
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Finally, the instance segmentation of the whole wooden roof (Figure 28) provided additional
results useful for conservation and monitoring activities, allowing to identify components that have to
be replaced. Moreover, the abstraction of structural elements could become preliminary to simulations
with finite element methods/analysis systems (FEM/FEA).Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW 25 of 30 
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8. Conclusions

The paper presented a new hierarchical classification procedure (MLMR) to semantically enrich 3D
point clouds of complex heritage structures. The achieved classification results show how enriched point
clouds could support a better understanding of complex heritage architectures as well as operations
like restoration, communication and on-site facility management. The cognitive contribution of an
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expert operator is fundamental at the beginning of the process. The following are still required from
an expert operator: (i) the identification of the classification rules, (ii) the class definition, and (iii) the
choice of training and validation sets (data annotation). These steps are crucial to adapt the process to
different case studies.

The innovative aspects of the presented work are as follows:

• The use of machine learning techniques to quickly classify large and complex 3D architectures
without the need of large training datasets.

• The definition of general rules (e.g., identification of geometric features), replicable in various
heritage scenarios, in terms of relations among classification levels, point cloud resolution and
minimum/maximum feature search radii.

• The hierarchical segmentation (until single instances) of 3D surveying data which could facilitate
HBIM processes.

• The speed of the process: once training and validation sets are defined, the prediction to the entire
dataset is achieved in a few minutes.

• The objectivity of the classification procedure: objective rules are applied uniformly throughout
the entire process, making the process repeatable and independent from subjective choices of
an operator.

As possible lines of future research, some aspects may deserve further attention and development:

• Better investigation of the relationship between classification levels, point cloud resolution and
features search radii: it is necessary to understand if the automatic classification with specific
features can be generalised concerning data density, or if it is case dependent.

• Verification of the usefulness of the classification process for the scan-to-BIM process, checking if
the extracted semantic structures and instances facilitate the preparatory work for the construction
of BIM models.

• Checking if the semantically segmented point clouds could facilitate the generation of
polygonal meshes.

• Extension of the instance segmentation, not only to repeated and separated elements but also to
those classes that present differences in composition or material, even if contiguous and similar in
shape (e.g., walls).

• Creation of a more user-friendly classification framework to be used by non-experts in the sector.
• Testing the possibility to automatically process the data acquired on-site with mobile scanner

instruments for real-time monitoring applications.
• Improvement of the classification details by integrating information coming from images, which

generally feature higher resolution, hence allows for a better identification/distinction of small
elements (e.g., classification of each single marble block composing the Milan Cathedral).
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