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Abstract: Nondestructive and accurate estimating of the forage nitrogen–phosphorus (N:P) ratio is
conducive to the real-time diagnosis of nutrient limitation and the formulation of a management
scheme during the growth and development of forage. New-generation high-resolution remote
sensors equipped with strategic red-edge wavebands offer opportunities and challenges for estimating
and mapping forage N:P ratio in support of the sustainable utilization of alpine grassland resources.
This study aims to detect the forage N:P ratio as an ecological indicator of grassland nutrient content
by employing Sentinel-2 multispectral instrument (MSI) data and a random forest (RF) algorithm.
The results showed that the estimation accuracy (R2) of the forage N:P ratio model established
by combining the optimized spectral bands and vegetation indices (VIs) is 0.49 and 0.59 in the
vigorous growth period (July) and the senescing period (November) of forage, respectively. Moreover,
Sentinel-2 MSI B9 and B12 bands contributed greatly to the estimation of the forage N:P ratio, and the
VIs (RECI2) constructed by B5 and B8A bands performed well in the estimation of the forage N:P ratio.
Overall, it is promising to map the spatial distribution of the forage N:P ratio in alpine grassland using
Sentinel-2 MSI data at regional scales. This study will be potentially beneficial in implementing precise
positioning of vegetation nutrient deficiency and scientific fertilization management of grassland.
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1. Introduction

The biochemical parameters of forage in natural alpine grasslands, such as nitrogen (N),
phosphorus (P) and chlorophyll, are important aspects of forage nutrition conditions and feed
value and play an important role in the life cycle of plants [1,2]. As an essential component of protein,
N promotes the development and formation of stems, leaves and fruits and therefore is a crucial
nutrient element affecting grassland biomass [3,4]. P promotes the metabolism of individual plants and
is an essential nutrient for grassland plants living in the harsh environment of the Tibetan Plateau [5,6].
The plant nitrogen–phosphorus (N:P) ratio is a pivotal ecological indicator representing the relative
absorption of N and P that can reflect the growth status of vegetation [7–9].

Despite considerable research [7,10,11], a critical value for the N:P ratio of forage is still not a
unified standard in different ecosystems. Overall, the division scheme of threshold developed by
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Tessier and Raynal can be applied to natural alpine grassland ecosystems [10]. In this scheme, an N:P
ratio < 14 is likely plant N limitation, an N:P ratio > 16 tends to indicate P deficiency, and an N:P
ratio ranging from 14 to 16 indicates that the growth of vegetation is limited by both N and P [10].
The N:P ratio not only is related to species richness, functional traits and productivity but also indicates
potential limitations of N and P [12,13]. Therefore, investigating the spatial distribution characteristics
of the N:P ratio at a regional scale can provide useful information for the rational utilization of alpine
grassland resources and the diagnosis of forage growth status.

Remote sensing technology has provided a more convenient and efficient approach for the
dynamic monitoring of grassland vegetation at the landscape and regional scales [14,15]. The methods
of estimating forage biochemical parameters can be mainly divided into two types, viz. the physically
based method and empirical method [16]. Radiative transfer models (RTMs) explain the interaction
of solar radiation in plant leaves according to the optical laws, thus offer many advantages in the
generalizability and robustness. The empirical method offers a preliminary understanding of the
relationship between forage biochemical parameters and spectral variables (i.e., spectral features
and vegetation indices (VIs)), and is relatively easy to perform [17]. Studies on the estimation of
forage N content and spatial inversion based on multisource high-resolution spectral data have
become increasingly mature. Forage N have been shown to correlate strongly with chlorophyll [18].
The detection of forage N using remote sensing technology is generally associated with the absorption of
chlorophyll, and usually includes the spectral regions related to chlorophyll detection (i.e., the red-edge
and near-infrared (NIR) regions). N is involved in the protein synthesis, which facilitate the
photosynthetic process [19]. The red-edge position is the point where the vegetation reflectance
spectrum has the maximum slope in the 680–750 nm [20]. Studies have indicated that the red-edge is
less sensitive to atmospheric effects and soil background. The red-edge position has been extensively
applied in estimating leaf area index, N, chlorophyll and biomass [21,22]. However, due to the few
identifiable spectral absorption features and low content of P in grassland plants, estimating the P
content using high-resolution remote sensing data is still a challenging problem. Since the orders
of magnitude of N and P are not consistent, error propagation may occur if the forage N and P
contents are estimated separately and then calculating the N:P ratio [23,24]. Therefore, to minimize
these errors, it is essential to estimate the forage N:P ratio directly using high-resolution remote
sensing data. Ramoelo et al. showed that directly retrieving the forage N:P ratio using hyperspectral
data was feasible (R2 of 0.69–0.85), and the spectral bands were mainly distributed in the shortwave
infrared (SWIR) regions are highly sensitive to the leaf N:P ratio [11]. Gókkaya et al. estimated
the N:P ratio of forests using VIs calculated by spaceborne (Hyperion EO-1) and airborne (CASI)
imaging spectrometers, and the results showed that some VIs were significantly related to the N:P ratio
(R2 of 0.34–0.70) [25]. In addition, the blue region is very important for the detection of the canopy
N:P ratio [26]. Although field portable spectroradiometers and hyperspectral sensors can obtain rich
spectral information, spectroradiometers are not easily accessible to a large number of observations,
and hyperspectral images are expensive to acquire and have a small swath width [14,27]. Hence, it is
difficult to apply such instruments to monitor grassland biochemical parameters continuously at a
regional scale.

