
remote sensing

Article

Compact Cloud Detection with Bidirectional
Self-Attention Knowledge Distillation

Yajie Chai 1,2,3,4, Kun Fu 1,2,3,4,*, Xian Sun 1,2,3,4, Wenhui Diao 1,2, Zhiyuan Yan 1,2,
Yingchao Feng 1,2,3,4 and Lei Wang 1,2

1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China;
chaiyajie18@mails.ucas.ac.cn (Y.C.); sunxian@aircas.ac.cn (X.S.); diaowh@aircas.ac.cn (W.D.);
yanzy@aircas.ac.cn (Z.Y.); fengyingchao17@mails.ucas.ac.cn (Y.F.); wanglei002931@aircas.ac.cn (L.W.)

2 Key Laboratory of Network Information System Technology (NIST), Aerospace Information Research
Institute, Chinese Academy of Sciences, Beijing 100190, China

3 University of Chinese Academy of Sciences, Beijing 100190, China
4 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of

Sciences, Beijing 100190, China
* Correspondence: fukun@mail.ie.ac.cn; Tel.: +86-10-5888-7208

Received: 24 July 2020; Accepted: 22 August 2020; Published: 26 August 2020
����������
�������

Abstract: The deep convolutional neural network has made significant progress in cloud detection.
However, the compromise between having a compact model and high accuracy has always been
a challenging task in cloud detection for large-scale remote sensing imagery. A promising method
to tackle this problem is knowledge distillation, which usually lets the compact model mimic the
cumbersome model’s output to get better generalization. However, vanilla knowledge distillation
methods cannot properly distill the characteristics of clouds in remote sensing images. In this paper,
we propose a novel self-attention knowledge distillation approach for compact and accurate cloud
detection, named Bidirectional Self-Attention Distillation (Bi-SAD). Bi-SAD lets a model learn from
itself without adding additional parameters or supervision. With bidirectional layer-wise features
learning, the model can get a better representation of the cloud’s textural information and semantic
information, so that the cloud’s boundaries become more detailed and the predictions become more
reliable. Experiments on a dataset acquired by GaoFen-1 satellite show that our Bi-SAD has a great
balance between compactness and accuracy, and outperforms vanilla distillation methods. Compared
with state-of-the-art cloud detection models, the parameter size and FLOPs are reduced by 100 times
and 400 times, respectively, with a small drop in accuracy.

Keywords: cloud detection; deep convolution neural network; compact model; knowledge
distillation; self-attention; remote sensing image

1. Introduction

With the rapid development of remote sensing technology, many remote sensing images (RSIs)
with high resolution can be obtained easily, and have been widely used in the fields of resource survey,
disaster prevention, environmental pollution monitoring, urbanization studies, etc. [1,2]. However,
as nearly 66% of the Earth’s surface is covered with cloud [3], most RSIs encounter different levels
of cloud contamination, which not only degrades the quality of RSIs, but also results a waste of storage
and downlink bandwidth in satellite. With the on-board cloud detection, the cloud fraction in the image
can be calculated, so that the cloudy image is removed before transmission, and the image with no
cloud or less cloud fraction is transmitted, improving transmission efficiency and data utilization.
As a result, it is important to develop compact and accurate cloud detection for practical applications.

Remote Sens. 2020, 12, 2770; doi:10.3390/rs12172770 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs12172770
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/12/17/2770?type=check_update&version=3

Remote Sens. 2020, 12, 2770 2 of 19

Traditionally, thresholding based methods [4–10] and machine learning based methods [11–18] are
widely used in cloud detection, because they are simple, effective, and fast in calculation. Thresholding
methods select proper thresholds of physical characteristics (e.g., radiances, reflectances, or brightness
temperatures) or other derived values (e.g., normalized difference vegetation index (NDVI)) over
several spectral bands to detect cloud regions. Typical methods include AVHRR Processing scheme
Over Land, Cloud and Ocean (APOLLO) algorithm [5], automatic cloud cover assessment (ACCA)
algorithm [9], Function of Mask (FMask) algorigthm [7]. However, some high-resolution remote
sensing imageries, e.g., GaoFen-1 imageries and ZY-3 imageries, have only three visible bands and one
near-infrared band, which makes it difficult for thresholding methods to separate cloud from some
non-cloud bright objects, especially snow and ice. In recent years, many machine learning methods,
such as K-nearest neighbor (K-NN) [11], Markov random field [12], neural network [16], and support
vector machine [15] (SVM), are used in cloud detection. Compared with thresholding methods,
machine learning-based methods have distinct advantages in extracting more robust high-level features
from images and improving the detection performance. However, they heavily rely on the manually
designed features, which requires sufficient prior knowledge and makes it difficult to accurately
capture the cloud features in the complex environment.

Benefiting from the development of deep convolutional neural network (DCNN), many high
accuracy methods have been proposed in semantic segmentation, such as Deeplab [19–22] and
PSPNet [23]. Cloud detection aims to label the cloud region at the pixel level, which is an
essentially semantic segmentation task. Inspired by the success of DCNN in semantic segmentation,
deep learning-based cloud detection methods [24–32] have been proposed, and have also achieved
significant performance. Deep learning-based cloud detection methods [24–32] can automatically
discover the proper representations of clouds and effectively combine semantic information and spatial
information to achieve high accuracy and detailed boundaries. For example, the authors of [33] take
into account both the spectral and the spatial context of the concurrent four-channel imagery and
shows great performance. The authors of [34] proposed a method of optimizing sample patches
selection of network to improve the performance of cloud detection network. Besides, they can be
trained end-to-end without manual intervention. However, existing deep learning-based methods
usually utilize complex network structure to obtain high accuracy, which is too cumbersome and
resource-consuming in realistic application scenarios. To simplify the cumbersome structure of DCNN,
some lightweight models have been proposed in computer vision, such as ResNet-18 [35], ENet [36],
and MobileNet [37]. They are compact and resource-saving. However, directly applying them to cloud
detection task tends to get low accuracy and produce coarse results. In recent years, there is a way
to combine the advantages of cumbersome and compact model to effectively make a compromise
between lightweight and high accuracy, which is called knowledge distillation [38–46].

Knowledge distillation is a method to improve the performance of a compact model by
transferring knowledge from the cumbersome model, where a compact model is defined as student
model and a well-trained cumbersome model is defined as the teacher model [38]. In general,
knowledge distillation can be divided into two categories: teacher–student (T–S) methods [38–42] and
self-distillation methods [43–46]. For T–S methods, a compact student model learns the behavior of a
cumbersome teacher model to acquire better generalization. For self-distillation methods, the network
learns from itself to enhance the performance. In cloud detection task, as there are only two categories,
i.e., cloud and background; T–S methods [38–42] tend to make the student model only distill little
knowledge from inter-class similarity of teacher’s softened outputs. On the contrary, the self-distillation
method [43] performs better in this case. Besides, as no teacher model is required, the training efficiency
of self distillation method is higher. However, in the current self-distillation method, SAD [43],
as shown in Figure 1a, the entire attention maps of lower layer mimic that of higher layer. This loses
the attention information of the lower layer and degrades the representation of textural information of
the clouds, causing coarse boundaries of clouds.

