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Abstract: Sentinel-2 provides the opportunity to map the snow cover at unprecedented spatial and
temporal resolutions on a global scale. Here we calibrate and evaluate a simple empirical function
to estimate the fractional snow cover (FSC) in open terrains using the normalized difference snow
index (NDSI) from 20 m resolution Sentinel-2 images. The NDSI is computed from flat surface
reflectance after masking cloud and snow-free areas. The NDSI–FSC function is calibrated using
Pléiades very high-resolution images and evaluated using independent datasets including SPOT 6/7
satellite images, time lapse camera photographs, terrestrial lidar scans and crowd-sourced in situ
measurements. The calibration results show that the FSC can be represented with a sigmoid-shaped
function 0.5 × tanh(a ×NDSI + b) + 0.5, where a = 2.65 and b = −1.42, yielding a root mean square
error (RMSE) of 25%. Similar RMSE are obtained with different evaluation datasets with a high
topographic variability. With this function, we estimate that the confidence interval on the FSC
retrievals is 38% at the 95% confidence level.

Keywords: snow; snow cover area; fractional snow cover; Sentinel-2

1. Introduction

The Global Observing System for Climate listed snow cover as one of the 50 essential climate
variables to be monitored by satellite remote sensing to support the work of the United Nations
Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change [1].
Among the many variables that can be used to characterize the snow cover, the snow cover area is
probably the most straightforward to retrieve from space [2,3]. Yet, it is one of the most important as it
serves as an input to address research questions in various fields including climate science, hydrology
and ecology. The snow cover area is also important to support other societal benefit areas, such as
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water resource management, transportation and winter recreation. A user requirements survey by the
Cryoland consortium showed that snow cover area products were ranked as the most important among
a list of operationally available remotely sensed snow products by the respondents [4]. The respondents
also emphasized the need for (i) short latency times in the product availability (shorter than 12 h);
(ii) large spatial scale to cover entire mountain ranges like the Alps or even the whole of Europe;
(iii) high spatial resolution down to 50 m resolution especially for road conditions and avalanche
monitoring [4].

While the operational monitoring of the snow cover area at global scale has been achieved since
the 2000s, using wide swath optical sensors, such as MODIS [2], the low spatial resolution of the
products (typically 500 m) usually does not enable to address operational applications such as the
above. Many scientific applications would also benefit from higher resolution information on the snow
cover area. For instance, high resolution maps of the snow cover area were critical to explain the spatial
diversity of plant communities in an alpine grassland [5,6]. High-resolution snow cover area is also
useful in hydrology to reduce biases in the spatial distribution of the snow water equivalent through
data assimilation [7], in particular in semi-arid mountain regions [8,9].

The Sentinel-2 mission, which images the land surface at high resolution with a 5-day revisit time
and a global coverage offers the unique opportunity to bridge this gap [10,11]. As part of the Copernicus
program, the Sentinel-2 mission is planned to run continuously for at least two decades. Based on the
above, the Theia land data center in France has supported the deployment of an operational service to
generate and distribute at no cost snow cover maps derived from Sentinel-2 (20 m resolution) and
Landsat-8 (30 m resolution) [12]. However, this product only provides a binary description of the
snow cover area in the pixel (snow or no-snow, hereafter referred to as SCA). The SCA mapping may
be insufficient to characterize the snow distribution in areas where partially snow-covered (mixed)
pixels are prevalent [13–15]. Using 0.5 m resolution satellite imagery, Selkowitz et al. [14] quantified
the frequency of occurrence of mixed pixels over five dates at two study areas in the western U.S. Their
results show that, in the study area with maritime climate, the fraction of mixed pixels at the typical
Sentinel-2 resolution (20 m) is below 40%, whereas it can reach 80% in a more continental mountain
area. Binarizing pixels in snow or no-snow in areas where mixed pixels are prevalent can introduce an
error in the spatial integration of snow cover area—e.g., when the snow cover area is computed over a
watershed [14].

The Fractional Snow Cover (FSC)—i.e., the snow-covered fraction of the pixel area, naturally
provides finer information than the binary SCA. However, it does not necessarily mean that it provides
more accurate information. The estimation of the FSC from multi-spectral images is challenging due to
the confounding effects of the snow, rocks and vegetation surfaces on the spectral signature of pixel
reflectance [16]. Therefore, it is important to evaluate the accuracy of the retrieved FSC by comparing
with independent observations to make sure that the gain in precision is worth the additional cost of
computing and storage.

The spectral signature of a pixel can be modelled as a linear combination of the spectra of the
pure surface materials, or endmembers thought to be present in it [17–19]. However, the spectral
unmixing approach is challenging to use in an operational context: (i) it amounts to an ill-posed
problem which requires a computationally intensive inversion step to estimate the relative abundance
of each endmember; (ii) it requires prior knowledge of a collection of endmembers that covers the range
of natural surfaces to be observed (geology, vegetation). Such requirements are hardly compatible
with those of the users (timeliness, high resolution, large spatial scale).