Classic multispectral satellite data (i.e., MODIS, Landsat, and SPOT data) are usually restricted
to the macro-level monitoring of grassland biomass, coverage, and net primary productivity due
to their limited spectral channels and discontinuous broadbands [28–30]. Some new-generation
satellites, such as RapidEye (launched on 29 August 2008), WorldView-2 (launched on 6 October 2009),
Sentinel-2A/B (launched on 23 June 2015 (S2A), and 7 May 2017 (S2B)) and Gaofen-6 (launched on
2 June 2018), equipped with sensors containing specialized red-edge wavebands are more sensitive to
biochemical parameters of vegetation. These satellites with a higher spatial resolution, wider spatial
coverage, and improved revisit periods have irreplaceable advantages in dynamic monitoring of plant
growth status and have been widely applied to the quantitative estimation of grassland vegetation
physical and chemical parameters [4,31,32]. In particular, Sentinel-2 multispectral instrument (MSI)
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data are free and open-source, with a large number of archived data available, and are therefore
easier to obtain than other satellite data. From the perspectives of cost and feasibility, these data
are more suitable than others for the diagnosis and monitoring of vegetation nutrient limitation at a
regional scale. Several studies have used Sentinel-2 data to estimate the chlorophyll, N, and biomass of
vegetation in the local area [32–34], but these studies mainly focused on the biochemical parameters of
crops (i.e., coffee and maize). To the best of our knowledge, Sentinel-2 data have not yet been used to
estimate and investigate the forage N:P ratio in the alpine grassland ecosystems.

Machine learning algorithms, especially random forest (RF), have been widely used to estimate
the biochemical parameters of vegetation. This is because the algorithms not only have excellent
performance to overcome the problems of nonlinearity and multicollinearity, but can also be used to
explore the internal relationships of specific vegetation biochemical parameters with multiple satellite
wavebands and VIs [4,35].

Here a study applying Sentinel-2 MSI data and an RF algorithm combined with the field
measurement data from an alpine grassland during the vigorous growth period and the senescence
stage is taken up with the following objectives: (1) to explore the potential of Sentinel-2 spectral bands
and VIs to detect the forage N:P ratio, (2) to optimize spectral bands and VIs and establish an estimation
model of the forage N:P ratio at different growth stages, and (3) to map the spatial distribution of the
forage N:P ratio in the study area and analyze the nutrient limitations of the forage.

2. Material and Methods

2.1. Study Area

Three counties (Maqu, Luqu and Xiahe) and one city (Hezuo) in Gansu Province, China,
are designated as the study area (100.77◦ E–103.11◦ E, 33.11◦ N–35.57◦ N), which is located in
the mixed grassland ecoregion on the eastern Tibetan Plateau (Figure 1a). Grasslands are an important
dominant resource in the region, occupying approximately 85% of the area. The study area belongs to
an alpine grassland region with a typical plateau continental climate, and it has an average altitude
of 3000 m. The total precipitation and annual mean temperature of this area are 400–800 mm and
1.6–13.6 ◦C, respectively, and rain and heat occur over the same period. Affected by monsoons and
topography, the spatial and temporal distribution of precipitation in the area are uneven, with the
precipitation mainly from July to September and tending to be greater in the south and lower in
the north. Alpine steppe and alpine meadow are the two main grassland types in the area, and the
dominant species are mainly Poa pratensis var. pratensis, Festuca ovina, Stipa aliena, Potentilla chinensis,
and Kobresia capillifolia. Seasonal rotational grazing is the most significant and essential way to utilize
natural grassland resources. The grassland in the study area can be divided into cold-season grassland
(growth from early November to the end of May) and warm-season grassland (growth from early June
to the end of October) according to seasonal characteristics. Under the comprehensive influence of
human activities (i.e., overgrazing, land reclamation and grassland ecotourism) and climate change
(i.e., snow disasters, hailstone and drought), the health and fragmentation of grassland ecosystems in
the area have become increasingly serious.
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Figure 1. Distribution of random sample sites and fixed sample sites in the study area (a) and the 
Sentinel-2 MSI natural color composite image (Band 4, 3, and 2) with a 20 m spatial resolution (b). 
Twelve Sentinel-2 MSI images are required to completely cover the study area. 

2.2. Grassland Observational Data 

Four permanent sampling areas (A1, A2, A3 and A4) are designed in the study area from the 
northeast to southwest to implement continuous monitoring of grassland vegetation in different 
seasons depending on the accessibility, grassland utilization pattern and spatial heterogeneity of the 
selected areas (Figure 1a). These sampling areas are all winter pastures, and there is no grazing during 
the vegetation growth season. Five fixed sample sites are set up in each sample area. Two field 
observations were conducted in late July 2017 and mid-November 2017 in the study area, with each 
observational period lasting approximately 8–10 days. In each field investigation, in addition to 
observing all the fixed sample sites in the four permanent sampling areas, some random sample sites 
are also established in other areas based on accessibility and representativeness to obtain more 
grassland observational data. In total, 66 and 57 sites were observed in July 2017 and November 2017, 
respectively. Five subplots (0.5 m × 0.5 m) within each site (100 m × 100 m) are established to collect 
available data (i.e., geographical location, community height, and dominant species). The standing 
biomass and litter of forage on the soil surface in each subplot are collected using traditional 
agronomic methods.  

2.3. Chemical Analysis 

After each round of fieldwork, the grass samples are oven-dried at 65 °C for 48 h to a constant 
weight, and then ground into a powder for further chemical analysis. Total P content in  
percentage (g 100 g−1, %) is measured by the phosphomolybdate blue spectrophotometry method. 
Total N content in percentage (g 100 g−1, %) is assayed by employing an elemental analyzer (Euro 
EA3000-Single, Euro Vector, Milan, Italy). The forage N:P ratio is then calculated as the ratio between 
the weight-based contents of N and P. 

2.4. Sentinel-2 MSI Data and Processing 

As shown in Figure 1b, 12 Sentinel-2 Level-1C MSI images are required to completely cover the 

Figure 1. Distribution of random sample sites and fixed sample sites in the study area (a) and the
Sentinel-2 MSI natural color composite image (Band 4, 3, and 2) with a 20 m spatial resolution (b).
Twelve Sentinel-2 MSI images are required to completely cover the study area.

2.2. Grassland Observational Data

Four permanent sampling areas (A1, A2, A3 and A4) are designed in the study area from the
northeast to southwest to implement continuous monitoring of grassland vegetation in different
seasons depending on the accessibility, grassland utilization pattern and spatial heterogeneity of the
selected areas (Figure 1a). These sampling areas are all winter pastures, and there is no grazing during
the vegetation growth season. Five fixed sample sites are set up in each sample area. Two field
observations were conducted in late July 2017 and mid-November 2017 in the study area, with each
observational period lasting approximately 8–10 days. In each field investigation, in addition to
observing all the fixed sample sites in the four permanent sampling areas, some random sample sites are
also established in other areas based on accessibility and representativeness to obtain more grassland
observational data. In total, 66 and 57 sites were observed in July 2017 and November 2017, respectively.
Five subplots (0.5 m × 0.5 m) within each site (100 m × 100 m) are established to collect available data
(i.e., geographical location, community height, and dominant species). The standing biomass and litter
of forage on the soil surface in each subplot are collected using traditional agronomic methods.

2.3. Chemical Analysis

After each round of fieldwork, the grass samples are oven-dried at 65 ◦C for 48 h to a constant
weight, and then ground into a powder for further chemical analysis. Total P content in percentage
(g 100 g−1, %) is measured by the phosphomolybdate blue spectrophotometry method. Total N content
in percentage (g 100 g−1, %) is assayed by employing an elemental analyzer (Euro EA3000-Single,
Euro Vector, Milan, Italy). The forage N:P ratio is then calculated as the ratio between the weight-based
contents of N and P.
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2.4. Sentinel-2 MSI Data and Processing

As shown in Figure 1b, 12 Sentinel-2 Level-1C MSI images are required to completely cover
the entire study area. To make the image data better match the periods of grassland observation
(late July 2017 and mid-November 2017), 24 images with less cloud cover within 10 days before and
after the observation periods are selected as the remote sensing data in this study. MSI data with
the World Geodetic System (WGS84) are obtained from the Copernicus Open Access Hub (https:
//scihub.copernicus.eu/), and the imaging times are 17 July and 14 November 2017. Moreover, MSI has
13 spectral bands from the visible to NIR to SWIR with a high spatial resolution ranging from 10 to
60 m.

Radiometric calibration, atmospheric correction and resampling of the MSI image are performed
using the Sentinel Application Platform (SNAP) desktop software (version: 6.0), which is mainly
designed and developed to facilitate the further processing of Sentinel data. After resampling, the image
mosaic and mask are implemented in ENVI 5.3 software. Finally, Sentinel-2 mosaic images covering
the entire study area with a spatial resolution of 20 m are obtained. Spectral reflectance data from
Sentinel-2 image pixels corresponding to five subplots at each sample site are extracted, and then the
reflectance is averaged to obtain the representative spectral reflectance of each site.

2.5. Spectral Bands and Vegetation Indices

To validate the performance of Sentinel-2 spectral bands and VIs in estimating the forage N:P ratio
in different growing seasons of alpine grassland, a total of 29 spectral variables are used, including
11 raw spectral bands and 18 Sentinel-2-derived VIs (Tables 1 and 2). The selection of these VIs
is dependent on their performance in previous forage N, P, chlorophyll, and biomass estimation
studies [34,36,37].

Table 1. Spectral and spatial resolutions of Sentinel-2 MSI data (B1 and B10 are excluded in this study).

Spectral Bands Band Center (nm) Bandwidth (nm) Spatial Resolution (m) Spectral Region

B2 490 65 10 Blue
B3 560 35 10 Green
B4 665 30 10 Red
B5 705 15 20 Red edge
B6 740 15 20 Red edge
B7 783 20 20 Red edge
B8 842 115 10 NIR

B8A 865 20 20 NIR
B9 945 20 60 NIR
B11 1375 30 20 SWIR
B12 2190 180 20 SWIR

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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Table 2. Summary of the Sentinel-2-derived spectral vegetation indices (VIs) used in this study.

Index Name Formulation Bands Reference

NDVI Normalized difference vegetation index (R842 − R665)/(R842 + R665) B8, B4 [38]
NDII Normalized difference infrared index (R842 − R1610)/(R842 + R1610) B8, B11 [39]
NDWI Normalized difference water index (R865 − R1610)/(R865 + R1610) B8A, B11 [40]
NDRE1 Normalized difference red-edge 1 (R740 − R705)/(R740 + R705) B6, B5 [41]
NDRE2 Normalized difference red-edge 2 (R783 − R705)/(R783 + R705) B7, B5 [42]
RNDVI Renormalized normalized difference vegetation index (R842−R665)/

√
R842 + R665 B8, B4 [43]

GNDVI Green normalized difference vegetation index (R865 − R560)/(R865 + R560) B8A, B3 [44]
EVI Enhanced vegetation index 2.5 × (R865 − R665)/(1 + R865 + 6 × R665 − 7.5 × R490) B8A, B4, B2 [45]
REP1 Red-edge position 1 705 + 35 × {[(R842 + R665) × 0.5 − R705]/(R740 − R705)} B8, B4, B5, B6 [46]
REP2 Red-edge position 2 705 + 35 × {[(R783 + R665) × 0.5 − R705]/(R740 − R705)} B7, B4, B5, B6 [47]
MTCI MERRIS terrestrial chlorophyll index (R842 − R705)/(R705 − R665) B8, B5, B4 [48]
IRECI Inverted red-edge chlorophyll index (R842 − R665)/(R740/R705) B8, B4, B6, B5 [46]
GCI 1 Green chlorophyll index 1 (R842/R560) − 1 B8, B3 [49]
GCI 2 Green chlorophyll index 2 (R783/R560) − 1 B7, B3 [50]
GCI 3 Green chlorophyll index 3 (R865/R560) − 1 B8A, B3 [50]
RECI 1 Red-edge chlorophyll index 1 (R842/R705) − 1 B8, B5 [49]
RECI 2 Red-edge chlorophyll index 2 (R865/R705) − 1 B8A, B5 [50]
WDRVI Wide dynamic range vegetation index (0.1 × R865 − R665)/(0.1 × R865 + R665) B8A, B4 [51]
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2.6. Random Forest

In this study, the RF method is employed to estimate the forage N:P ratio from unoptimized
and optimized combinations of VIs and spectral bands. RF consists of a mass of decision trees and is
widely implemented to handle all kinds of classification and regression problems [52]. The method
uses feature randomness and bagging when establishing each individual tree. When bootstrapping,
only approximately 67% of the data are used. Approximately 33% of the data (out-of-bag data) are not
used in the model and can conveniently be used as a validation set [4]. Moreover, the algorithm is
very suitable for analyzing high-dimensional data and robust to nonlinear and unbalanced data [53].
For several key parameters in the RF, the number of predictors (mtry) depends on the square root of the
total number of predictors used, while the default values of two for the minimal size of the terminal
nodes (nodesize) and 500 for the number of regression trees (ntree) are used. Data operations are
performed in MATLAB 2016a, including forage N:P ratio modeling and mapping, variable selection
and model accuracy assessment.

2.7. Variable Selection and Cross-Validation

A feature selection method (RFFS) based on the increase in node purity (IncNodePurity) of the
RF model is applied to optimize spectral bands and VIs. RFFS ranks the input features based on
IncNodePurity, and the sequential backward search method is then used to remove the least important
feature with the smallest IncNodePurity value from the feature set every time. The root mean squared
error (RMSE) of the validation set of each iteration is calculated to evaluate model prediction accuracy.
After many iterations, the feature set with the minimum RMSE and the fewest variables is ultimately
selected. To guarantee the stability of the experimental results, 10-fold cross-validation is used [54].
In the validation process, the order of importance of variables generated by each iteration is selected as
the basis for eliminating features, and the average RMSE is calculated to evaluate the generalization
and prediction ability of the model.

2.8. Accuracy Assessment

The mean absolute error (MAE, Equation (1)), R2, RMSE, Akaike information criterion (AIC,
Equations (2) and (3)), and Bayesian information criterion (BIC, Equations (2) and (4)) are used
to comprehensively evaluate the performance of candidate forage N:P ratio models from multiple
perspectives. The R2 and RMSE are used to evaluate the accuracy and goodness of fit, respectively,
of the simulated and measured forage N:P ratios. MAE is used to assess the modeling errors in
estimating the forage N:P ratio [34]. In addition, the AIC and BIC are used to balance the complexity
and precision of the estimation model [55,56].

MAE =
1
n

∑∣∣∣yi − ŷi

∣∣∣ (1)

RSS =
∑n

i=1

(
yi − ŷi

)2
(2)

AIC = 2k + n ln(RSS/n) (3)

BIC = n ln(RSS/n) + k ln(n) (4)

where RSS represents the residual sum of squares between measured and simulated N:P ratios; ŷi and
yi are the N:P ratios of the validation set for the simulated and measured values, respectively; and n
and k are the numbers of observations and variables in the model, respectively.
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3. Results

3.1. Variation in the Forage N:P Ratio

The results indicate that the average forage N and P contents in the vigorous growth period (July)
are significantly higher than those in the senescing period (November), which indicates that forage
N and P gradually decrease in the late growing season, while the average forage N:P ratio shows
a pattern contrary to the variation in N and P contents (Table 3). On the whole, the coefficients of
variation in forage N, P and N:P ratio in the senescing period are greater than those in the vigorous
growth period, which also means that the grassland vegetation has greater spatial heterogeneity in the
senescing period.

Table 3. Descriptive statistics of forage N (%), P (%) and N:P ratio for various periods.

Nutrient Data Sets Min Max Mean Median STDEV CV (%) SE No. of Samples

N July 2017 1.15 2.78 1.87 1.85 0.30 16 0.04 66
Nov. 2017 0.32 1.41 0.80 0.80 0.19 23 0.02 57

P July 2017 0.09 0.29 0.17 0.17 0.04 26 0.01 66
Nov. 2017 0.03 0.13 0.06 0.06 0.02 32 0.00 57

N:P July 2017 6.3 21.8 12.0 12.0 3.3 27 0.4 66
Nov. 2017 5.2 24.8 14.1 13.6 4.4 31 0.6 57

The forage N:P ratio is significantly correlated with the N and P contents at different growth
stages (Table 4), which further supports using the VIs related to N, P and chlorophyll to estimate the
forage N:P ratio. The correlation between the forage N:P ratio and P is strong (r = −0.74 in July 2017
and r = −0.59 in November 2017), indicating that the forage N:P ratio mainly depends upon the forage
P content. The correlation between forage N and P is not significant (r = 0.17, p = 0.1647) in the
vigorous growth period, but there is a weak correlation between them (r = 0.32) in the senescing period,
showing that the correlation between forage N and P changes with the growth stage. Compared with
the senescing period, the vigorous growth period appears to be a more suitable period for retrieving
the forage N:P ratio.

Table 4. Matrix of Pearson correlations between forage N, P and N:P ratio for various periods.

Periods Nutrient N P N:P

July 2017 N / p = 0.1647 p = 0.0005
P r = 0.17 / p = 0.0000
N:P r = 0.42 r = −0.74 /

Nov. 2017 N / p = 0.0154 p = 0.0000
P r = 0.32 / p = 0.0000
N:P r = 0.51 r = −0.59 /

3.2. Predicting the Forage N:P Ratio with Spectral Bands

The results of the forage N:P ratio estimation based on 11 spectral bands at different growth stages
are shown in Table 5. Using the RFFS algorithm to optimize the spectral bands slightly increases the
performance of modeling the forage N:P ratio and reduces the complexity of the model (i.e., the model
has a lower AIC and BIC) compared with those observed for the forage N:P ratio model established
with entire bands. As shown in Figures 2 and 3, three bands (B8-NIR, B9-NIR and B12-SWIR) and
five bands (B3-Green, B4-Red, B5-Red edge, B9-NIR, and B12-SWIR) are selected as important bands
for estimating the forage N:P ratio in the vigorous growth period (July) and the senescing period
(November), with R2 values of 0.43 and 0.55, respectively.
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Table 5. Performance in estimating the forage N:P ratio with all and optimized Sentinel-2 spectral
bands for various periods.

Accuracy
Assessment

July 2017 Nov. 2017

All Bands Optimized Bands All Bands Optimized Bands

No. of variables 11 3 11 5
MAE 2.19 2.1 3.08 2.67
R2 0.41 0.43 0.54 0.55
RMSE 2.5433 2.4783 3.5299 3.1352
AIC 138.36 121.29 151.19 127.09
BIC 161.39 127.58 172.23 136.65
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Figure 3a shows the analysis results for the relative importance of different bands in the estimation
of the forage N:P ratio. Overall, B9 and B12 play an important part in the estimation of the forage
N:P ratio during the vigorous growth period and the senescing period, especially B9, which greatly
contributes to forage N:P ratio estimation. B11 and B12 are more important for estimating the forage
N:P ratio in the vigorous growth period, but they are less sensitive to the forage N:P ratio detection
in the senescing period. In addition, B3 and B5 have a good potential in retrieving the forage N:P
ratio in the vigorous growth period, but they have no significant effect on the estimation of the N:P
ratio in the senescing period. It can be concluded that the bands sensitive to the estimation of the
forage N:P ratio in the vigorous growth period are mainly distributed in the NIR and SWIR regions.
Moreover, some bands located in the red (B4) and red-edge (B5) regions also significantly influence the
estimation of the forage N:P ratio in the senescing period, in addition to the NIR and SWIR regions.
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3.3. Predicting the Forage N:P Ratio with Sentinel-2 Vegetation Indices

The results of the forage N:P ratio estimation based on 18 VIs at different growth stages are shown
in Table 6. Using the RFFS algorithm to optimize the VIs slightly increases the performance of modeling
the forage N:P ratio and reduces the complexity of the model (i.e., the model has a lower AIC and BIC)
compared with those observed for the forage N:P ratio model established with entire VIs. As shown in
Figures 2 and 3, four VIs (enhanced vegetation index (EVI), green chlorophyll index (GCI1), normalized
difference infrared index (NDII) and red-edge chlorophyll index (RECI2)) and five VIs (normalized
difference red edge 1 (NDRE1), NDRE2, RECI2, normalized difference water index (NDWI) and wide
dynamic range vegetation index (WDRVI)) are selected as important VIs for estimating the forage N:P
ratio in the vigorous growth period (July) and the senescing period (November), with R2 values of 0.43
and 0.42, respectively.

Table 6. Performance in estimating the forage N:P ratio with all and optimized Sentinel-2 vegetation
indices (VIs) for various periods.

Accuracy
Assessment

July 2017 Nov. 2017

All VIs Optimized VIs All VIs Optimized VIs

No. of variables 18 4 18 5
MAE 2.06 2.02 3.46 2.94
R2 0.42 0.43 0.41 0.42
RMSE 2.4592 2.4756 4.0742 3.4881
AIC 146.93 118.68 180.48 137.60
BIC 184.63 127.06 214.9 147.16

Figure 3b shows the analysis results for the relative importance of different VIs for estimating
forage N:P ratio. Overall, RECI2 is important for the forage N:P ratio estimation in both the vigorous
growth period and the senescing period. NDII and RECI2 significantly contribute to the forage N:P
ratio estimation during the vigorous growth period, and NDWI, RECI2, NDRE1 and NDRE2 are the
four most important VIs for the forage N:P ratio estimation in the senescing period. In addition,
the seven VIs sensitive to the forage N:P ratio in the vigorous growth period all include the NIR band
(B8 or B8A). Among the 5 VIs sensitive to the forage N:P ratio in the senescing period, B5 and B8A in
the red-edge and NIR regions are the most frequent bands, respectively. These results indicate that the
NIR band has a good potential in estimating the forage N:P ratio as a whole.
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3.4. Predicting the Forage N:P Ratio with a Combination of Spectral Bands and Vegetation Indices

The optimized spectral bands and VIs are integrated to establish an RF model for the forage
N:P ratio estimation at different growth stages (Table 7). Compared with the forage N:P ratio model
established by using the optimized spectral bands (n = 3) or VIs (n = 4) alone, the prediction accuracy of
the integrated model (R2 = 0.49) is improved by 0.06 in the vigorous growth period (July). The accuracy
of the integrated N:P ratio model (R2 = 0.59) is improved by 0.04 in the senescing period (November)
compared with the model that used the optimized spectral bands (n = 5) or VIs (n = 5) alone.
This indicates that the integration of optimized spectral bands and VIs increases the estimation accuracy
of the forage N:P ratio.

Table 7. Performance in estimating the forage N:P ratio with a combination of optimal spectral bands
and vegetation indices (VIs).

Accuracy Assessment Optimized Bands + VIs

July 2017 Nov. 2017

No. of variables 7 10
MAE 1.93 2.72
R2 0.49 0.59
RMSE 2.2661 3.1095
AIC 117.50 136.58
BIC 132.16 155.70

3.5. Mapping of Potential Forage N and P Limitation

According to the integrated model of the forage N:P ratio in the two periods mentioned above,
the spatial distribution of the forage N:P ratio is mapped based on Sentinel-2 MSI images. The spatial
distribution and nutrient limitation of the forage N:P ratio at different growth stages are shown in
Figure 4 (the vigorous growth period) and Figure 5 (the senescing period). The results indicate that
the forage N:P ratio ranges from 8.06 to 18.95 in the vigorous growth period. Overall, the growth of
forage in most of the study area is limited by N (N:P < 14), the nutrient condition of forage in the
local area (i.e., northern Xiahe County, southern Luqu County and northwestern Maqu County) is
affected by P deficiency (N:P > 16), and the forage growth in very few areas is restricted by both N and
P (14 < N:P < 16) (Figure 4). Moreover, the forage N:P ratio is between 7.75 and 22 in the senescing
period (Figure 5). Comparative analysis of the spatial distribution of the forage N:P ratio in the above
two periods shows that the forage N:P ratio increases in most areas and decreases slightly in local
areas, which suggests that the P content in forage is more deficient than the N content when grassland
vegetation stops growing.
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4. Discussion

4.1. Potential of Sentinel-2 Spectral Bands and Vegetation Indices in Estimating the Forage N:P Ratio

This study shows that the Sentinel-2 spectral bands are mainly distributed in the NIR and SWIR
regions have an important contribution to the forage N:P estimation of alpine grassland, and some
spectral bands located in the red and red-edge regions have a great influence on estimating the forage
N:P ratio in the senescing period. In addition, some VIs (such as RECI2) constructed by the Sentinel-2
spectral bands in the red and NIR regions have a good potential in the inversion of the forage N:P ratio.
Previous studies have shown that there is a significant correlation between the spectral reflectance of
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the red-edge and NIR regions and the N content in plant leaves [57,58]. The bands that are sensitive
to the P content in vegetation are mainly distributed in the NIR and SWIR regions [59], and VIs
based on the red-edge are important variables for predicting the N content in leaves [4]. At different
growth stages, the N:P ratio is significantly correlated with the forage N and P contents (Table 4).
Therefore, the bands sensitive to N and P may also be applicable to the estimation of N:P ratio in forage.
Romoelo et al. [11] estimated the N:P of savanna forages based on hyperspectral data and found that
the wavebands were distributed in the SWIR region had a higher sensitivity to N:P in leaves, which is
similar to our finding. In different growth stages of grassland, the optimization results of spectral
bands based on the RF algorithm show that both B9 and B12 are important bands for estimating the
forage N:P ratio. The potential of B12 in estimating the forage N:P ratio can be understood by the
absorption feature of N near 2180 nm.

The detection of the forage N using remote sensing technology is generally associated with the
absorption of chlorophyll, and usually includes the spectral regions related to chlorophyll detection
(i.e., the red-edge and NIR regions) [33]. Previous studies have shown that some known specific
absorption bands for chlorophyll, N, and proteins (i.e., 640 nm, 660 nm, 910 nm, and 1510 nm) can be
successfully employed to retrieve the forage N content [11,60,61]. The specific absorption features of P
are mainly distributed in the NIR and SWIR regions, having broad application prospect in estimating
forage P [6,62]. The detection of forage P applying hyperspectral measurements could be related to
the stoichiometry (i.e., indirect estimation according to the relationship between other biochemical
parameters and P in forage) [63,64]. Preliminary results show the forage N:P ratio is significant
correlated with the N and P contents (Table 4), which further supports the feasibility of using the
spectral variables related to N, P and chlorophyll to indirectly estimate the forage N:P ratio.

This study confirms that it is feasible to use Sentinel-2 MSI spectral bands and VIs to estimate the
forage N:P ratio, and combining optimized spectral bands and VIs further increases the estimation
accuracy of the forage N:P ratio. Previous studies have also shown that combining spectral bands and
VIs improves the estimation accuracy of vegetation biochemical parameters [4,34], which benefits from
enhancing some of the most important variables and integrating effective information to obtain the
best results.

4.2. Effects of Different Seasons on Forage N:P Inversion in Natural Alpine Grasslands

The growth and developmental stages of forage directly affect its nutrient content, thereby affecting
the feed intake and production performance of animals. This study shows that the average forage N
and P contents in the vigorous growth period (July) are significantly higher than those in the senescing
period (November) at different growth stages. Many studies have also found that the contents of N, P
and protein in forage gradually decrease as plant grows [65]. For example, the P content of eight forages
in the Alxa Desert steppe show regular seasonal dynamics; that is, the P content gradually decreases
with the advancement of the growth period [66], and the N content in the aboveground part of plants
decreases during the plant growth season (May to September) [67]. The forage N content gradually
decreases as the forage grows in alpine grassland, especially the forage N that decreases rapidly
during the senescing period [68]. In the late growth season, with the expansion of plants, the forage
gradually withers, cell senescence occurs, and fiber material increases, resulting in the dilution effect of
elements [69]. In addition, plants gradually stop growing after entering the senescing period, and some
of the aboveground nutrients are transferred underground for storage to supply the consumption of
plants in non-growing period and nutrients needed for plant germination in the coming year [70].
This study reveals that the growth of forage is mainly limited by N during the vigorous growth period
in alpine grasslands. With the gradual senescing of forage, the N:P ratio increases significantly, and the
vegetation gradually changes from being N limited to P deficient. Especially at the end of the growing
season, the limitation effect of P on vegetation growth is greater than that of N, which is potentially
related to P being fixed in plant roots during the senescence of forage.
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This study shows that the integrated forage N:P ratio model achieves ideal estimation accuracy in
both the vigorous growth period (R2 = 0.49) and the senescing period (R2 = 0.59) (Table 7). This finding
indicates that some spectral bands and VIs from Sentinel-2 can capture nutrient limitation information
for forage growth to a certain extent. Using multispectral data to estimate the forage canopy N:P
ratio provides an indirect measurement of the deficiency status of N and P in grassland vegetation,
and some spectral bands and VIs that are sensitive to forage N, P and chlorophyll play an important
role in N:P ratio estimation [11,26]. The biomass of alpine grasslands reaches its maximum and grazing
intensity is relatively high during the vigorous growth period. In terms of practical applications, it is
of more practical significance to use remote sensing data to monitor forage growth in this stage than in
other stages at a regional scale. In general, the nutrient content of forage decreases and the quality
deteriorates during the senescing period, and the canopy spectrum is easily affected by soil and other
background factors, which will reduce the sensitivity of the spectral bands and VIs to forage N and
P [68,71]. According to our research results, the integrated forage N:P ratio model performs better
in the senescing period than in the vigorous growth period, which is potentially attributable to the
limited number of sample sites, the optimization of model parameters, and large spatial heterogeneity
of grassland. