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Abstract: The paper presents an efficient photogrammetric workflow to improve the 3D reconstruction
of scenes surveyed by integrating terrestrial and Unmanned Aerial Vehicle (UAV) images. In the
last years, the integration of this kind of images has shown clear advantages for the complete and
detailed 3D representation of large and complex scenarios. Nevertheless, their photogrammetric
integration often raises several issues in the image orientation and dense 3D reconstruction processes.
Noisy and erroneous 3D reconstructions are the typical result of inaccurate orientation results. In this
work, we propose an automatic filtering procedure which works at the sparse point cloud level and
takes advantage of photogrammetric quality features. The filtering step removes low-quality 3D tie
points before refining the image orientation in a new adjustment and generating the final dense point
cloud. Our method generalizes to many datasets, as it employs statistical analyses of quality feature
distributions to identify suitable filtering thresholds. Reported results show the effectiveness and
reliability of the method verified using both internal and external quality checks, as well as visual
qualitative comparisons. We made the filtering tool publicly available on GitHub.

Keywords: data fusion; sparse point cloud; filtering; image orientation; dense point cloud generation

1. Introduction

In the last years, Unmanned Aerial Vehicle (UAV) platforms [1-4] have become widely used for
image or LiDAR (Light Detection and Ranging) data acquisitions and 3D reconstruction purposes
in several applications [5-11]. Such platforms have brought undisputed advantages, in particular
when combined with terrestrial images. The increasing number of applications where UAV-based
images are combined with terrestrial acquisitions is related to the opportunities to achieve complete
and detailed 3D results. Despite the promising results of this image fusion approach, several issues
generally arise from the joint processing of such sets of data. Big perspective changes, different image
scales and illumination conditions can, in fact, deeply affect the adjustment and orientation outcomes
and, consequently, the successive photogrammetric products.

Nowadays, the automation of image-based techniques has simplified the procedures of 3D
reconstruction, also allowing non-expert users to digitally reconstruct scenes and objects through
photogrammetric/computer vision methods. In automatic processing pipelines, increasingly robust
operators and algorithms have reduced the manual effort and the processing time required in the
traditional photogrammetric procedures. At the same time, however, these solutions offer less control
over the processing steps and the quality of the final products.

The quality of the generated 3D data strongly depends on the characteristics of the employed
sensors, on the photogrammetric network design and on the image orientation results. In many
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close-range and UAV-based applications, non-metric and low-cost cameras are frequently used
and combined, while highly automatic algorithms of Structure from Motion (SfM) and Multi-View
Stereo (MVS) commonly available in open-source and proprietary software [12,13] support the
processing of image datasets. Nevertheless, characteristics of the acquired images (in terms of
resolution, exposure, contrast, etc.), as well as block geometry configuration, and features extraction
and matching procedures, are unavoidable factors conditioning the quality of the orientation process
and the resulting reconstruction products [14].

Camera parameters and sparse point clouds are simultaneously computed using a bundle
adjustment procedure based on image features automatically extracted from the set of acquired images.
The quality of the image orientation, however, does not depend only on the number of the extracted
points, which have a limited effect on the network precision, but rather from their correctness [15].
Wrong matched correspondences can negatively affect the bundle adjustment results and return noisy
MYVS-dense point clouds.

In multi-scale and multi-sensors acquisitions, which imply a combination of different network
configurations, issues in the orientation step and unsatisfactory reconstruction results are even more
evident [16]. Therefore, the improvement of the quality of image-based 3D processes is closely linked
to a more in-depth analysis and control of the bundle adjustment results.

Paper Aim and Novelty

The work presents a methodology to detect and remove outliers and wrong matches affecting the
image orientation results in automated image-based 3D processes. The proposed method allows to
obtain more accurate camera parameters and so more dense and accurate dense point clouds by MVS.
Quality metrics are firstly derived for the 3D tie points computed within the bundle adjustment step
(Section 3.2), then aggregated in order to filter the sparse point cloud (Section 3.3) and derive a new set
of tie points. The camera parameters are then re-computed with a new adjustment and the filtered tie
points before generating a dense 3D reconstruction.

The work extends the method presented in [16,17] and employs only photogrammetric parameters
for the quality analyses, adopting a robust statistical approach for thresholds identification in the
filtering step. Although, in fact, the previous approaches based on geometrical parameters returned
satisfactory results, the procedure was quite time-consuming and several issues arose working on
very sparse data. Therefore, the statistical distribution of the quality parameters is used for the
automatic identification of suitable thresholds for removing bad tie points, increasing the applicability
and replicability of the procedure. Moreover, a more reliable weighting procedure is introduced for
assigning a quality score to each 3D tie point, replacing the testing phase of several weight combinations
for each quality parameter [16].

2. State of the Art

In every 3D surveying project, planning an optimal image network configuration, suitable to
completely and accurately survey a scene, is the key step for achieving the expected reconstruction
results and needs. Nevertheless, in the common 3D surveying practice, no planning is performed,
and the quality of the final 3D results is amended by managing and controlling the image processing
parameters. The integration of terrestrial and UAV images (often called “data fusion”) for surveying
large and complex scenes further enhances this issue. Such images are usually characterized by big
perspective changes and different image scales besides frequent illumination variations, especially in
diachronic acquisitions. These particular conditions make the matching phase very complex, with a
variable number of correspondences detected among heterogeneous image blocks and recurring errors
in the identified homologous points.

In the following sections, we will report related works about data fusion (Section 2.1), image
network design (Section 2.2) and point cloud filtering (Section 2.3), all aspects related to the
presented paper.