Remote Sens. 2020, 12, 2770 3 of 19

Low-level Attention

information

High-level Attention

information

Guide Pixel-level

Classification

CNN Model CNN Feature

Low-level Semantic

information

High-level Semantic

information

Top-down

guide
Pixel-level

Classification

Low-level Textural

information

High-level Textural

information

Bottom-up

guide

CNN Model CNN Feature
Input

Input

(a) SAD (Previous)

(b) Bi-SAD (Ours)

Figure 1. The illustration of the detection pipeline. (a) Self-Attention Distillation (SAD) is a
self-attention distillation method. It introduces a layer-wise attention distillation within the network
itself to improve the performance the model. (b) Bidirectional Self-Attention Distillation (Bi-SAD) is
our bi-directional attention distillation method. It uses the bottom-up textural information distillation
to get more detailed cloud boundaries and the top-down semantic information distillation to get more
reliable predictions.

In this work, we propose a novel bidirectional self-attention distillation (Bi-SAD) method
for compact and accurate cloud detection. It can get more reliable cloud detection results by
reinforcing representation learning from itself without additional external supervision. As illustrated
in Figure 1b, Bi-SAD presents a bidirectional attention maps learning, which contains two mimicking
flows—forward semantic information learning and backward textural information learning. To get
more reliable predictions, the semantic information of lower block mimics the semantic information of
deeper block during the forward procedure. Meanwhile, to get more detailed boundaries, the textural
information of deeper block learns the textural information of preceding feature block in the backward
procedure. By introducing Bi-SAD, the network can strengthen its representations and acquire
a significant performance gain.

Above all, the main contributions of this paper can be summarized as follows.

1. We present a novel self-attention knowledge distillation framework, which is called Bi-SAD,
for compact and accurate cloud detection in remote sensing imagery. Compared with other deep
learning-based cloud detection methods, our method greatly reduces the parameter size and
FLOPs, making it more suitable for practical applications.

2. To enhance the feature learning of the cloud detection framework, we design a bidirectional
distillation way, which is composed of backward boundaries distillation and forward
inner distillation, to get detailed boundaries and reliable cloud detection results. Moreover,
we systematically investigate the inner mechanism of Bi-SAD and analyze its complexity carefully.

3. We conduct sufficient experiments on Gaofen-1 cloud detection dataset and achieve a great balance
between compact model and good accuracy. Besides, the time point of introducing Bi-SAD and
the optimization of parameters are carefully studied in the distillation process, which further
improves the performance on cloud detection.

The reminder of this paper is organized as follows. In Section 2, we introduce the Bi-SAD
framework in details. In Section 3, we describe the dataset and present experiments results to validate
the effectiveness of our proposed method. In Section 4, we discuss the results of proposed method.
Finally, Section 5 gives a summary of our work.

2. Materials and Methods

In this section, we describe our method in detail. The framework of Bi-SAD is presented in
Section 2.1. The detailed generation of semantic attention map and textural attention map is discussed

Remote Sens. 2020, 12, 2770 4 of 19

in Sections 2.2. Section 2.3 presents the specific implementation process of Bi-SAD. Section 2.4 gives
the complexity analysis of Bi-SAD.

2.1. Overview

The overall framework of our proposed Bi-SAD is shown in Figure 2a. It is a general distillation
method and has no strict requirements on backbone. In this paper, we use ResNet-18 [35] as the
backbone to illustrate our method. We denote the conv2_x, conv3_x, conv4_x, and conv5_x of
ResNet [35] as block1, block2, block3, and block4, respectively.

Input Label

mimic

AT-TRANS Semantic

Attention map

Textural

Attention map

(a) The overview of our method

(b) The generation of semantic attention map (c) The generation of textural attention map

Mapping

function

Mask I

Mapping

function

Mask B

Generate Mask

(i=1,2,3,4) (i=1,2,3,4)

Attention

map

Attention

map

Top-down

guide

Bottom-up

guide

Block2 Block3 Block4

Block iBlock i

Block1

Figure 2. The pipeline of our proposed approach. (a) The overview of our Bi-SAD. (b,c) The details of
the generation of semantic attention map and textural attention map. In panel (a), the black dotted line
represents the generation of semantic attention map and textural attention map, the red dotted line
represents the mimicking direction of Bi-SAD, and the green dotted line represents the generation of
Mask B and Mask I.

The attention map in Figure 2b,c shows where the network focuses and is based on the attention
transfer operation [42]. Considering that the boundaries area of the attention map contains more
textural information and the inner area contains more semantic information, we define the boundaries
area of attention map as textural attention map, and the inner area of attention map as semantic
attention map, respectively. We define Mask B and Mask I as the binary mask of the boundary area
and the inner area of the prediction, respectively. The top row of Figure 2a represents the layer-wise
top-down attention distillation, where the semantic attention map of preceding block to mimic that of

a deeper block, e.g., block3 mimic−−−→ block4 and block2 mimic−−−→ block3, and the bottom row of Figure 2a
represents the layer-wise bottom-up attention distillation, where the textural attention map of higher

block to mimic that of a lower block, e.g., block2 mimic−−−→ block1 and block3 mimic−−−→ block2.
We get our ideas from the following facts. First, when a cloud detection network is trained

properly, attention maps of different layers would capture rich and diverse information. Second,
directly conducting full feature attention map mimicking would unavoidably introduce some noise
from background areas where there are snow, buildings, coast lines, roads, etc. Finally, the deeper layer
has more powerful semantic information, which is of vital importance to classify the clouds, and the

Remote Sens. 2020, 12, 2770 5 of 19

lower layer has more detailed textural information, which is helpful to get accurately localization and
detailed boundaries. Considering that it is better to mimic a region-based attention map and integrate
the semantic information and textural information in the network learning, we design a bidirectional
self-attention distillation.

2.2. Generation of Attention Map

As depicted in Figure 2a, for the boundaries of the clouds and the inner area of the clouds,
we design a backward learning flow and forward learning flow, respectively. First, we need to get the
attention maps through the attention mapping function. Let us denote the activation output of the
n-th layer of the network as An ∈ RCn×Hn×Wn , where Cn, Wn, and Hn represent the channel, width,
and height, respectively. The attention map is generated by mapping function

F : RCn×Hn×Wn → RHn×Wn .

The absolute value of each element in attention map indicates the importance of the element on
the output. As a result, we can design a mapping function via computing statistics of these values
along the channel dimension. More specifically, we design a mapping function by summing the
squared activations along the channel dimension. We denote F 2

sum(.)