Another option is to use the Normalized Difference Snow Index (NDSI) [20] as a means to retrieve
the FSC through empirical regression. Previous studies involving lower-resolution sensors, such as
MODIS and SPOT VEGETATION, have shown positive results using a linear function or a generalized
logistic function to estimate the FSC from the NDSI [21,22]. A linear function was used by NASA in an
operational context to generate the FSC from a collection of five MODIS surface reflectance products
(MOD10A1.005 and MYD10A1.005) [23]. The current operational MODIS snow product does not
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provide for the FSC anymore but still provides the NDSI as a means to retrieve the FSC using custom
equations [24]. A recent comparison of spectral unmixing and NDSI regression methods to estimate
FSC with Sentinel-2 data showed that even an uncalibrated linear regression can yield nearly similar
performance to the spectral unmixing [15]. This result was obtained despite the fact that endmembers
for the spectral unmixing algorithm were chosen to match the characteristics of the study area (a high
Arctic site). Apart from this study, to our best knowledge, there is no previous evaluation of the
NDSI–FSC relationship from Sentinel-2 data.

Here, we aim at evaluating the NDSI regression method to generate FSC in the perspective of an
operational service. Given the empirical nature of this approach and the lack of prior knowledge on
this relationship, we endeavor to use a large amount of data covering a range of environments and
seasons. We wish to evaluate if the error is stable across different sites and seasons.

We built this work upon our previous efforts that led to the implementation of the Theia snow
collection. Theia snow products are currently generated by the LIS software version 1.5 [12]. The LIS
algorithm already relies on the NDSI to determine the snow-covered pixels (hereinafter referred to as
the LIS–SCA algorithm). The NDSI is computed from level-2A products—i.e., slope corrected surface
reflectance images including a cloud and cloud shadow mask. The current configuration uses level-2A
products generated by MAJA software. MAJA is an operational level-2A processor, which implements
a multitemporal algorithm to estimate the aerosol optical thickness and make an accurate classification
of cloud pixels [25,26]. The MAJA–LIS workflow was evaluated using in situ and remote sensing
data [12]. The results showed that the snow cover area was accurately detected [12], and that the snow
detection was more accurate than the Sen2Cor outputs [27].

We proceed as follows. First, we calibrate the function f which associates an FSC value to an NDSI
value:

FSC = f (NDSI) (1)

where f is a continuous, monotonically increasing function. The calibration is done using a set of very
high-resolution satellite images, which provide accurate reference snow maps. Then, we evaluate this
function in independent sites where we have reference data from various sources. Section 2 presents
the data and methods used to perform such calibration and evaluation. In Section 3 we describe the
results, and then discuss them in Section 4.

2. Data and Methods

2.1. Calibration

We used five clear-sky Pléiades tri-stereoscopic images to calibrate the NDSI–FSC function.
This was done by generating accurate maps of the snow cover area at 2 m resolution from the Pléiades
data, which were then resampled to obtain reference maps of the FSC at the same resolution of the
NDSI (20 m) (Figure 1).

All selected Pléiades images were acquired over the same pilot site of 140 km2 in the French
Pyrenees after 2016 (Bassiès catchment, [28]). The elevation of the study area ranges between
730 and 2676 m a.s.l., with a contrasting topography and geology (Figure 2). In low-elevation
regions, the vegetation is mainly formed by coniferous and deciduous trees; at middle elevations,
between 1400 and 2000 m a.s.l., the surface is covered by grassland, rangeland and subalpine meadow;
above 2000 m a.s.l., vegetation is scarce and the surface is made of bare crystalline rock (granite and
granodiorite) or fluvio-glacial deposits, except in the north of the domain where metamorphosed
limestone is found [29]. The images were acquired between February and May between 2016 and 2019
(Table 1), providing information on different snow cover conditions, ranging from rather continuous
snow cover in February to more spatially heterogeneous snow cover in May.
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Figure 2. Top: topographic map of the Bassies area (42◦45′N, 1◦25′E in the Pyrenees, France). The black
polygon indicates the outline of the Pléiades acquisition (source: IGN/SCAN25, www.geoportail.gouv.fr).
Bottom: photographs taken from Col de la Serrette near the geographic center of the study area
(26 October 2014, 11 March 2015).
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Table 1. Dates of the Pléiades and Sentinel-2 dataset pairs to calibrate and validate the NDSI–FSC
relationship (dates are given in format year-month-day).