Remote Sens. 2020, 12, 2873 3 of 26

2.1. Data Fusion

Sensor and data fusion refer to the process of integrating acquisition sensors, acquired
data—commonly at different geometric resolution—and knowledge of the same real-world scene.
The fusion is generally performed in order to create a consistent, accurate and useful digital
representation of the surveyed scene. The fusion processes are often categorized as low, intermediate
or high, depending on the processing stage at which fusion takes place [18-20]. Low-level data fusion
combines several sources of raw data to produce new raw data. The expectation is that fused data are
more informative and resolute than the original inputs. Medium level merges features coming from
different raw data inputs, whereas high-level fusion is related to statistic and fuzzy logic methods.
The fusion is normally performed to overcome some weaknesses of single techniques, e.g., lack of
texture, gaps due to occlusions, non-collaborative material/surfaces, etc. For fusing different data, it is
indispensable to have a set of common references in a similar reference system clearly identified at each
dataset. These common references can be either one-, two- or three-dimensional, and can be identified
either manually or automatically. Data fusion has been applied for many years in various fields,
such as cultural heritage documentation—especially when large or complex scenarios are considered
and surveyed [21-23], remote sensing [24-26], spatial data infrastructures [27], smart cities [28], etc.
What is so far missing is a smart way of integrating data and sensors; indeed, none of the published
methods so far fuse data based on quality metrics.

2.2. Image Network Configurations

The impressive technological advancements in terms of automated algorithms for image orientation
(SfM) have led users to two facts: (i) being able to generate nice textured 3D results with minimum
manual efforts and (ii) acquire many images, very often more than those strictly necessary, with an
unfavourable geometry and not in the appropriate positions. However, the effectiveness of automated
processing algorithms in identifying and matching correspondent features in overlapping images is
often not sufficient for guaranteeing the achievement of the required accuracy and completeness of
the 3D reconstruction. Image network design and its quality have been deeply investigated [29-34].
The relevance of suitable base-to-height ratios and camera parameters [15,29,35], advantages of
bigger intersecting rays, as well as higher image redundancy [36,37], have been analyzed to identify
the achievable accuracy with some standard and straightforward image network configurations.
The quantitative and rough estimation of the expected quality for a designed camera network has been
proposed in [29]:

72

0z = ¢ 1
where the precision oz in Z direction (camera-to-object) in the case of orthogonal acquisitions is
determined as a function of the distance Z to the object, the baseline B (i.e., distance among two
cameras), the camera focal length c and the precision of the image measurements o},¢, (which depends
on the accuracy of the feature extraction and matching). The role of the baseline is changed in the last
years as, contrary to theory, short baselines are required by automatic image matching procedures,
as big perspective changes can cause a decrease in the object precisions.

In the very common case of convergent images, the proposed Equation (1) can be generalized for
all object coordinates as:

o
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where k is the number of images for each camera position (generally 1) and g is a design factor, indicating

the quality of the imaging network and depending on the intersection angle between homologous

rays (with optimal network 0.5 < g < 1.2). The homogeneity of the precision values is reached when

intersection angles are near to 90°.
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The proposed formulas for estimating and analyzing the quality of the camera network are,
however, only applicable when a uniform and regular acquisition geometry is respected, a single sensor
is used for the image capture and the environment can be controlled. When data are multi-sensor and
multi-scale and scenes are quite complex, further investigations are needed, involving, e.g., metrics
produced by the bundle adjustment process [12].

In the last years, quality assessments for different block configurations design have been partially
explored for close-range terrestrial and UAV-based acquisitions [38]. Methodologies for checking
the quality of the obtained results, deformation analyses and some recommendations with typical
photogrammetric networks, especially employed in the cultural heritage field, have been presented
in [14,39]. Results of different imaging geometries for large-scale acquisitions are compared in the
close-range terrestrial scenario and when UAV and terrestrial images are processed. Reference [40]
proposed a broad quality assessment in different acquisition scenarios, comparing different network
configurations and processing conditions (e.g., weak image blocks, effects of self-calibrations,
the influence of Ground Control Points (GCPs) and their distribution, number of extracted tie
points and consequences of some image acquisition settings). In [41], the effects on the object points
precision with complex network configurations and significant image-scale variation are deepened,
analyzing the quality of the bundle adjustment results with irregularly distributed camera stations.

2.3. Point Cloud Filtering

Sensors limitations, weak acquisition geometries and issues in the processing steps can return
noisy and incomplete 3D reconstructions. Noise and outliers are random errors in the measured
data and points which behave differently from a set of normal data, respectively. These are common
phenomena in both range-based and image-based data, and they can be solved or mitigated through a
filtering step.

The solutions proposed in the last years can operate at different levels (i.e., sparse or dense point
clouds or meshes). However, most of them are focused on specific methods for denoising meshes.
Fewer methodologies have been instead implemented for point clouds, despite the obvious advantages
of working on a lower data level [19] in terms of reduced computational efforts and improvement of
the following reconstruction products. An extensive review of the developed algorithms for filtering
point clouds has been proposed by [42].

Depending on the specific nature of 3D point clouds, many approaches are based on statistical
methods [43]. These methods assume that data follow some statistical models for classifying points
as outliers, defining probability distribution functions [44] or assigning specific weights in statistical
denoising frameworks [45,46]. Global or local solutions proposed for outlier detection and removal are
mainly based on a balance between the cleaning demand and the preservation of the features or/and
shape. Most of the proposed filtering and smoothing methods analyze some local or global geometric
properties computed on the point clouds [17,47]. Projection-based filtering techniques use several
projection strategies on estimated local surfaces for identifying outliers. Many of these approaches are
based on regression methods, such as the Moving Least Square (MLS) [48].

Other, more specific procedures have been developed for denoising image-based point clouds and
improving the entire photogrammetric workflow. Following initial works based on efficient solutions
for the extraction of reliable and accurate tie points [49-51], more recent studies focus on tie points,
filtering for improving the orientation step. In the context of UAV-based datasets, [52] presented an
outlier detection method based on the statistical distribution of the reprojection error, proposing a
noise reduction procedure that considers the intersection angles among homologous rays. In [53,54]
new strategies to assign quality measures to the extracted tie points were proposed in order to refine
the camera parameters through a filtering step based on the acceptable reprojection error and the
homogenous distribution of tie points. These methods offer a deeper knowledge of quality issues
which could affect the following products, working at a lower level (i.e., on the first reconstruction
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results). In [55], input images and depth map information are used to remove pixels geometrically or
photometrically inconsistent with the input coloured surface.

Finally, a more recent group of filtering approaches is based on the application of deep learning
algorithms to 3D data [56].

3. Proposed Methodology

This section presents the pipeline implemented to improve the orientation and 3D reconstruction
results when terrestrial and UAV-based imageries are jointly processed. The procedure (Figure 1)
features an initial filtering step (Section 3.3) based on some quality parameters (Section 3.2) of the 3D tie
points computed within the bundle adjustment. After such filtering, the bundle is again repeated using
only high-quality tie points in order to compute more precise camera poses. The filtering pipeline,
developed in Python, is available at https://github.com/3DOM-FBK/Geometry.

Tie Points
Extraction
¥
l Bundle

Adjustment

izati — | Feature scaled
Sparse [ ] Normalization \ |
en— —>| @ Linear aggregation T— | Aggregated quality score |
@ Statistical Analyses+— [ Thresholds identification |

Dense 3D tie points exceeding
Reconstruction thresholds are removed
W e

Figure 1. The flowchart of the proposed pipeline. The standard photogrammetric workflow (left block)

is enriched with the filtering procedure developed in Python (right block).

3.1. Work Premise and Motivation: Challenging Image Network Configurations

Before developing the filtering methodology (Section 3.3), some tests were conducted to recap
the effects of different image networks (terrestrial with convergent images, terrestrial with almost
parallel views, UAV or combined) on the photogrammetric processing and on the achievable
accuracies (hereafter measured with the a-posteriori standard deviation o computed within the
bundle adjustment process).

Figures 2 and 3 show the considered image network and error distributions, respectively. The errors
are also more accurately summarized in Table 1.

Table 1. Considered image networks and variation of object coordinate precisions (in mm). In all
datasets, the z-axis points upward.

Network Numb. Nu.mb. (.)f Average 0x  Average oy  Average O,
of Images 3D Tie Points [mm] [mm] [mm]
la 15 ~104 K 4.36 2.04 0.78
1b 12 ~70 K 1.63 7.02 3.52
1c 16 ~149 K 17.65 32.43 40.89

1d 43 ~440 K 12.76 17.14 14.63
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(d)
Figure 2. Several image network configurations in the Modena Cathedral subset: terrestrial-convergent
(a), terrestrial-parallel (b), unmanned aerial vehicle (UAV) (c) and terrestrial and UAV combined (d).

(b)

(d)

Figure 3. Visualization of the a-posteriori standard deviation (o) precisions computed on the original
(not filtered) sparse point clouds: terrestrial-convergent (a), terrestrial-parallel (b), UAV (c) and
terrestrial and UAV combined (d). o values in (a,b) are visualized in the range [1-30 mm], for (c,d) in
the range [1-100 mm].

The first three cases are consistent with the expected results. Average o values are generally higher
in the camera depth directions. In the convergent geometry (network la), average o values are higher
in the x-y plane; with parallel views images (network 1b), precision is worse along the camera depth
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direction (y-axis); with UAV images (network 1c), the precision is worse in the y-z plane. Furthermore,
reconstructed 3D tie points show higher o values when the sensor-to-object distance increases.

From the joint processing of terrestrial and UAV images (network 1d), a more homogeneous
error distribution in the three directions can be noticed, as well a general worsening of most of the
statistical values. This highlights that the combination of different scale and sensor data, which returns
hybrid and complex imagery geometries, define challenging processing scenarios where outliers and
wrong computed matches frequently and heavily affect the quality of the image orientation and 3D
reconstruction. The effectiveness of the implemented filtering procedure is tested on these challenging
data, and results are presented and discussed in Section 4.

3.2. Quality Parameters of 3D Tie Points

The quality of the camera orientation process can be derived from external and internal consistency
checks [31]. While checking the results with external data provides a measure of possible block
deformations, internal statistics are reliable indicators of the quality of the features extraction and
matching steps, and, indirectly, of the image block strength.

In this work, some inner quality parameters of each 3D tie point [12,16,57] are computed with an
in-house tool and used to remove bad-quality tie points. The considered parameters express the quality
of the image network geometry, the correctness of the matching and adjustment step, as well as the
reliability and precision of the reconstructed 3D points. We consider the following quality parameters
of the sparse point cloud derived within the bundle adjustment procedure (Figure 4):

(@) Re-projection error (or image coordinates residuals): it represents, in image space, the Euclidean
distance between the measured point position and the back-projected position of the calculated
3D point. Even though low re-projection error values can suggest a high quality of the computed
3D point, this feature is not very significant when the point has been measured in few images.

(b) Multiplicity (or image redundancy): this value indicates the number of images contributing to the
3D point calculation, i.e., the number of images where the point has been measured. Therefore,
the multiplicity value refers to the excess of image observations with respect to the number of
unknown 3D object coordinates, estimated within the adjustment step. High multiplicity values
suggest greater reliability and precision of the computed 3D tie points, considering that multiple
intersecting rays contribute to the point position check.

(c) Maximum intersection angle: it refers to the maximum angle between intersecting rays contributing
to the creation of a 3D point. Small intersection angles can negatively affect the adjustment procedure
and reduce its reliability.

(d) A-posteriori standard deviation of object coordinates (0): from the covariance matrix of the least
squares bundle adjustment, the standard deviations of all unknown parameters can be extracted.
High standard deviation values can highlight 3D points with unsuitable object coordinates
precision and problematic areas within the image network.

3.3. Filtering Technique

Once each 3D tie point is enriched with its quality parameters (Section 3.2), an aggregated quality
score is computed as a linear aggregation of the different parameters (Section 3.3.2). The aggregated
quality score of each 3D tie point is used as an indicator of the quality of the reconstructed point
within the adjustment procedure. This quality measure is employed in the automatic filtering approach
to discard low-quality points (Section 3.3.3) before running a new bundle adjustment to refine the
orientation results.
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Figure 4. A graphical representation of the considered quality features computed for each 3D tie point:

(a) re-projection error; (b) multiplicity; (c) intersection angle; (d) a-posteriori standard deviation.
3.3.1. Single-Parameter Filtering: Tests and Issues

Many filtering methods employ a single quality parameter to discard bad points. To highlight
that quality features are correlated and should be concurrently considered, a dataset of 133 terrestrial
and 87 UAV images (Section 4.1.1) is processed in order to derive camera parameters and a sparse 3D
point cloud. Quality parameters (re-projection error, multiplicity, intersection angle and a-posteriori
standard deviation) are then individually used to filter bad 3D points, a new bundle adjustment is
performed, and new quality parameters are computed. Table 2 shows the variations of the single
quality parameters when only one is used to filter the sparse point cloud derived from the bundle
adjustment. The variations of the median values are not consistent, e.g.: filtering tie points considering
only their multiplicity leads to a higher multiplicity but a worse median re-projection error; filtering
using only the re-projection error decreases the median intersection angles, etc. Such results confirm
the limits of a single-feature filtering approach and the need of adopting a filtering method based on
combined and aggregated parameters.

Table 2. Improvements (+) and worsening (—) of median values of the considered quality feature when
only one feature is used to filter the 3D tie points.

Variations of Single Quality Parameters

Re-Proj. Error  Multiplicity Inters. Angle A-Post. Std. Dev.

Emploved Re-proj. Error +52% 0% —24% _479,
featurs for Multiplicity ~10% +50% +67% +2%
point filtering Int. Angle +2% +50% +67% +10%

A-Post. std. dev. —8% +33% +35% +11%
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3.3.2. Normalization and Linear Aggregation

A data normalization process is mandatory for assigning equal weight to each quality parameter.
Through several statistical approaches of normalization, differently measured and computed values
can be adjusted and scaled in the same range [0, 1] [58].

In the past research [16], a min—max features scaling method was tested, with a simple linear
transformation allowing independent variables to be rescaled in the same range based only on the
minimum and maximum value.

In the current work, we explore the advantages of adopting a logistic function for representing and
scaling the data, thus reducing the outliers’ effect. The employed logistic function is represented by a
sigmoid curve and an inflection point (sigmoid midpoint). Outliers are penalized by the characteristic
trend of this curve, which exponentially grows but slows down its growth moving close to the
boundaries. In the general formulation, the function is expressed as Equation (3):

L

f (X) - 14ek (x—x0)

®)

where:

e L isthe maximum value of the curve;

e ¢is the Euler’s number;

e  x0is the x value of the sigmoid’s midpoint;
e  kis the steepness of the curve.

The two main variable and adjustable parameters of this function are L and k (vertical and
horizontal scaling parameters), which define how the curve is stretched or compressed to better fit
the data. Following [59], we adopted a modified logistic function which proved to be efficient with
comparable normalization issues:

1
L(x—#fa)—m (4)

(o)

where x is the value to normalize, u the mean and o the standard deviation of the data.
The normalized quality parameters values are then linearly combined with the proposed
aggregation method Equation (5):

Av=w[ (Vi) + (1= Vi) + (1= Vang) + (V)] ®)

e Ay is the overall aggregated quality score computed with the normalized quality parameters for
each 3D tie point;

e V. is the normalized value of the re-projection error;

e V1 is the normalized value of the multiplicity;

® Vg is the normalized maximum angle of intersection;

e Vg is the normalized value of the a-posteriori standard deviation;

e wisaweight computed for each 3D tie point as in Equation (6):

o Mx
" Mmax

(6)

with Mx being the multiplicity value of the considered tie point and Mmax the maximum multiplicity
value of the entire set of data. The choice of weighting the aggregation function based on the respective
multiplicity value of each 3D tie point is useful to reinforce the quality score of points measured and
checked in a higher number of images (i.e., theoretically more reliable). Some tests on the variation of
the achieved filtering results, weighting the aggregated score or not, are presented in Section 3.3.4.
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3.3.3. Filtering Threshold Identification—The Statistical Approach

Once an aggregated quality score is assigned to each 3D tie point (Equation (5)), the identification
of suitable thresholds for keeping only good-quality 3D points proved to be a very challenging task.
Limits for filtering points, based on the respective aggregated score, are computed as the sum of single
feature thresholds. The choice of using optimal values for each feature threshold, as presented in [16],
hardly generalizes to every type of dataset and/or image block. Aiming at generalizing the filtering
methodology, i.e., at automatically identifying suitable thresholds for each dataset, the statistical
distribution of each quality feature is here considered. The analysis of values distribution for each
quality parameter is particularly helpful for outlier identification, as well as for highlighting wrongly
computed tie points, resulting from a weak image block geometry or issues in the matching and
adjustment steps.

From the theory of errors, the general assumption is that random errors in a set of data have a
normal distribution [31]. In the probability density function of a Gaussian distribution, the probability
that the random error of variables lies in certain limits is defined as a symmetrical factor of the
standard deviation. A common approach for the outlier removal is based on filtering data exceeding
the “30 rule”. Therefore, mean values, plus or minus three standard deviations, are employed as
thresholds for removing outliers, considering that 99.87% of data are distributed within this range [60].
Other authors have suggested less conservative approaches and a reduction of the considered standard
deviations around the mean [61,62].

Nevertheless, in laser scanning and photogrammetric data, a deviation from a normal trend is
frequently observed, especially due to outliers. The normality assessment can be supported by statistical
analyses and parameters, such as the Q-Q plot (quantile-quantile) or the Skewness and Kurtosis
values [62]. More robust approaches with respect to the 3o rule method must be employed with large
datasets heavily affected by outliers, or when Skewness and Kurtosis values prove a non-normal
behaviour of the distribution of the errors [63,64]. In these cases, sample quantiles of distribution
are usually used. The quantile of a distribution is the inverse of its cumulative distribution function.
The 50% quantile is the median of the distribution and it is a robust quality measure, less sensitive to
outliers, that performs better with skew distributions.

Another robust estimator is the cMAD, derived from the Median Absolute Deviation (MAD),
i.e., the median of the absolute deviations from the median of all data:

MAD = b Ml-(lxl- -M; (x])') @)

where b = 1.4826 is a general assumption of the normality of the data, disregarding non-normal
behaviour introduced by outliers. In this work, median and median plus cMAD values are considered
as possible thresholds for each quality parameter, as explained in the next section. Tests and results
adopting the median plus 36MAD features” values provide negligible effects on the sparse point
cloud filtering.

3.3.4. Thresholds Tests

The robust statistical approaches described in the Section 3.3.3 for the identification of parameter
thresholds were tested and the average improvement of quality features compared. In particular,
using a dataset of 133 terrestrial and 87 UAV images (Section 4.1.1), the following filtering thresholds
were considered:

(1) Median values for each quality parameter, not weighting the aggregation function;
(2) Median values for each quality parameter, weighting the aggregation function;

(3) Median plus cMAD, not weighting the aggregation function;

(4) Median plus cMAD, weighting the aggregation function.
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Table 3 reports the improvements of the computed quality parameters for the considered
threshold approaches.

Table 3. Average medianimprovement on quality parameters after applying different filtering thresholds.

Removed 3D Points  Re-Projection Error =~ Multiplicity Inters. Angle A-Post. St. Dev.

1 ~305 k (~75%) +16% +60% +64% +12%
2 ~289 k (~71%) +16% +50% +61% +15%
3 ~190 k (~47%) +30% +33% +41% +19%
4 ~167 k (41%) +32% +33% +34% +16%

A more aggressive filtering approach (i.e., case 1 and 2) produced a considerable improvement of
the quality parameters. A less aggressive filtering (case 3 and 4) delivers more homogeneous results
and removes less 3D points. The encouraging effects of a less conservative method (such as case 2),
also confirmed by the other datasets and tests, supported the choice of selecting the median values as
feature-threshold. A quite aggressive filtering (such as case 1) involved removing too many tie points,
and images could not be oriented.

4. Test and Results

4.1. Experiments and Results

In the following sections, different case studies are presented to demonstrate the effectiveness and
replicability of the developed methodology. The implemented and tested filtering procedure follows
the subsequent steps (Figure 1):

(a) Perform thejoint processing of UAV and terrestrial images in order to compute camera parameters,
sparse and dense point clouds;

(b) Compute quality parameters for each 3D tie point of the sparse point cloud (Section 3.2);

(c) Normalize the computed quality values and their aggregation (Section 3.3.2), for assigning a
quality score to each computed 3D tie point;

(d) Analyze the statistical distribution of the computed quality parameters and identify suitable
thresholds for each dataset (Sections 3.3.3 and 3.3.4);

(e) Filter those 3D tie points with an aggregated score higher than the selected threshold and generate
a new set of filtered tie points;

(f) Runanew bundle adjustment, refine the camera parameters and generate a new sparse point cloud;

(g) Re-compute quality parameters on the filtered and refined cloud for evaluating the improvement
of the inner quality parameters with respect to step (b);

(h) Compute a new dense point cloud;

(i) Employ external checks (e.g., 3D ground truth data) and noise estimation procedures to evaluate
improvements of the newly generated dense point cloud with respect to the dense point cloud
obtained from step (a).

4.1.1. Modena Cathedral

The dataset of the Modena Cathedral (Italy) is composed of 219 images (Figure 5), with 133
terrestrial images and 87 acquired with a UAV platform. The terrestrial images (average GSD: 2 mm)
were acquired with a Nikon D750 (pixel size of 5.98 pm) with an 18 mm (73 images) and 28 mm
lens (59 image). The UAV images (average GSD: 8.3 mm) were acquired with a Canon EOS 600D
(focal length of 28 mm, pixel size of 4.4 um).
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(a) (b) (c)

Figure 5. Some examples of the Modena Cathedral dataset: (a) and (b) terrestrial images; (c) UAV-based
image.

From the joint orientation of the terrestrial and UAV images, about 405,000 3D tie points were
derived in the sparse point cloud. Using the in-house Python tool, the initial quality parameters were
extracted for each 3D tie point (Table 4).

Table 4. Median, mean and standard deviation values for the quality features computed on the original
(not filtered) sparse point cloud (~405,000 3D tie points).

Re-Projection Error Intersection Angle  A-Post. Std. Dev.

(p) Multiplicity (deg) (mm)

MEDIAN 0.963 2 12.017 5.222
MEAN 1.454 3.344 16.806 54.519
STD. DEV. 1.446 2.762 16.742 244976

Aggregated median values were selected as a threshold in the filtering step (Section 3.3.4).
About 280,000 3D tie points, with an aggregated score higher than the selected threshold, were automatically
removed. The filtered set of tie points was then used for running a new bundle adjustment and refining
the orientation results. Table 5 reports values and average improvements with respect to the original
sparse point cloud of the recomputed quality parameters. The normality assessment of the a-posteriori
standard deviation values before and after filtering, as well as related Kurtosis and Skewness parameters,
are shown in Figure 6.

50
s ) Kurtosis: -1.131
Kurt
urtosis: 13.95 + | Skewness: 0.223
a- Skewness: 3.284

(a) (b)

Figure 6. An example of quantile-quantile (Q-Q) plots for the unfiltered (a) and filtered (b) a-posteriori
standard deviation values (mm) and related Skewness and Kurtosis values for the Modena Cathedral
dataset. The quantiles of input sample (vertical axis) are plotted against the standard normal quantiles
(horizontal axis). In the filtered case (b), values approximate better to the straight line, assuming a
more relevant normal behaviour.
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Table 5. Median, mean and standard deviation values for the quality features values computed on the
filtered sparse point cloud (ca 280,000 3D tie points).

Re-Proj. Error (px)  Multiplicity  Inter. Angle (deg) A-Post. Std. Dev. (mm)

MEDIAN 0.827 (~14%) 4 (+50%) 31.048 (+61%) 4532 (~15%)
MEAN 1.008 (—44%) 5.274 (+37%) 33.915 (+50%) 6.879 (>>—100%)
STD. DEV. 0.707 (~51%) 3.564 (+22%) 16.171 (~3%) 7.395 (>>-100%)

For the external quality check, a laser scanner point cloud (spatial resolution of 1 mm) was
acquired with a Leica HDS7000. A seven parameters Helmert transformation was performed in order
to co-register the photogrammetric and ranging point clouds. Then, the photogrammetric dense clouds
obtained from the original processing and the one produced after the filtering step were compared with
the reference laser scanning data. Using some selected areas (Figure 7), RMSEs (Root Mean Square
Errors) of plane fitting procedures (Table 6) and cloud-to-cloud analyses (Table 7) were performed.
In both cases, the quality improvements of the dense point cloud derived after the filtering procedure
was remarkable.

Figure 7. Selected areas for the plane fitting evaluation (a—Table 6) and for the cloud-to-cloud distance
analysis (b—Table 7).

Table 6. RMSEs (Root Mean Square Errors) of plane fitting on five sub-areas for the dense point clouds
derived from the original and filtered results.

Sub-Area  Original (mm) Filtered (mm)  Variation

AREA 1 3.022 2.027 (—=33%)
AREA 2 5.198 2.370 (—54%)
AREA 3 2.721 2.137 (—21%)
AREA 4 52.805 7.878 (—85%)
AREA 5 3.774 3.229 (—14%)

Average Variation (~—41%)
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Table 7. Cloud-to-cloud distance analyses between the laser scanning and the photogrammetric point
clouds derived from the original and filtered results.

Sub-Area Original (mm) Filtered (mm) Variation
Mean Std. Devw. Mean Std. Dev.
AREA 1 9.767 17.762 6.443 19.089 (—40%)
AREA 2 13.327 31.877 10.452 33.685 (—23%)
AREA 3 29.906 51.526 25.044 41.812 (-17%)
AREA 4 37.972 81.564 32.390 73.520 (—16%)
AREA 5 41.344 60.513 37.883 58.847 (=7%)
Average Variation (~—21%)

Finally, a visual evaluation of the quality improvement is shown in Figure 8, where noise reduction
and a more detailed reconstruction of the marble surfaces are visible.

Figure 8. Qualitative (visual) evaluation and comparisons of the dense point clouds derived from the
standard photogrammetric workflow (a,c) and after the proposed filtering method (b,d). Less noisy
data and more details are clearly visible in (b,d).

4.1.2. Nettuno Temple

The “Nettuno Temple” in the Archaeological Site of Paestum (Italy) [65] was surveyed, combining
some 214 UAV images and 680 terrestrial images (Figure 9). For the UAV-based images a Canon EOS
550 D (pixel size 4.4 um) with a 25 mm lens was employed (average GSD: 3 mm), while the terrestrial
images were acquired with a Nikon D3X (pixel size 5.9 um) and a 14 mm lens average terrestrial GSD
2 cm).
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R "2

(a) (b) (©)
Figure 9. Some examples of the Nettuno temple dataset: terrestrial (a) and (b) and UAV (c) images.
The joint processing of UAV and terrestrial images produced a sparse point cloud with some

640,000 3D tie points. Results of the quality parameters extracted from the derived sparse point cloud
are presented in Table 8.

Table 8. Median, mean and standard deviation values for quality feature values computed on the
original (not filtered) sparse point cloud (~640,000 3D tie points).

Re-Projection Error (px)  Multiplicity  Intersection Angle (deg)  A-Post. Std. Dev. (mm)

MEDIAN 1.008 3 11.710 6.95
MEAN 1.239 4.019 18.597 108.935
STD. DEV. 0.881 3.529 19.712 2931.512

Once a suitable threshold was identified (Section 3.3.4), the automatic filtering procedure returned
anew set of 3D tie points of about 187,000 (~71% of the original sparse cloud were removed). Results and
improvement of the inner quality parameters for the Nettuno temple dataset after running a new
bundle adjustment are shown in Table 9.

Table 9. Values of quality parameters computed on the filtered sparse point cloud (~187,000 3D tie
points) and average variations of the metrics.

Re-Projection Error (px)  Multiplicity  Intersection Angle (deg)  A-Post. Std. Dev. (mm)

MEDIAN 0.773 (=23%) 5 (+40%) 34.538 (+66%) 4.565 (—34%)
MEAN 0.899 (~27%) 6.570 (+39%) 38.413 (+52%) 7.371 (>—100%)
STD. DEV. 0.532 (—40%) 4.094 (+14%) 20.324 (+3%) 34.378 (>>—100%)

In order to further evaluate the improvements of the filtering procedure with respect to external
information, RMSEs on 30 total station check points (Table 10) and cloud-to-cloud analyses on five
sub-areas (Figure 10 and Table 11) surveyed with laser scanning (spatial resolution 5 mm) were
performed. For this case study, the improvement brought by the proposed filtering procedure was
very evident.

Table 10. Check-point RMSEs in the original and filtered sparse point cloud and variation of the

obtained values.

RMSExy (px) RMSEx (mm) RMSEy (mm) RMSEy (mm) RMSE (mm)

Original 0.351 10.728 15.905 18.886 26.028
Filtered 0.319 8.235 5.326 11.102 16.332
Variation ~=10% ~=30% >-100% ~=70% ~=59%
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Figure 10. Selected five areas for cloud-to-cloud distance analyses between the laser scanning ground
truth and the two photogrammetric clouds.

Table 11. Cloud-to-cloud distance analyses on the original and filtered dense cloud and average
variation of the mean values.

Sub-Area Original (mm) Filtered (mm) Mean Variation
Mean St. Deviation Mean St. Deviation

AREA 1 59.394 92.244 52.529 86.107 (~—10%)

AREA 2 59.358 90.843 26.768 32.289 (~—54%)

AREA 3 49.3587 78.654 20.007 37.883 (~—59%)

AREA 4 60.956 98.024 36.479 76.630 (~—41%)

AREA5 63.581 106.752 27.064 43.042 (~—58%)
Average Variation (~—44%)

Finally, some visual comparisons of the dense point clouds produced with a standard procedure
(“original”) and the proposed filtering procedure (“filtered”) are provided in Figure 11.

(b) (c)

Figure 11. Cont.
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(d)

Figure 11. Qualitative evaluation and comparisons of the dense point clouds derived from the standard
photogrammetric workflow (a—c)) and after the proposed filtering method (d—f).

4.1.3. The World War I (WWI) Fortification of Mattarello (Trento, Italy)

One side of the WWI Fortification of Mattarello (Trento, Italy) was surveyed, integrating
68 terrestrial and 14 UAV images (Figure 12). Terrestrial images (average GSD: 2 mm) were acquired
with a Nikon D750 (pixel size of 5.98 um) with a 50 mm lens, while the UAV images (average terrestrial
GSD: 1.3 cm) were acquired with a FC6310 camera (focal length of 8.8 mm, pixel size of 2.6 um).

(b) (c)

Figure 12. Some images of the WWI Fortification dataset: terrestrial (a,b) and UAV images (c).

From the joint processing of UAV and terrestrial images, some 1.2 mil. 3D tie points were
computed and their quality parameters extracted, as shown in Table 12.

Table 12. Median, mean and standard deviation values for the quality features values computed on the
original (not filtered) sparse point cloud (~1.2 mil. 3D tie points).

Re-Projection Error (px) Multiplicity Intersection Angle (degree)  A-Post. Std. Dev. (mm)

MEDIAN 13.745 3 11.585 5.89
MEAN 14.181 3.237 17.361 285.38
ST. DEV. 11.229 1.712 17.506 409.94

Adopting the proposed filtering procedure, some 717,000 tie points were removed (~61%).
Results of the inner quality parameters variation are shown in the Table 13.
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Table 13. Values of the quality parameters computed on the filtered sparse point cloud and average
variation of the results.

Re-Projection Error (px) Multiplicity Intersection Angle (degree)  A-Post. St. Dev. (mm)

MEDIAN 3.822 (~72%) 4 (+25%) 26.913 (+57%) 4.956 (~—19%)
MEAN 5.008 (—65%) 4.324 (+25%) 29.991 (+42%) 15.6908 (>—100%)
ST. DEV. 3.665 (—67%) 1.765 (+3%) 15.326 (=12%) 274.57 (~—49%)

For the external check, a laser scanner point cloud acquired with a Leica HDS7000 was employed
(spatial resolution of 1 mm). Results of the cloud-to-cloud distance procedure on five sub-areas
(Figure 13) are presented in Table 14. Qualitative and visual analyses and improvements are shown in
Figure 14.

Figure 13. Selected five areas for cloud-to-cloud distance analyses and comparisons.

Table 14. Cloud-to-cloud distance analysis on the original and filtered dense cloud and average

variation of the mean values.

Sub-Area Original Dense Cloud (mm) Filtered Dense Cloud (mm)  Mean Variation

Mean St. Dev. Mean St. Dev.
AREA 1 63.694 35.645 20.548 17.854 (~—67%)
AREA 2 49.796 22.006 18.229 18.801 (~—64%)
AREA 3 100.720 52.869 52.584 46.421 (~—48%)
AREA 4 123.237 24.683 61.367 17.192 (~—50%)
AREA 5 52.432 33.733 40.717 18.122 (~—21%)

Average Variation (~—50%)
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(d) (e) )

Figure 14. Qualitative evaluation and comparisons of the dense point clouds derived from the standard
photogrammetric workflow (a—c) and after the proposed filtering method (d-f) images. Less noisy data
and more details are clearly visible in the results obtained with the proposed method.

4.1.4. The ISPRS/EuroSDR Dortmund Benchmark

The central part of the Dortmund benchmark [66] was considered. It contains the City Hall
(Figure 15) seen in 163 terrestrial images (average GSD: 3 mm) acquired with a NEX-7 camera (16 mm
lens, 4 um pixel size) and in 102 UAV images (average GSD: 2 cm) captured with a Canon EOS 600D
(20 mm lens, 4.4 pm pixel size).

Statistics computed on the extracted quality parameters of the original sparse point cloud
(~315,000 tie points) are shown in Table 15, while results on the filtered tie points set (~70,000 points)
are given in Table 16.
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Figure 15. Some examples of the terrestrial and UAV-based subset of the Dortmund benchmark:
(a) terrestrial image; (b) UAV-based image.

Table 15. Median, mean and standard deviation values for the quality parameter values computed on
the original (not filtered) sparse point cloud (~315,000 3D tie points).

Re-Projection Error (px)  Multiplicity Intersection Angle (degree)  A-Post. St. Dev. (mm)

MEDIAN 0.859 2 9.829 11.858
MEAN 1.035 3.409 14.989 41.612
ST. DEV. 0.775 2.458 14.833 239.027

Table 16. Values of the quality parameters computed on the filtered sparse point cloud and average
variation of the results.

Re-Projection Error (px)  Multiplicity = Intersection Angle (degree)  A-Post. St. Dev. (mm)

MEDIAN 0.656 (—24%) 3 (+33%) 11.201 (+12%) 6.938 (=71%)
MEAN 0.697 (=33%) 3.478 (+2%) 16.048 (+7%) 21.270 (~96%)
ST. DEV. 0.347 (=55%) 2.406 (—2%) 14.756 (—1%) 159.97 (—49%)

As an external check, a laser scanner point data of the City Hall (2 mm resolution step) was
assumed as ground truth. Results of the cloud-to-cloud distance on five sub-areas (Figure 16) are
shown in Table 17.

Table 17. Results of the cloud-to-cloud distance analyses on the original and filtered dense clouds and
average variation of the mean values.

Sub-Area Original Dense Cloud (mm) Filtered Dense Cloud (mm)  Mean Variation

Mean Std. Dev. Mean Std. Dev.
AREA 1 13.736 28.066 9.606 27.952 (~—36%)
AREA 2 19.090 41.204 9.703 33.258 (~—53%)
AREA 3 10.663 7.520 7.589 5.819 (~—36%)
AREA 4 9.391 5.100 2.698 4.255 (~—67%)
AREA 5 5.284 39.184 3.152 35.025 (~—50%)

Average Variation (~—48%)
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Figure 16. Selected five areas for cloud-to-cloud distance analyses between the laser scanning ground
truth and the two photogrammetric clouds.

As a further check, RMSEs on 15 checkpoints measured with a total station and the average
improvement applying our method were evaluated (Table 18). Moreover, some qualitative comparisons
(Figure 17) between the two final dense reconstructions are proposed.

(0) (d)

Figure 17. Qualitative evaluation and comparisons of the dense point clouds derived from the standard

photogrammetric workflow (a,c) and after the proposed filtering method (b,d).
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Table 18. Checkpoint RMSEs in the original and filtered sparse point cloud and variation of the
obtained values.

RMSExy (px)  RMSEx (mm) RMSEy (mm) RMSEy(mm) RMSE

Original 0.420 8.92 8.82 9.51 15.74
Filtered 0.338 6.17 4.60 8.12 11.18
Variation ~—=20% ~—31% ~—48% ~—=15% ~=30%

5. Discussion

The presented work extends two previous studies [16,17], proposing a new approach for achieving
even better improvements in the 3D reconstruction results with a more flexible and time-preserving
procedure. Limitations and weaknesses of the precedent methods pushed authors to develop the
current work, based only on photogrammetric quality parameters and a robust statistical approach
for the filtering step. Statistically defined thresholds instead of strict and idealized values, as in [16],
avoid the risk of an excessive filtering of tie points, increasing the feasibility of the procedure.
The proposed weighted aggregation function (Section 3.3.2), based on the tie point multiplicity,
allows for overcoming the time-consuming testing of several weight combinations for each quality
parameter. Compared with the geometrical method presented in [16], the current filtering procedure
is based only on photogrammetric parameters and proved to be more efficient. In the geometrical
approaches, the suitable identification of optimal radii for the feature extraction strongly conditions
the filtering results, and it proved to be a very challenging task working on sparse data. With respect
to similar filtering approaches based on the quality analyses of computed 3D tie points [52,53],
our method considers various and combined photogrammetric parameters for defining the quality
of the reconstructed 3D points. The novelty and importance of their aggregation, as presented in
Section 3.3.1, is related to the insufficient improvements of the single-features filtering approach.

Quantitative and qualitative results and analyses of the developed method have been extensively
reported with four case studies. For verifying the robustness and effectiveness of the procedure,
the presented datasets differ for the number of processed images, employed sensors and camera
network geometries. A summary of the main results and average improvements of the reconstructions
adopting the proposed filtering workflow is presented in Table 19.

Table 19. Summary of average 3D reconstruction improvements in the considered four datasets verified
with the available ground truth data.

Dataset Plane Fitting  Cloud to Cloud Distance = Check Points RMSE
Modena Cathedral (~41%) (~21%) -
Nettuno temple - (~44%) (~59%)
WWI Fortification - (~50%) -
Dortmund Benchmark - (~48%) (~30%)

Although results clearly show the relevant benefits of adopting the presented method for refining
the image orientation, some issues and limitations of the procedure have to be highlighted:

(a) thefiltering method does not fully consider the tie point distribution in image space. Too aggressive
filtering could prevent the orientation of some images during the orientation refinement. This issue
is partially solved by adopting more relaxed thresholds, as presented in Section 3.3.4, and weighting
the aggregation function.

(b) the presented method has not been yet verified in the case of multi-temporal datasets.

(c) the computation of the quality features and the filtering procedure are performed with an
in-house developed tool (https://github.com/3DOM-FBK/Geometry) which has been so far
tested only in combination with the exported outputs from the commercial software Agisoft
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Metashape [67]. Some issues about file format compatibility could arise while testing our filtering
tool in combination with other open or commercial software.

6. Conclusions and Future Works

This paper presented an enriched photogrammetric workflow for improving 3D reconstruction
results when terrestrial and UAV images are jointly processed. In the last years, the unquestionable
advantages of integrating these different sensor imageries have encouraged their use in several
fields, from building to urban scales. Nevertheless, various sensor characteristics and environmental
constraints, as well as irregular and unconventional camera network configurations, commonly affect
the quality of the image orientation and 3D reconstruction results. This work deals with these processing
issues, proposing an extended photogrammetric workflow where a filtering step is performed on
the initial image orientation results. In the developed procedure, the initial sparse point cloud is
filtered, a new bundle adjustment is performed to refine the camera parameters and, finally, a dense 3D
reconstruction is generated. The filtering step is based on the evaluation of quality parameters for each
3D tie point computed within the bundle adjustment. The aggregation of these quality metrics allows
removing low-quality tie points before refining the orientation results in a new adjustment. Thresholds
for removing low-quality points are based on the statistical distribution of the considered quality
parameters. The proposed robust statistical approach extends the feasibility of a previous method [16]
to different quality datasets, and it is time-efficient if compared with other geometrical approaches [17].

The effectiveness of the developed procedure was tested on several datasets, all featuring terrestrial
and UAV images and different scenarios. Relevant result improvements were proved using internal
and external quality checks. The visual and qualitative comparisons of the dense reconstructions,
generated with the standard and enriched workflow, show the relevance of the procedure.

Further tests will investigate the effectiveness and robustness of the proposed method with
multi-temporal datasets, where complex network geometries and scene changes usually return
unsatisfying 3D reconstruction results. In addition to that, the filtering procedure will be extended to
consider also the tie point distribution in the image space. This could help to preserve a homogeneous
distribution of the tie points in the image and prevent aggressive filtering.
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