F 2
sum(An) = ∑Cn

i=1 |Ani|2, (1)

as the mapping function.
The framework of the generation of textural and semantic attention map can be seen in

Algorithm 1. In the following, we demonstrate the generation of textural attention map and semantic
attention map in detail.

Algorithm 1 Generation of textural and semantic attention map.

Input: The feature maps of Block1, Block2, Block3, Block4, A = {A1, A2, A3, A4}; The prediction result R;
Output: The textural attention maps T = {T1, T2, T3, T4}; The semantic attention maps

S = {S1, S2, S3, S4};
1: Step1: Generate Masks
2: Extracting the boundaries of R;
3: Get Mask B0 by expanding the boundaries of R;
4: Get Mask I0 = R− B0;
5: Step2: Get Textural and Semantic Attention Maps
6: for Block i ∈ [1, 4] do
7: Bi ← Downsaple Mask B0 to match the spatial size of Ai;
8: Ii ← Downsaple Mask I0 to match the spatial size of Ai;
9: Ti = F 2

sum(Ai) · Bi;
10: Si = F 2

sum(Ai) · Ii;
11: end for
12: return T, S;

2.2.1. Textural Attention Map

We use Mask B and the attention map to generate the textural attention map. For each individual
image, as shown in Figure 3a, first, we use Laplace Operator to extract the boundaries of the prediction
as shown in Figure 3c. Then, we use morphological expansion method to expand the boundaries and
term it as Mask B0, as shown in Figure 3d.

Remote Sens. 2020, 12, 2770 6 of 19

(a) input (b) prediction (c) edge extractation (d) Mask B (e) Mask I

Figure 3. The generation of Masks. (a) Input image. (b) Prediction result. (c) Edge of the prediction
result. (d) Boundaries area of attention map. (e) Inner area of attention map.

Figure 2c shows the generation of textural attention map: for Block i, it first generates attention
map by mapping function, and then generates textural attention map by using attention map to
multiply the downsampled Mask Bi (the downsampled Mask Bi refers to downsampling Mask B0 to
match the spatial size of feature map Ai). We can see from Figure 2c that the textural attention map
contains not only the boundaries of the big clouds, but also some small pieces of the clouds, and in
these areas, the network needs refined textural information to capture detailed boundaries of clouds.

2.2.2. Semantic Attention Map

We use Mask I and the attention map to generate a semantic attention map. For each single image,
as shown in Figure 3a, we use the prediction subtracting Mask B0 to generate Mask I0, as shown in
Figure 3e.

Figure 2b shows the generation of semantic attention map: for Block i, similar to the generation
of textural attention map, it generates semantic attention map by using attention map to multiply
the downsampled Mask Ii (the downsampled Mask Ii refers to downsampling Mask I0 to match the
spatial size of feature map Ai). As shown in Figure 2b, semantic attention map contains the inner area
of the big clouds, and in these areas, the network needs strong semantic information to make a reliable
prediction of clouds.

2.3. Bidirectional Self-Attention Knowledge Distillation

The whole training procedure can be divided into two stages, i.e., the network training itself and
adding Bi-SAD to training. In the former stage, the network does not capture useful information very
well, and therefore these layers that previous layer want to mimic, i.e., the distillation targets are of
low quality. Therefore, the network needs to learn by itself. When the detection network is trained to a
reasonable level so that the distillation targets capture useful information, we add Bi-SAD to training.
Here, we assume the network half-trained to 5000 epochs.

We term the forward semantic information learning as Inner-SAD, and the backward textural
information learning as Boundary-SAD. The framework of the training procedure of Bi-SAD can be
seen in Algorithm 2. In the following, we discuss the training procedure of Bi-SAD in details.

In order to obtain the semantic information and textural information acquired in Inner-SAD and
Boundary-SAD, we set an attention transformer after each of block1, block2, block3, and block4 of
the backbone, which is termed as AT-TRANS. As shown in Figure 2a, we use the black dotted line
to represent the procedure of attention transformer. There are several operations in the attention
transformer: First, we use F 2

sum(An) to get the 2D attention map from 3D tensor An. Second, as the size
of original attention maps is different from that of targets, we utilize bilinear upsampling B(.) to match
the spatial dimensions. Then, we acquire area-of-interest by multiplying downsampled Mask B or
downsampled Mask I. In Inner-SAD, we use the downsampled Mask In (Mask In represents the Mask
I of Block n), denoted as Min to generate the semantic attention map, and in Boundary-SAD, we use
the downsampled Mask Bn (Mask Bn represents the Mask B of Block n), denoted as Mbn, to produce
the textural attention map. Finally, we use the normalization function N (.) to normalize the vector
above. AT-TRANS is represented by a function:

Ω(An, Mjn) = N (B(F 2
sum(An) ·Mjn)). (2)

Remote Sens. 2020, 12, 2770 7 of 19

where Mjn represents Min or Mbn.

Algorithm 2 Bidirectional self-attention knowledge distillation.

Input: The semantic attention maps S = {S1, S2, S3, S4}; The textural attention maps T = {T1, T2, T3, T4};
Output: Forward distillation loss Linner ; Backward distillation loss Lboundary ;

1: Step1: Inner-SAD
2: Initialize Linner = 0 ;
3: for i ∈ [1, 3] do
4: Upsample Si+1 to match the spatial size of Si;
5: Normalize Si and Si+1;
6: Linner = Linner + L2(Si, Si+1);
7: end for
8: Step2: Boundary-SAD
9: Initialize Lboundary = 0 ;

10: for i ∈ [2, 4] do
11: Upsample Ti to match the spatial size of Ti−1;
12: Normalize Ti and Ti−1;
13: Lboundary = Lboundary + L2(Ti, Ti−1);
14: end for
15: return Linner, Lboundary;

2.3.1. Inner-SAD

As shown in Figure 2a, the red dotted line at the top represents the flow of forward semantic
information learning. During the forward mimicking procedure, the semantic attention map of lower

block mimics the semantic attention map of higher block, e.g., block3 mimic−−−→ block4 and block 2 mimic−−−→
block3. A successive top-down layer-wise distillation loss, whose direction is forward, is formulated
as follows,

Linner =
N−1

∑
n=1
Ld(Ω(An, Min), Ω(An+1, Min+1)), (3)

where Ld is usually defined as an L2 loss, and Ω(An+1, Min+1) is the target of the top-down layer-wise
distillation loss.

2.3.2. Boundary-SAD

Meanwhile, as shown in Figure 2a, the red dotted line at the bottom represents the flow of
backward detailed boundaries information learning. During the backward learning procedure,
the boundaries attention map of deeper block learns the boundaries attention map of preceding

feature block, e.g., block2 mimic−−−→ block1 and block3 mimic−−−→ block2. A successive bottom-up layer-wise
distillation loss, whose direction is backward, is formulated as follows,

Lboundary =
N

∑
n=2
Ld(Ω(An, Mbn), Ω(An−1, Mbn−1)), (4)

where Ld is usually defined as an L2 loss, and Ω(An−1, Mbn−1) is the target of the bottom-up layer-wise
distillation loss. Besides, as blocks represent conv2_x, conv3_x, conv4_x, and conv5_x of ResNet [35],
N = 4. We do not assign different weights to different Bi-SAD paths, although it is possible.
Besides, considering that the attention maps of adjacent layers are semantically closer than those of
non-neighboring layers, we perform mimicking the attention maps of the adjacent layers successively

instead of any other paths (e.g., block 2 mimic−−−→ block4, block3 mimic−−−→ block1).

Remote Sens. 2020, 12, 2770 8 of 19

The overall training loss of the detection model is

L = Lgt + λ1Linner + λ2Lboundary. (5)

where Lgt is the standard entropy loss, and λ1 and λ2 are the distillation loss weight balancing factors.

2.4. Complexity Analysis of Bi-SAD

In order to evaluate the efficiency of our Bi-SAD, we analyze its complexity for the distillation
operation. The computational cost of Bi-SAD mainly includes the generation of attention maps and
the learning process. The cost of the former and the latter are O1 and O2, respectively,

O1 = W1H1C1 + W2H2C2 + W3H3C3 + W4H4C4, (6)

O2 = W1H1 + W2H2 + W3H3 + W4H4, (7)

where W1 and H1, W2 and H2, W3 and H3, and W4 and H4 are 1/4, 1/8, 1/16, and 1/32 of width and
height of the original input image, respectively, and C1 < C2 < C3 < C4.

By analysis, we can get the calculation complexity of Bi-SAD:

O = O1 + O2 < 4W2H2C4 + 4W2H2 = 4W2H2(C4 + 1). (8)

In addition, compared with T–S methods, our Bi-SAD has a lower calculation complexity of
the distillation operation, which can significantly reduce storage space and increase computing
speed. Specifically, the method in [40] reaches O(WHN + 8WH(C + 1)), the method in [41] reaches
O(W2H2(C2 + 1) + WHN), and our Bi-SAD only reaches O(4WH(C + 1)), where C represents the
number of channels in feature map; N represents the number of classes; and W and H represent the
width and height dimensions of feature map, respectively.

3. Experiments

In this section, we comprehensively evaluate the proposed Bi-SAD on GaoFen-1 satellite images.
Specifically, we first present description of experimental details. Then, we discuss the performance of
Bi-SAD qualitatively and quantitatively. Finally, we also conduct a comparative experiment with the
state-of-the-art distillation models and deep learning-based cloud detection models.

3.1. Experiments Settings

3.1.1. Dataset

In order to quantitatively evaluate the performance of our method, we use the public accessible
GaoFen-1 dataset released by Li et al. [8] in the experiments, where there are three visible bands
and a near-infrared band. The images were acquired from May 2013 to August 2016 in different
global regions [8]. The resolution of the image is 16 m. The whole dataset contains 108 globally
distributed scenes and covers different clouds types and land cover types, including water, urban areas,
forest, barren, and ice/snow. Thus, we can have a comprehensive test of our method under different
conditions. There are only clouds and background in our experiments, where small clouds, broken
clouds, thick clouds and thin clouds are all marked as clouds, and background, clear-sky, cloud shadow,
and other non-cloud bright objects are marked as background, as shown in Figure 4. The whole
108 scenes whose sizes are 10,000 × 9000 pixels are divided into training set (87 scenes) and testing
set (21 scenes), according to the proportion of 8:2. Both the training set and test set contain the
clouds of different sizes, shapes, and levels of cloud coverage and background of various scenes.
The training set and testing set are cropped into 41,434 slices and 10,359 slices, and the size of each
slice is 513 × 513 pixels.

Remote Sens. 2020, 12, 2770 9 of 19

clouds background

Figure 4. Example annotations of slices in GaoFen-1 dataset.

3.1.2. Network Design

In the experiment, we evaluate the performance enhancement of our proposed method on a
popular compact model, i.e., ResNet18 [35]. More specifically, to further increase the speed and reduce
the amount of parameters, we denote the vanilla ResNet18 as 1×model, and directly halve channels
of each layer to obtain the 0.5× model. Then halve again to obtain the 0.25× model, and the 0.25×
model has a smaller model size than the vanilla ResNet18 by 41.75 MB.

Baseline Setup. We utilize the 0.25× ResNet18 as the backbone, and we employ 32× bilinear
upsampling to predict, which is a very simple FCN [47] alike semantic segmentation model. We use
the simple yet general model to verify the wide universality and the great generalization of our
proposed method.

3.1.3. Evaluation Metrics

We evaluate the model in terms of accuracy and efficiency.
For quantitative evaluation of the detection accuracy, we use mean intersection over union

(mIoU), F1 score, overall accuracy (OA) [47] as the measurement. Notably, a large F1 score suggests
a better result. Besides, mIoU and OA that indicates overall pixel accuracy, are also calculated
for a comprehensive comparison with different models. Let pij be the number of pixels of class i
predicted to belong to class j, and k be the number of classes. We calculate mIoU, OA, and F1 with the
following formula,

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
, (9)

OA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
, (10)

precison =
CP
DP

, recall =
CP
GN

, (11)

F1 = (1 + β2) · presion · recall
β2 · precision + recall

, β = 1. (12)

where CP is the number of pixels correctly detected as cloud, DP is the total number of pixels detected
as cloud, and GN is the number of cloud pixels in ground truth.

For quantitative evaluation of the model efficiency, we use execution time [48], the model size
and the calculation complexity [41] to measure. The execution time is represented by the inference
time of the network. We input the slice with 513 × 513 pixels resolution of the whole testing sets,
and calculate the average time of each image as the inference time. The model size is expressed in

Remote Sens. 2020, 12, 2770 10 of 19

terms of the number of network parameters. And the calculation complexity is represented by the sum
of the floating-point operations (FLOPs) in once forward on a fixed input size.

3.2. Training and Testing Details

Our experiments are performed on one RTX-2080Ti GPU with PyToch 1.1.
During the training procedure, the input image is the slice with 513 × 513 pixels. In order to

prevent overfitting, some data augmentation methods are applied, such as random scale, random
horizontal, and vertical flipping. The stochastic gradient is selected as the optimizer for our experiments
with a momentum of 0.9. We use a “poly” learning rate policy [20] in training with a base learning
rate of 0.002 and a power of 0.9. Loss weight balancing factors λ1 and λ2 are empirically set as 0.5
and 0.5, respectively. We train our network from scratch for 30,000 iterations with a batch size of 40.
For the method of without knowledge distillation approach, the total loss is cross-entropy loss between
prediction and ground truth. For the methods based on T–S knowledge distillation and SAD, the total
loss is cross-entropy loss [47] plus distillation loss.

During the stage of test, we keep the original resolution of image instead of resizing it to a fixed
size, and all of our test results are keeping the same scale. In our experiments, we use the method of
sliding window detection to implement the inference for the every whole image. In details, the size of
the sliding window is the same as the input size in the training stage, i.e., 513 × 513 pixels.

3.3. Ablation Studies

In this section, we investigate the effects of Boundary-SAD and Inner-SAD. Besides, we also show
the experiments of parameter optimization.

3.3.1. The Effect of Boundary-SAD

In order to capture cloud details more accurately, we add Boundary-SAD to the baseline model.
Table 1 shows that there is a 1.28% enhancement in mIoU. As shown in Figure 5, after adding
Boundary-SAD, the predictions of boundaries of clouds and small piece of clouds are more accurate.
Boundary-SAD gives the model a better ability to capture details in clouds.

Input

Baseline

Baseline+

Boundary-

SAD

Ground

truth

(a) (b) (c) (d) (e) (f)

Figure 5. Visual comparison of the results for details in clouds. Training with Boundary-SAD, the network
can capture details more accurately. (a–c) Mix of small cloud and big cloud. (d) Mix of big cloud and
thin cloud. (e,f) Small piece of clouds.

Remote Sens. 2020, 12, 2770 11 of 19

Table 1. The results of training baseline model with our proposed distillation methods. +Boundary-SAD
denotes training the baseline model with Boundary-SAD. +Inner-SAD denotes training the baseline
model with Inner-SAD. +Bi-SAD denotes training the baseline model with Boundary-SAD and
Inner-SAD.

Method
IoU

mIoU OA F1 Params(MB) FLOPs(G) Execution Time(ms)
Background Cloud

Our baseline 0.9547 0.7333 0.8440 0.9597 0.9115 2.85 0.7238 3.42
+Boundary-SAD 0.9573 0.7563 0.8568 0.9623 0.9197 2.85 0.7238 3.42
+Inner-SAD 0.9615 0.7666 0.8641 0.9658 0.9241 2.85 0.7238 3.42
+Bi-SAD 0.9628 0.7779 0.8703 0.9672 0.9281 2.85 0.7238 3.42

3.3.2. The Effect of Inner-SAD

To make more reliable predictions, we add Inner-SAD to the baseline model. Table 1 shows that
the improvement of mIoU is 2.01%. As shown in Figure 6, after introducing Inner-SAD to the network,
the results present less misclassified pixels than baseline model. Inner-SAD gives the model a better
ability to distinguish between snow/ice and clouds.

Input

Baseline

Baseline+

Inner-SAD

Ground

truth

(a) (b) (c) (d) (e) (f)

Figure 6. Visual comparison of the results for tough cases with snow/ice. Training with Inner-SAD,
the network can better separate cloud from non-cloud bright objects, such as snow and ice. (a) Wide
range of ice. (b,c) Snow. (d,e) Wide range of snow. (f) Mix of ice, snow, and clouds.

Besides, as shown in Table 1, our method achieves a high accuracy of 96.72%, with small
model size, low calculation complexity, and fast inference time. When Bi-SAD is added to baseline,
the network performance has been further improved, i.e., a 2.63% gain in mIoU, without increasing
the amount of parameters, computational complexity and inference time. It proves that our method
of combining forward semantic information learning and backward textural information learning
is effective.

3.3.3. The Effect of Mimicking Direction

To investigate the effect of mimicking direction on performance, we reverse the direction: for the
boundaries region of the cloud, the lower layers mimic higher layers, and for the inner region of the
cloud, the higher layers mimic lower layers. It decreases the performance of the baseline model from
84.40% to 83.52%. This is because low-level attention maps contain more textural information, i.e.,

Remote Sens. 2020, 12, 2770 12 of 19

details and high-level attention maps contain more high-level semantic information. Reversing the
mimicking direction will inevitably hamper the learning of the crucial clues for the cloud detection.

3.3.4. Parameter Optimization

During the generation of the masks, we use Laplace Operator to extract the boundaries, and use
morphological expansion method to expand the boundaries to acquire the Mask B (Section 2.2),
where there is a hyperparameter, i.e., the expansion iteration. Besides, we assume a half-trained model
before we introduce Bi-SAD to the training. In this study, we did the experiments to find the fitting
hyperparameter.

The hyperparameter of the masks. Figure 7 shows the resulting mIoU of the varying expansion
iteration, and we can see that when the iteration is larger than 7 (iteration > 7), the performance of
the Bi-SAD is lower than baseline. This is because as the expansion iteration grows, the boundaries of
clouds will grow in Mask B and the center region of clouds will decrease in Mask I, which may cause
Mask B contains more center region of clouds. If the boundaries and inner area represented by Mask B
and Mask I are not accurate, the textural information and semantic information will not be learned
very well. As a result, when the iteration is larger than 7, the performance will drop a lot. As shown in
Figure 7, the results show that the value of 3 turns out to be optimal, and in the experiment, we use 3
as the expansion iteration to generate Mask B.

1 2 3 4 5 6 7 8 9 10
0.81

0.82

0.83

0.84

0.85

0.86

0.87

M
io

u

Expansion iteration

Bi-SAD

baseline

Figure 7. The resulting mIoU of the varying expansion iteration. The expansion iteration is the
hyperparameter in Mask B and Mask I.

The time point to add Bi-SAD. Here, we research the time points to add Bi-SAD. As shown
in Table 2, we can see that different time points of adding Bi-SAD almost converge to the same
point, and 5000 is relatively better. We think that this it caused by the quality of the distillation
targets produced by later layers and the optimization speed. In the earlier training stage, as the
distillation targets produced by later layers are of low quality, this may introduce some noise to
training. In the later training stage, the quality of the distillation targets is well, but as the learning
rate drops, the optimization speed is slow. Besides, we find that after introducing Bi-SAD to network,
the network has a more rapid speed of convergence. In the experiments, we add Bi-SAD to training
when the network trained to 5000.

Remote Sens. 2020, 12, 2770 13 of 19

Table 2. Performance of adding Bi-SAD on the baseline model at different training epoch. The epoch
of 5000 is the optimal, the others almost convergence to a same point.

Epoch mIoU OA F1

baseline 0.8440 0.9597 0.9115
1000 0.8649 0.9654 0.9242
2000 0.8653 0.9656 0.9257
3000 0.8675 0.9658 0.9263
4000 0.8688 0.9660 0.9267
5000 0.8703 0.9672 0.9281
6000 0.8695 0.9664 0.9272
7000 0.8681 0.9659 0.9266
8000 0.8663 0.9660 0.9259
9000 0.8651 0.9652 0.9256
10,000 0.8637 0.9650 0.9239

3.4. Comparison with The State-of-the-Art Distillation Methods

In this section, we make a comparison between our Bi-SAD with state-of-the-art self distillation
method and T–S distillation methods.

For T–S distillation methods, we denote the 1.0× ResNet18 with 32× upsamping as the teacher
model and denote the baseline model as the student model. Two state-of-the-art T-S distillation
methods are selected in this experiment, named zero+first [40] and pixel+pair [41]. For self distillation
method, we make a comparison between our Bi-SAD and SAD [43].

The results are shown in the Table 3. We find that after training with our Bi-SAD, the student
model almost reaches the same performance as the teacher model and even better on mIoU and F1,
and our Bi-SAD also outperforms the state-of-the-art distillation methods, which proves that our
Bi-SAD is more powerful in cloud detection. Besides, as shown in Figure 8, as the teacher model is
required to be trained well in advance in T–S methods, comparing with T–S methods in terms of the
training time, the amount of parameters, and GPU memory usage, our Bi-SAD is more efficient in the
training phase.

Table 3. Comparison of the state-of-the-art distillation methods in [40,41,43] with ours. The segmentation
is evaluated by mIoU. “Zero” in the third row of the table represents the pixel-wise L2norm distillation
method in [40]. “first” in the third row represents the local similarity distillation method in [40].
“Pixel” in the fourth row represents the pixel-wise probability mimicking method in [41]. “pair” in
the fourth row represents the global pair-wise distillation in [41]. “SAD” in the fifth row represents
the self-attention distillation method in [43]. “Bi-SAD” in the last row represents our self-attention
learning method.

Method mIoU OA F1 Params (MB) Training Time (h) Execution Time (ms)

Teacher 0.8675 0.9674 0.9263 44.89 9.09 6.76
Student 0.8440 0.9597 0.9115 2.85 7.68 3.42
Zero+first [40] 0.8460 0.9591 0.9129 47.74 18.57 3.42

T-S method

Pixel+pair [41] 0.8606 0.9650 0.9229 47.74 17.27 3.42

Baseline+SAD [43] 0.8624 0.9653 0.9231 2.85 7.85 3.42
Self-distillation

Baseline+Bi-SAD 0.8703 0.9672 0.9281 2.85 7.96 3.42

Remote Sens. 2020, 12, 2770 14 of 19

0

2

4

6

8

10

12

14

16

18

20

Training Time(h)

Teacher-Student Self-distillation

0

1000

2000

3000

4000

5000

6000

7000

GPU Memory(MB)

Teacher-Student Self-distillation

0

10

20

30

40

50

60

Params(M)

Teacher-Student Self-distillation

Figure 8. Comparison of self-distillation method (our Bi-SAD) and Teacher–Student distillation
method [41] in terms of parameters (measured by M), training time (measured by h), and GPU
memory (measured by MB). It can be seen that SAD [43] requires 17× less parameters, 2× less training
time, and reduces GPU memory usage by 40%.

Further, as shown in Figure 9, we can see that (1) with the forward mimicking and the backward
mimicking in Bi-SAD, the high-level attention map not only contains rich semantic information, but
also incorporates textural information, which is vital to make a precise prediction. (2) After adding
self-attention distillation, attention maps of the network become more explainable. Because the shape
of attention maps are getting closer to the shape of the cloud, this also shows that the network focuses
on the clouds, so the performance is better. And this phenomenon is more obvious in Bi-SAD than SAD.

Input Block 1 Block 2 Block 3 Block 4

Baseline

with SAD

Prediction Label

with Bi-SAD

10
probability

Baseline

with SAD

with Bi-SAD

Figure 9. Predictions and attention maps of baseline model with and without self-attention distillation.
When Bi-SAD is added to baseline model, the shape of attention maps and clouds are more similar,
and the predictions are more precise.

3.5. Comparison with The State-of-the-Art Deep Learning-Based Cloud Detection Approaches

To comprehensively evaluate the proposed method from the model parameter amount, speed,
and accuracy, we make a comparison with the state-of-the-art deep learning-based cloud detection
models including MFFSNet [24], CDNet [27], PSPNet [23], DeeplabV3+ [22], and MF-CNN [25],

Remote Sens. 2020, 12, 2770 15 of 19

as shown in Table 4. Figure 10 quantitatively shows the accuracy, parameters, and FLOPs of these
methods; we can see that although there exists as small difference in performance, our method has
fewer parameters, lower calculation complexity, and faster inference speed. Specifically, by comparing
our method with the current highest precision MFFSNet, the parameter size and FLOPs are reduced
by 100 times and 400 times, respectively, with a small drop in accuracy, and the speed is increased by
~7 times. It also shows that our method is more conducive to practical application.

Table 4. The comparison of state-of-the-art cloud detection methods with ours.

Method OA F1 Params (MB) FLOPs (G) Execution Time (ms)

MFFSNet [24] 0.9819 0.9601 279.04 286.079 22.6
CDNet [27] 0.9795 0.9567 295.26 387.392 21.1
PSPNet [23] 0.9783 0.9526 268.63 290.190 20.8
DeeplabV3+ [22] 0.9780 0.9543 246.38 268.454 20.3
MF-CNN [25] 0.9765 0.9507 56.39 126.112 8.64
Baseline+Bi-SAD 0.9672 0.9281 2.85 0.7238 3.42

PSPNet

DeeplabV3+
MFFSNet

CDNet
Ours

MF-CNN

Figure 10. The accuracy, parameters, and floating-point operations (FLOPs) of different deep convolutional
neural networks (DCNNs) on the GaoFen-1 cloud detection dataset, including our method, MFFSNet [24],
CDNet [27], PSPNet [23], DeeplabV3+ [22], and MFCNN [25]. The FLOPs are represented by the size of
corresponding labels (circle or triangle in the picture), which means the bigger the label, the larger the FLOPs.
Compared with with the state-of-the-art deep learning based cloud detection models, our method uses
fewer parameters and FLOPs to achieve comparable performance.

Besides, Figure 11 qualitatively shows that our method performs well in the scene of forest, roads,
water, and coastline, and can accurately capture thin clouds, small piece of clouds, and boundaries of
clouds. Moreover, as shown in Figure 11, we can see that in big clouds, thin clouds, small pieces of
clouds, and broken clouds our network has a competitive performance with the state-of-the-art cloud
detection models.

Remote Sens. 2020, 12, 2770 16 of 19

(a)

(b)

Input Groundtruth Bi-SAD MFFSNet

CDNet MFCNNPSPNet DeeplabV3+

Input Groundtruth Bi-SAD MFFSNet

CDNet MFCNNPSPNet DeeplabV3+

Figure 11. Visual comparisons of cloud detection results of GaoFen-1 image with our method,
MFFSNet [24], CDNet [27], PSPNet [23], DeeplabV3+ [22], and MFCNN [25]. (a) Spliced visual cloud
detection results of GF-1 image(GF1_WFV2_E105.8_ N24.3_ 20140723_L2A0000305784). (b) Spliced visual
cloud detection results of GaoFen-1 image(GF1_WFV4_E109.6_N18.5_20140510_L2A0000286067).

4. Discussion

The experimental results in Sections 3.3 and 3.4 prove that the proposed method can effectively
improve the performance of cloud detection network, our method has a performance enhancement
over other distillation methods and the training efficiency of our method is higher. There are several
reasons: First, through our proposed two mimicking flows—forward semantic information learning
and backward detailed textural information learning—the model indeed enhances its representation of
clouds, so the performance is improved. Second, in terms of cloud detection, compared with existing
T–S distillation methods, the self-distillation method can more effectively capture useful information
through self-attention mechanism. Third, as the distillation information of our proposed method
comes from different layers of the network, no teacher model is required, so the training efficiency of
our proposed method is higher.

Remote Sens. 2020, 12, 2770 17 of 19

Although our method achieves a good balance between accuracy and speed, the accuracy of the
model needs to be further improved. We think the reason may be that the limited parameter amount
limits the feature learning ability of the model to some extent.

We will investigate how to design a network structure with a small amount of parameters and
low computational complexity, but with strong feature extraction capabilities to further improve the
performance and speed in our future work.

5. Conclusions

In this work, we propose a novel bidirectional self-attention distillation method for compact
and accurate cloud detection. Our method takes full use of the information of low-level and
high-level attention map to improve the representation learning of DCNN-based cloud detection
models. Experiments based on the GaoFen-1 cloud dataset demonstrate that our method outperforms
other state-of-the-art distillation methods and achieves a great trade-off between accuracy and speed.
Extensive experiments and analysis demonstrate the effectiveness of our approach. In future work,
we will pay more attention to further improving the accuracy of the cloud detection model with limited
parameters.

Author Contributions: Formal analysis, Y.C.; Funding acquisition, K.F., X.S., W.D., Z.Y., and L.W.; Investigation,
Y.C.; Methodology, Y.C.; Supervision, K.F., X.S., W.D., Z.Y., and L.W.; Visualization, Y.C.; Writing—original draft,
Y.C.; Writing—review and editing, Y.C., K.F., X.S., W.D., Z.Y., Y.F., and L.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China under Grants 41701508
and 61725105.

Acknowledgments: The authors would like to thank all their colleagues in the lab, who generously provided their
original images and helped to annotate the images. The authors are very grateful to the anonymous reviewers for
their helpful suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Fu, K.; Chang, Z.; Zhang, Y.; Xu, G.; Zhang, K.; Sun, X. Rotation-aware and multi-scale convolutional neural
network for object detection in remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 161, 294–308.
doi:10.1016/j.isprsjprs.2020.01.025. [CrossRef]

2. Wang, P.; Sun, X.; Diao, W.; Fu, K. FMSSD: Feature-Merged Single-Shot Detection for Multiscale Objects in
Large-Scale Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3377–3390. [CrossRef]

3. Zhang, Y.; Rossow, W.B.; Lacis, A.A.; Oinas, V.; Mishchenko, M.I. Calculation of radiative fluxes from the
surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer
model and the input data. J. Geophys. Res. Atmos. 2004, 109. doi:10.1029/2003JD004457. [CrossRef]

4. Shin, D.; Pollard, J.; Muller, J.P. Cloud detection from thermal infrared images using a segmentation
technique. Int. J. Remote Sens. 1996, 17, 2845–2856. [CrossRef]

5. Gesell, G. An algorithm for snow and ice detection using AVHRR data An extension to the APOLLO
software package. Int. J. Remote Sens. 1989, 10, 897–905. [CrossRef]

6. Jedlovec, G.J.; Haines, S.L.; LaFontaine, F.J. Spatial and temporal varying thresholds for cloud detection in
GOES imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1705–1717. [CrossRef]

7. Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens.
Environ. 2012, 118, 83–94. [CrossRef]

8. Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow
detection in GaoFen-1 wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [CrossRef]

9. Irish, R.R. Landsat 7 automatic cloud cover assessment. In Algorithms for Multispectral, Hyperspectral,
and Ultraspectral Imagery VI; International Society for Optics and Photonics: Bellingham, WA, USA, 2000;
Volume 4049, pp. 348–355.

10. Fisher, A. Cloud and cloud-shadow detection in SPOT5 HRG imagery with automated morphological
feature extraction. Remote Sens. 2014, 6, 776–800. [CrossRef]

https://doi.org/https://doi.org/10.1016/j.isprsjprs.2020.01.025
http://dx.doi.org/10.1016/j.isprsjprs.2020.01.025
http://dx.doi.org/10.1109/TGRS.2019.2954328
 https://doi.org/10.1029/2003JD004457
http://dx.doi.org/10.1029/2003JD004457
http://dx.doi.org/10.1080/01431169608949110
http://dx.doi.org/10.1080/01431168908903929
http://dx.doi.org/10.1109/TGRS.2008.916208
http://dx.doi.org/10.1016/j.rse.2011.10.028
http://dx.doi.org/10.1016/j.rse.2017.01.026
http://dx.doi.org/10.3390/rs6010776

Remote Sens. 2020, 12, 2770 18 of 19

11. Christodoulou, C.I.; Michaelides, S.C.; Pattichis, C.S. Multifeature texture analysis for the classification of
clouds in satellite imagery. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2662–2668. [CrossRef]

12. Vivone, G.; Addesso, P.; Conte, R.; Longo, M.; Restaino, R. A class of cloud detection algorithms based on a
MAP-MRF approach in space and time. IEEE Trans. Geosci. Remote Sens. 2013, 52, 5100–5115. [CrossRef]

13. Xu, L.; Wong, A.; Clausi, D.A. A Novel Bayesian Spatial–Temporal Random Field Model Applied to Cloud
Detection From Remotely Sensed Imagery. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4913–4924. [CrossRef]

14. Barnes, B.B.; Hu, C. A hybrid cloud detection algorithm to improve MODIS sea surface temperature data
quality and coverage over the Eastern Gulf of Mexico. IEEE Trans. Geosci. Remote Sens. 2012, 51, 3273–3285.
[CrossRef]

15. Li, P.; Dong, L.; Xiao, H.; Xu, M. A cloud image detection method based on SVM vector machine.
Neurocomputing 2015, 169, 34–42. [CrossRef]

16. Hughes, M.J.; Hayes, D.J. Automated detection of cloud and cloud shadow in single-date Landsat imagery
using neural networks and spatial post-processing. Remote Sens. 2014, 6, 4907–4926. [CrossRef]

17. Bai, T.; Li, D.; Sun, K.; Chen, Y.; Li, W. Cloud detection for high-resolution satellite imagery using machine
learning and multi-feature fusion. Remote Sens. 2016, 8, 715. [CrossRef]

18. Tan, K.; Zhang, Y.; Tong, X. Cloud extraction from chinese high resolution satellite imagery by probabilistic
latent semantic analysis and object-based machine learning. Remote Sens. 2016, 8, 963. [CrossRef]

19. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep
convolutional nets and fully connected crfs. arXiv 2014, arXiv:1412.7062.

20. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal.
Mach. Intell. 2017, 40, 834–848. [CrossRef]

21. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image
segmentation. arXiv 2017, arXiv:1706.05587.

22. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable
convolution for semantic image segmentation. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818.

23. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

24. Yan, Z.; Yan, M.; Sun, H.; Fu, K.; Hong, J.; Sun, J.; Zhang, Y.; Sun, X. Cloud and cloud shadow detection
using multilevel feature fused segmentation network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1600–1604.
[CrossRef]

25. Shao, Z.; Pan, Y.; Diao, C.; Cai, J. Cloud Detection in Remote Sensing Images Based on Multiscale
Features-Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4062–4076. [CrossRef]

26. Xie, F.; Shi, M.; Shi, Z.; Yin, J.; Zhao, D. Multilevel cloud detection in remote sensing images based on deep
learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3631–3640. [CrossRef]

27. Yang, J.; Guo, J.; Yue, H.; Liu, Z.; Hu, H.; Li, K. CDnet: CNN-Based Cloud Detection for Remote Sensing
Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6195–6211. [CrossRef]

28. Chai, D.; Newsam, S.; Zhang, H.K.; Qiu, Y.; Huang, J. Cloud and cloud shadow detection in Landsat imagery
based on deep convolutional neural networks. Remote Sens. Environ. 2019, 225, 307–316. [CrossRef]

29. Shao, Z.; Deng, J.; Wang, L.; Fan, Y.; Sumari, N.S.; Cheng, Q. Fuzzy autoencode based cloud detection for
remote sensing imagery. Remote Sens. 2017, 9, 311. [CrossRef]

30. Jiang, H.; Lu, N. Multi-scale residual convolutional neural network for haze removal of remote sensing
images. Remote Sens. 2018, 10, 945. [CrossRef]

31. Zhou, K.; Ming, D.; Lv, X.; Fang, J.; Wang, M. CNN-Based Land Cover Classification Combining Stratified
Segmentation and Fusion of Point Cloud and Very High-Spatial Resolution Remote Sensing Image Data.
Remote Sens. 2019, 11, 2065. [CrossRef]

32. Francis, A.; Sidiropoulos, P.; Muller, J.P. CloudFCN: Accurate and robust cloud detection for satellite imagery
with deep learning. Remote Sens. 2019, 11, 2312. [CrossRef]

33. Segal-Rozenhaimer, M.; Li, A.; Das, K.; Chirayath, V. Cloud detection algorithm for multi-modal satellite
imagery using convolutional neural-networks (CNN). Remote Sens. Environ. 2020, 237, 111446. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2003.815404
http://dx.doi.org/10.1109/TGRS.2013.2286834
http://dx.doi.org/10.1109/TGRS.2017.2692264
http://dx.doi.org/10.1109/TGRS.2012.2223217
http://dx.doi.org/10.1016/j.neucom.2014.09.102
http://dx.doi.org/10.3390/rs6064907
http://dx.doi.org/10.3390/rs8090715
http://dx.doi.org/10.3390/rs8110963
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1109/LGRS.2018.2846802
http://dx.doi.org/10.1109/TGRS.2018.2889677
http://dx.doi.org/10.1109/JSTARS.2017.2686488
http://dx.doi.org/10.1109/TGRS.2019.2904868
http://dx.doi.org/10.1016/j.rse.2019.03.007
http://dx.doi.org/10.3390/rs9040311
http://dx.doi.org/10.3390/rs10060945
http://dx.doi.org/10.3390/rs11172065
http://dx.doi.org/10.3390/rs11192312
http://dx.doi.org/10.1016/j.rse.2019.111446

Remote Sens. 2020, 12, 2770 19 of 19

34. Ghorbanzadeh, O.; Blaschke, T. Optimizing Sample Patches Selection of CNN to Improve the mIOU on
Landslide Detection. In Proceedings of the International Conference on Geographical Information Systems
Theory, Applications and Management, Heraklion, Crete, Greece, 3–5 May 2019; pp. 33–40.

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

36. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time
semantic segmentation. arXiv 2016, arXiv:1606.02147.

37. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

38. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
39. Romero, A.; Ballas, N.; Kahou, S.E.; Chassang, A.; Gatta, C.; Bengio, Y. Fitnets: Hints for thin deep nets.

arXiv 2014, arXiv:1412.6550.
40. Xie, J.; Shuai, B.; Hu, J.F.; Lin, J.; Zheng, W.S. Improving fast segmentation with teacher-student learning.

arXiv 2018, arXiv:1810.08476.
41. Liu, Y.; Chen, K.; Liu, C.; Qin, Z.; Luo, Z.; Wang, J. Structured Knowledge Distillation for Semantic

Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Long Beach, CA, USA, 16–20 June 2019; pp. 2604–2613.

42. Zagoruyko, S.; Komodakis, N. Paying more attention to attention: Improving the performance of
convolutional neural networks via attention transfer. arXiv 2016, arXiv:1612.03928.

43. Hou, Y.; Ma, Z.; Liu, C.; Loy, C.C. Learning lightweight lane detection cnns by self attention distillation.
In Proceedings of the IEEE International Conference on Computer Vision, Jeju Island, South Korea,
15–18 June 2019; pp. 1013–1021.

44. Furlanello, T.; Lipton, Z.C.; Tschannen, M.; Itti, L.; Anandkumar, A. Born again neural networks. arXiv 2018,
arXiv:1805.04770.

45. Yim, J.; Joo, D.; Bae, J.; Kim, J. A gift from knowledge distillation: Fast optimization, network minimization
and transfer learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 4133–4141.

46. Bagherinezhad, H.; Horton, M.; Rastegari, M.; Farhadi, A. Label refinery: Improving imagenet classification
through label progression. arXiv 2018, arXiv:1805.02641.

47. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3431–3440.

48. Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia-Rodriguez, J. A review on deep
learning techniques applied to semantic segmentation. arXiv 2017, arXiv:1704.06857.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Overview
	Generation of Attention Map
	Textural Attention Map
	Semantic Attention Map

	Bidirectional Self-Attention Knowledge Distillation
	Inner-SAD
	Boundary-SAD

	Complexity Analysis of Bi-SAD

	Experiments
	Experiments Settings
	Dataset
	Network Design
	Evaluation Metrics

	Training and Testing Details
	Ablation Studies
	The Effect of Boundary-SAD
	The Effect of Inner-SAD
	The Effect of Mimicking Direction
	Parameter Optimization

	Comparison with The State-of-the-Art Distillation Methods
	Comparison with The State-of-the-Art Deep Learning-Based Cloud Detection Approaches

	Discussion
	Conclusions
	References