Pléiades 2016-04-11 2017-03-15 2018-02-15 2018-05-11 2019-03-26
Sentinel-2 2016-04-11 2017-03-14 2018-02-15 2018-05-11 2019-03-27

A single Pléiades bundle product consists of a 0.5 m resolution panchromatic image and a 2 m
resolution multispectral image with four spectral bands (blue, green, red and near-infrared). First,
a 2 m resolution digital elevation model (DEM) was produced from each bundle product using the
panchromatic tri-stereo images [30]. Then, the nadir multispectral image of each triplet was projected
onto the corresponding DEM to generate an orthorectified multispectral image at 2 m resolution
in the UTM reference system. All Pléiades DEMs were aligned to the same reference DEM, which
is known to have a horizontal offset of 3.0 m from the north and −0.8 m from the east (standard
deviation 0.4 m) from control points obtained from an aerial orthophoto (see Table 2 in [28]). Hence this
horizontal translation was applied to all Pléiades images before comparing them with Sentinel-2 to
avoid introducing errors due to inaccurate geolocations of Pléiades data.

The resulting Pléiades multispectral orthoimages were used to generate the SCA maps of the five
acquisitions with a pixel-based supervised classification. For each date, the few cloud pixels were
manually delineated to restrict classification to cloud-free areas. The same procedure was applied to
water bodies. Then we manually delineated about 15 homogeneous polygons of snow and no-snow
surfaces (ground and vegetation) based on a color composite of the multispectral image which enhances
the contrasts between rocks, water, vegetation and snow (NIR/red/green bands). These polygons were
used to extract samples to train a random forest classifier with the Orfeo Toolbox [31]. The resulting 2 m
SCA maps (Figure 3, middle panel) were then down-sampled to obtain 20 m FSC maps by computing
the weighted average of all contributing pixels. If there was at least one no-data pixel among the
contributing pixels then the FSC value was set to no data (Figure 3).
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To evaluate the performance of the SCA classification in Pléiades images, we constructed an
independent validation dataset. First, a mask of the non-forest area was extracted from the 2015
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Copernicus Tree Cover Density (TCD) product at 20 m resolution (i.e., areas where TCD = 0). This mask
was eroded using a disk of radius of 3 pixels to remove unidentified mixed pixels near the edges of the
forest area. Then, 30 random points were created within this non-forest mask. A different person from
the one who created the samples to train the classifier assigned the value “snow” or “no-snow” to each
point for each date based on the visual inspection of the color composite of the multispectral image.
This formed a set of 150 validation points that were used to compute performance metrics derived
from the confusion matrix (accuracy, false-positive rate, false-negative rate, F1 score, kappa coefficient;
see Section 2.2.4).

We used the 20 m Pléiades-derived FSC maps to calibrate the Sentinel-2 NDSI–FSC function.
For each Pléiades map, we selected the Sentinel-2 image that was the closest in time (Table 1).
The snow-covered pixels were determined with the LIS–SCA algorithm. The NDSI of these snow pixels
was computed from the L2A product (flat surface reflectance). All images were mostly cloud-free
(<5% cloud cover) over the study area, but the few visible cloud pixels were masked. All pixels with a
positive TCD were excluded.

The Sentinel-2-derived NDSI and Pléiades-derived FSC datasets were paired on a pixel basis
forming a list of approximately 6.4 × 105 pairs which were randomly split in two subsets to perform
the calibration and validation: 60% as a training dataset (for calibration) and 40% as a testing reference
dataset (for validation). A nonlinear function with a sigmoid shape was chosen to represent the
NDSI–FSC relationship because preliminary tests using an affine function were not satisfactory
(not shown here). The following function was used:

FSC = 1/2 (tanh(a NDSI + b) + 1) (2)

Figure 4 illustrates the shape of this function with a = 3 and b = −1. Parameters a and b were
optimized using the root-mean-square error (RMSE) between the predicted FSC and the training FSC
as the objective function to minimize. This optimization was done with the Nelder–Mead simplex
algorithm as implemented in the SciPy library [32]. Once the NDSI–FSC relationship was calibrated,
it was validated against the Pléiades testing dataset using standard metrics (Section 2.2.4).
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2.2. Evaluation

2.2.1. Evaluation with Remote Sensing Data

We used several remote sensing datasets to evaluate the FSC algorithm (Figure 5). Here, remote
sensing is taken in broad sense since the dataset was obtained from a variety of sensors, including
close-range remote sensing instruments (terrestrial cameras and lidar scanner), aerial imagery and
spaceborne sensors:

• SPOT: Five SPOT-6 and SPOT-7 maps of the snow cover area at 6 m resolution obtained by
supervised classification [12]. Each SPOT scene covers a region of about 2900 km2.

• Izas: A series of 758 SCA maps at 1 m resolution in the Izas catchment located in the Spanish
Pyrenees. These snow maps were derived from a series of daily photographs taken between
2015 and 2019 by a terrestrial time-lapse camera (CC5MPX Campbell Sci.). The processing of the
photographs to orthorectified SCA maps is described by Revuelto et al. [33]. The images cover an
area of about 0.3 km2.

• Weisssee: A series of nine SCA maps at 0.5 m resolution around the Weisssee Snow Research
Site (Austria) [34]. These snow maps were derived from terrestrial laser scans presented by
Fey et al. [35]. The discrimination of snow-covered and snow-free areas was based on surface
reflectance and snow depth. The scans cover a region of about 0.9 km2 with differing slopes and
vegetation cover.

• CamSnow: A series of 351 FSC maps at 25 m resolution of the Aiguilles Rouges massif near
Chamonix, France. These maps were derived from a series of daily photographs taken from 2016
to 2019 with a time-lapse camera installed in the Aiguille du Midi. The processing was done
by TENEVIA, a start-up company specialized in the hydrometeorological monitoring of high
mountain catchments. The images cover an area of about 50 km2.

• We also obtained DISCHMEX data, a series of five SCA maps at 0.2 m resolution in the Dischma
valley near Davos, Switzerland [36]. The snow cover area was retrieved from aerial ortho-images
over a small region of about 0.1 km2. However, we found that there were too few valid data in the
DISCHMEX images to make an evaluation. This was due to the presence of many missing values
in the original data and the fact that our resampling method considers that a resampled pixel
becomes a no-data pixel if there is at least one no-data pixel in the contributing pixels (see below).

All the SCA data were resampled from their original projection to the projection system of the
corresponding Sentinel-2 tile (WGS84 UTM 30N, 31N or 32N) at 20 m resolution by taking the average
of the contributing pixels. As done in Section 2.2.1, if at least one pixel in the contributing pixels is a
no-data pixel, the corresponding FSC pixel is also a no-data pixel to avoid introducing sampling biases.

Once an FSC product was matched with a Sentinel-2 acquisition, we selected the Sentinel-2 pixels
marked as snow-covered by the LIS–SCA algorithm and computed their NDSI (as done in Section 2.2.1).
The NDSI was then converted to FSC using the calibrated function obtained from Section 2.2.1. As a
result, for each dataset, we obtained a list of reference FSC values that are collocated in space and time
with a list of Sentinel-2 FSC values. This allowed a comparison at the Sentinel-2 pixel level, using the
metrics defined in Section 2.2.4.

We handled the case where the FSC reference map can overlap two Sentinel-2 tiles (only SPOT).
In this case, the SPOT product was cropped using the Sentinel-2 tiles extent and each portion was
processed independently. In this process we made sure that the overlapping region between two
Sentinel-2 tiles was not counted twice.
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Figure 5. Map of the datasets used for FSC evaluation. More information on the SPOT images is given
in [12].

The comparison was not done at the pixel level for the CamSnow data for two reasons: (i) the
CamSnow data already provide the FSC but at a somewhat coarser resolution (25 m instead of 20 m);
(ii) a preliminary assessment of the CamSnow data revealed a non-rigid distortion of the projected FSC
images, causing misalignment with Sentinel-2 data in the central part of the domain. This deformation
is probably related to the projection of the image over a DEM, which is not perfectly corrected of small
camera displacement (caused by extreme weather conditions) and cannot be easily corrected. Therefore,
the CamSnow data were only used to evaluate the average FSC over a larger region corresponding
to the full area of the CamSnow field of view. The latter method was also applied to Izas dataset
(in addition to the pixel-level evaluation).

2.2.2. Evaluation Using Crowd-Sourced Data

Open Data Kit (ODK) Collect is an open source application for Android smartphones that replaces
paper forms used in survey-based data gathering. For this study, a custom form for the ODK Collect
application was made to allow the survey of the snow cover fraction around the observer. The ODK
Aggregate application was installed on a server hosted by CESBIO to collect survey data. On 5 February
2020 a website was set up to explain the installation procedure and the measurement method (Figure 6).
The announcement was spread using social media and mailing lists. The form and website were
written in French. Consequently, most of the data were collected in the French Alps and Pyrenees.
The participants were asked to estimate the snow-covered fraction of the surface in a disk of radius 10 m,
centered at their position once the geolocation accuracy of their smartphone reached 5 m. The snow
fraction value could be reported in the ODK form at a 10% interval between 0% and 100%.
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Figure 6. Presentation of the ODK Collect initiative used to collect crowded-sourced snow fraction data.

The ODK FSC was directly compared to the FSC of the nearest pixel in the matching Sentinel-2
product, using the metrics defined in Section 2.2.4 below. Section 2.2.3 explains how this matching
product was identified. Measurements made in forest areas were identified using the TCD product
(i.e., where TCD > 0; Section 2.2.1) and removed from this analysis.

2.2.3. Sensitivity to the Temporal Collocation Method

Because Sentinel-2 acquisitions are not necessarily synchronized with other products, a reference
FSC may have to be matched with a Sentinel-2 FSC product from a different date. In addition, the
closest Sentinel-2 FSC product in time may not be the best choice in the case of cloudy conditions
so that it might be useful to find the next closest product to increase the amount of evaluation data.
However, the snow cover extent can change rapidly so it is necessary to bound the time search window
that is used to match a reference product with a Sentinel-2 product. This is particularly important for
dates before July 2017 (Sentinel-2B operation start date) when the revisit time of Sentinel-2 was only
10 days.

We evaluated the sensitivity of this time lag using the Izas collection due to its near daily temporal
frequency over a multiyear period. We matched each Izas product with a Sentinel-2 product for a
fixed time lag of 0 days. Then we repeated the operation with a 1-day increment for up to 12 days.
An Izas product was ignored if it could not be matched with a Sentinel-2 product at the given time
lag. Then we calculated the correlation between the Izas FSC and Sentinel-2 NDSI (as an indicator
of the strength of the NDSI–FSC relationship). This gave us an estimation of the loss of consistency
that should be expected by increasing the temporal search window between a reference product and a
Sentinel-2 product.
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We also tested the sensitivity of the selection criteria to match a reference product with a Sentinel-2
product. Indeed, within a given time window around the date of the reference products, one could
find several Sentinel-2 products. We tested the following two options:

• Closest date: the Sentinel-2 product that is the closest in time to the FSC product is selected.
• Cleanest date: the Sentinel-2 product with the least cloud and no-data pixels is selected.

Both options were tested for different time windows from 0 to 4 days (for 0 days both methods
are‘identical).

This issue is specific to FSC evaluation, where we must handle heterogeneous datasets with
uneven temporal frequency such as ODK or CamSnow. This was not a problem in previous sections
where Sentinel-2 FSC was compared either with daily snow depth measurements or a few Pléiades
and SPOT images for which manual selection was possible.

2.2.4. Evaluation Metrics

For each type of high-resolution remote sensing, from all pairs of Sentinel-2 and reference data, we
derive the following metrics: RMSE (root mean square error between the predicted and the observed
FSC), mean error (mean of the differences between the predicted and the observed FSC), STD (standard
deviation of the differences between the predicted and the observed FSC) and correlation (Pearson’s
correlation coefficient between the predicted and the observed FSC).

3. Results

3.1. Calibration

Table 2 shows the confusion matrix between the Pléiades SCA maps at 2 m resolution and the 150
validation points. Among the 150 points, 5 were not classified due to the presence of clouds or because
no decision was made by the analyst. The derived kappa and overall accuracy above 0.9 suggest that
the Pléiades images have been correctly classified. This was expected from the visual evaluation of
the Pléiades SCA maps which showed that the supervised random forest classifier allows an efficient
classification of the snow areas given the high contrast with snow-free areas in the visible-NIR region
of the spectra.

Table 2. Evaluation of the Pléiades SCA maps with the validation points.

Validation Points
Pléiades SCA Maps

Snow No-Snow

snow 75 3
no-snow 4 63
Precision 0.95 0.95

Recall 0.96 0.94
F-score 0.95 0.95

Overall accuracy 0.95
Kappa 0.90

The calibration of the NDSI–FSC function with the Pléiades data returned the values a = 2.65
and b = −1.42 with an RMSE of 25% (Figure 7). In validation mode, the same RMSE was obtained,
suggesting that the estimation of the error is robust (Table 3).
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Figure 7. Results of the calibration and validation of the function. Upper left panel: 2D histogram
plot of the FSC and NDSI pairs in the training dataset and optimized function. Upper right panel:
2D histogram plot of the predicted FSC vs. the testing FSC dataset. Red line: calibrated NDSI–FSC
function. Blue line: Linear regression between the predicted and the testing FSC sets. Green line: 1:1
line. The color bar indicates the number of samples by bin. Bottom: histogram of the residuals for the
validation (predicted FSC minus FSC test).

Table 3. Validation of the predicted FSC against the testing dataset (Pléiades data).

Metric. Value

Sample size 254664
RMSE 25%

Mean error −0.9%
Standard deviation 24%

Correlation 0.60

3.2. Sensitivity to the Temporal Collocation Method

Figure 8 shows the decrease in the correlation coefficient as a function of the time lag between
a Sentinel-2 product and reference product in the Izas dataset. The results suggest that the loss of
consistency induced by a maximum time lag of 4 days should be low at least in the climatic context
of the Pyrenees. From this analysis we chose a maximum time search window of 4 days to collocate
Sentinel-2 FSC with reference FSC products.
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Figure 8. Evolution of the correlation coefficient between Sentinel-2 NDSI and Izas FSC as a function of
the time lag.

Figure 9 illustrates the tradeoff between the “cleanest” and “closest” approaches in selecting
the matching Sentinel-2 product. The number of pixels is higher with the cleanest method since this
method selects the least cloudy image in a given time window, but the correlation coefficient is lower
than the correlation coefficient of the closest method beyond 3 days, for the same reason as given
in Figure 10. However, this analysis suggests that the difference between both methods is minimal.
Given that the “closest” method is numerically more efficient, we kept this method with a time window
of 4 days to perform the next analyses.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 20 
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3.3. Evaluation with Remote Sensing Data

The results are presented for each set of remote sensing data used:

• SPOT: The results for SPOT are separated by date (Tables 4 and 5). The RMSE ranges between 21%
and 31%, close to those obtained with the calibration–validation dataset (RMSE = 25%; Section 3.1).
The absolute value of the mean error ranges between 13% and 0.04%, indicating that, despite a
rather large dispersion, the FSC is not strongly biased.

• Izas: All available dates were merged as a single dataset. Despite the small size of the Izas study
area, a large number of FSC values could be used thanks to the long duration of the time series and
its near daily frequency (N = 4.5 × 104). The results are in line with the previous evaluations with
an RMSE of 21% and a mean error of −11% (Table 6). The correlation coefficient of 0.61 indicates
that the NDSI–FSC function provides a correct representation of the FSC in the Izas catchment.

• Weisssee: All available dates were also merged as a single dataset (Table 6). The correlation (0.42)
is lower than that obtained with Izas data but the RMSE is improved (18%). This is because this
dataset is skewed towards high FSC values, which tend to penalize the correlation with respect to
the RMSE or the standard deviation (0.13).

• CamSnow: The comparison was done using the time series of average FSC over the study area
(181 dates). Due the spatial aggregation which tends to decrease the random error, the performance
of the FSC algorithm is acceptable with a correlation coefficient of 0.43, a RMSE of 20% and a mean
error close to zero (−1.8%) (Table 6). However, it should be noted that the same type of evaluation
using the mean spatial FSC was done with Izas data and the correlation coefficient is higher 0.94
(437 dates, Table 6). This suggests that the performance of CamSnow data may be affected by their
inaccurate geometry and may not reflect the actual accuracy of the Sentinel-2 FSC (Section 2.2.2).

Table 4. Pairs of SPOT and Sentinel-2 products used to perform the evaluation shown in Table 5
(dates are given in format year-month-day).

Sentinel-2 Tiles SPOT
2016-08-08

SPOT
2017-03-11

SPOT
2016-12-03

SPOT
2016-12-17

SPOT
2016-10-12

T32TLR 2016-08-10 2017-03-11 2016-12-01 2016-12-18 2016-10-12
T32TLQ 2016-08-10 2017-03-11 2016-12-01 2016-12-18
T31TGK 2016-08-06 2017-03-11 2016-12-01 2016-12-14
T31TGL 2016-08-06 2017-03-11 2016-12-01 2016-12-14 2016-10-12
T31TGM 2016-10-12
T32TLS 2016-10-12
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Table 5. Evaluation of the Sentinel-2 FSC against the SPOT FSC (dates are given in format
year-month-day).

SPOT Date 2016-08-08 2016-10-12 2016-12-03 2016-12-17 2017-03-11

Correlation 0.44 0.62 0.29 0.75 0.55
STD 29% 33% 23% 21% 23%

Mean error −13% −0.04% −8.0% −1.8% −5.2%
RMSE 31% 33% 25% 21% 24%

Table 6. Evaluation of the Sentinel-2 FSC with Izas and Weisssee FSC (20 m pixel-based comparison),
and CamSnow and Izas mean FSC (in percentage of the imaged area).

Site Izas Weisssee CamSnow Izas

Level Pixel Pixel Area Area

Sample size 44,890 2492 181 437
RMSE 21% 18% 20% 18%

Mean error −12% −12% 3.5% −10%
STD 18% 13% 21% 16%

Correlation 0.61 0.42 0.43 0.93

3.4. Evaluation with Crowd-Sourced in Situ Data

Table 7 summarizes the data that were contributed by the participants. After removing the data
with a geolocation accuracy higher than 5 m, and data for which the LIS–SCA algorithm does not
detect snow, we retained 337 FSC values. Among these 337 values, 141 were collected in areas with
TCD > 0 (Table 7).

Table 7. Summary of the ODK Collect data obtained on March 15, 2020. In bold is the total number of
collected ODK–FSC eventually used for the Sentinel-2 FSC evaluation.

Tile.
Available ODK Points Accuracy ≤ 5 m

Accuracy ≤ 5 m
and

LIS–SCA Pixel = Snow

TCD > 0 TCD > 0 TCD > 0

T31TDH 344 222 137
T30TYN 12 9 4
T31TGL 5 2 0
T31TCH 4 3 0
T32TLP 0 0 0
T31TGK 1 1 0
T32TLQ 0 0 0
T31TFL 0 0 0
T31TDG 0 0 0
T31TFK 0 0 0
TOTAL 366 237 141

The comparison shows that there is a good agreement between the Sentinel-2 FSC and the ODK
measurements with an RMSE that is again close to 25% (Table 8, Figure 10).
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Table 8. Evaluation of the Sentinel-2 FSC against the ODK data.

Metric FSC

Sample size 337
RMSE 23%

Mean error −7.2%
Standard deviation 21%

Correlation 0.67

4. Discussion

In both calibration or in evaluation sections, we obtained larger RMSE than previous studies
using MODIS data to compute the FSC at coarser resolution for operational production. Salomonson
and Appel [21] reported RMSE ranging between 4% and 10% for test sites over Alaska, Labrador,
and Siberia by comparison with Landsat SCA products. These results were obtained with a linear
function, which formed the basis of the MOD10A1.005 product algorithm. Using Landsat-8 SCF
products, Rittger et al. [13] obtained an average RMSE of 10% with MODSCAG products. However,
Rittger et al. [13] reported higher RMSE of 23% for MOD101A1.005, and Masson et al. [19] found larger
RMSE for both MODSCAG and MOD10A1.005, ranging between 25–33%.

With Sentinel-2 data and a linear model of the NDSI, Aalstad et al. [15] obtained an RMSE of
7%, which is much lower than the RMSE obtained in this study. However, this was computed at
100 m resolution, and spatial aggregation from 20 m to 100 m is expected to reduce the error variance
(see below). In addition, the model was only tested over a small region of 1.77 km2 with a low
topographic variability of (elevation range of 50 m). The same authors found that the error variance of
FSC retrieved by spectral unmixing was larger for intermediate FSC and lower for high and low FSC
residuals. Here we could not identify a similar behavior, although another form of heteroscedasticity
is manifest in the Pléiades-derived FSC residuals from Section 3.1 (Figure 11). This dataset suggests
that the error has a larger variability for low FSC retrievals.
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(Section 3.1).

Neglecting heteroscedasticity and assuming that the FSC residuals follow a gaussian distribution
of zero mean and standard deviation σ, we can estimate the probability that a retrieval of SCF = 0 is
significantly different than SCF = 1 at the pixel level. With the Normal inverse cumulative distribution
function, we can estimate that σ should not exceed 61%, otherwise a retrieval of SCF = 0 would not be



Remote Sens. 2020, 12, 2904 16 of 19

significantly different than SCF = 1 at the 5% confidence level. Here, we obtained an FSC model with a
standard deviation of 24% in comparison with Pléiades validation data, and the standard deviation
of the residuals did not exceed 30% except for the SPOT image of 12 October 2016 (33%). Therefore,
the FSC model obtained in this study represents an improvement in accuracy over the binary SCA
detection. Considering all datasets for which we could perform a pixel-wise comparison at 20 m
resolution in this study, the median standard deviation of the residuals is 23%. Taking this value as the
true standard deviation of the error distribution following a gaussian distribution, we can conclude
that the confidence interval of an FSC retrieval is ±38% at the 95% confidence level.

This confidence interval is large, but it is expected to decrease by spatial averaging at a coarser
resolution [37]. This can be observed in the case of Izas, since the standard deviation decreases from
18% to 16% by aggregation over the imaged area (Table 6). To further evaluate the effect of spatial
resolution on the results, we also compared the FSC at coarser resolutions using the SPOT reference
dataset. We selected SPOT because it has the largest coverage among all datasets and thus it provides
a large amount of FSC values even at coarser resolutions. The FSC computed at 20 m resolution was
averaged to 40 m, 80 m and 160 m resolution and the same performance metrics computed for all
images. The results show increasing performances of the FSC model at coarser resolutions with a
reduction in the RMSE from 25% to 21% and an increase in the correlation coefficient from 0.59 to 0.79
(Table 9). This reduction in the FSC error may reflect the spatial misregistration of the Sentinel-2 level
1 data (geolocation accuracy is currently about 10 m (2σ) [11]), an issue which should have less impact
at coarser resolution. However, it may also reflect the compensation of errors due to topographic
variability. We analyzed the variations in the RMSE with the topographic slope in the case of the
Bassiès area where there is a large range of slopes over a small area. The slopes were computed at 20 m
resolution to match the FSC data and range from 0◦ to over 60◦. Pixels with slopes above 50◦ were
excluded as they represented a negligible fraction of the data. Figure 12 indicates that the RMSE tends
to increase with the slope; however, the relationship remains weak, suggesting that the slope is a poor
predictor of the error in this case. Further work is needed to characterize the spatial structure of the
FSC error and potentially relate it to the topography and the sun geometry.

Table 9. Evaluation of the Sentinel-2 FSC against the SPOT validation dataset at different resolutions.

Resolution. 20 m 40 m 80 m 160 m

Correlation 0.59 0.67 0.75 0.79
STD 0.25 0.23 0.22 0.21

Mean error −0.05 −0.04 −0.03 −0.01
RMSE 0.25 0.24 0.22 0.21

Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 20 

 

a large amount of FSC values even at coarser resolutions. The FSC computed at 20 m resolution was 
averaged to 40 m, 80 m and 160 m resolution and the same performance metrics computed for all 
images. The results show increasing performances of the FSC model at coarser resolutions with a 
reduction in the RMSE from 25% to 21% and an increase in the correlation coefficient from 0.59 to 
0.79 (Table 9). This reduction in the FSC error may reflect the spatial misregistration of the Sentinel-
2 level 1 data (geolocation accuracy is currently about 10 m (2σ) [11]), an issue which should have 
less impact at coarser resolution. However, it may also reflect the compensation of errors due to 
topographic variability. We analyzed the variations in the RMSE with the topographic slope in the 
case of the Bassiès area where there is a large range of slopes over a small area. The slopes were 
computed at 20 m resolution to match the FSC data and range from 0° to over 60°. Pixels with slopes 
above 50° were excluded as they represented a negligible fraction of the data. Figure 12 indicates that 
the RMSE tends to increase with the slope; however, the relationship remains weak, suggesting that 
the slope is a poor predictor of the error in this case. Further work is needed to characterize the spatial 
structure of the FSC error and potentially relate it to the topography and the sun geometry. 

Table 9. Evaluation of the Sentinel-2 FSC against the SPOT validation dataset at different resolutions. 

Resolution. 20 m 40 m 80 m 160 m 

Correlation 0.59 0.67 0.75 0.79 

STD 0.25 0.23 0.22 0.21 

Mean error −0.05 −0.04 −0.03 −0.01 

RMSE 0.25 0.24 0.22 0.21 

 
Figure 12. RMSE of the FSC by class of slopes for each image from the Pléiades validation dataset 
(Sect. 3.1). 

A large part of the evaluation was done using binary snow products as a reference which may 
create a bias in the fractional snow cover obtained by aggregation in a Sentinel-2 pixel due to the 
thresholding effect [13–15]. This effect was mitigated by using very-high resolution images both in 
calibration (2 m) and in evaluation (Izas 1 m, Weisssee 0.5 m) since the fraction of mixed snow pixels 
decreases at higher resolutions [14]. However, it may be more problematic with the SPOT data (6 m 
resolution). There is no such issue with the ODK dataset since the participants estimated the fractional 
snow cover directly. However, the ODK dataset suffers from other sources of uncertainties due to the 
difficulty to estimate FSC within a 10 m radius area in the field. Despite this limitation, the ODK data 
are well correlated (correlation coefficient: 0.67) with the FSC estimates, which encourages us to 
continue this experiment in the future with an improved user interface. The ODK data should be 

Figure 12. RMSE of the FSC by class of slopes for each image from the Pléiades validation dataset
(Section 3.1).



Remote Sens. 2020, 12, 2904 17 of 19

A large part of the evaluation was done using binary snow products as a reference which may
create a bias in the fractional snow cover obtained by aggregation in a Sentinel-2 pixel due to the
thresholding effect [13–15]. This effect was mitigated by using very-high resolution images both in
calibration (2 m) and in evaluation (Izas 1 m, Weisssee 0.5 m) since the fraction of mixed snow pixels
decreases at higher resolutions [14]. However, it may be more problematic with the SPOT data (6 m
resolution). There is no such issue with the ODK dataset since the participants estimated the fractional
snow cover directly. However, the ODK dataset suffers from other sources of uncertainties due to
the difficulty to estimate FSC within a 10 m radius area in the field. Despite this limitation, the ODK
data are well correlated (correlation coefficient: 0.67) with the FSC estimates, which encourages us
to continue this experiment in the future with an improved user interface. The ODK data should be
particularly useful to evaluate FSC in forested areas where remote sensing data are particularly scarce.

5. Conclusions

We studied the feasibility of retrieving FSC at 20 m resolution from Sentinel-2 NDSI. The main
conclusions of this study are the following:

• The FSC can be estimated from the Sentinel-2 NDSI using a sigmoid-shaped function.
• The RMSE on the retrieved FSC is consistently estimated close to 25% from various reference

datasets with a high topographic variability.
• With this function, we estimate that the confidence interval on the FSC retrievals is 38% at the 95%

confidence level.
• The study presents limitations, the most important of which are described below:
• The evaluation focused on temperate mountain regions (Alps, Pyrenees).
• The evaluation focused on the snow cover above the tree line. The evaluation of the FSC in forest

areas should be strengthened with measurements of the fractional snow cover data under trees.
• Sentinel-2 L1C products currently have a reported geolocation accuracy of about 10 m (2σ) [11],

which could have a negative effect on the results presented here (i.e., the results could be better
with an enhanced geolocation of Sentinel-2 images).

• This study focused on the snow detection but a major challenge in particular under operational
constraint is the separation of the cloud from the snow cover. A major asset of the MAJA-LIS
processing is the quality of the cloud mask in comparison with existing alternatives [26].
However, this should be further investigated in regions with extensive snow cover and frequent
cloud coverage.

However, we argue that the most important step after this study is to focus the next evaluation on
forest areas even if the retrieval algorithm should be modified to account for the obstruction of the
ground by the trees [38]. Such an effort would allow a better characterization of Sentinel-2 capabilities
to retrieve the snow cover fraction over large land masses with subarctic climate, whereas the present
evaluation is more relevant for high-mountain regions.
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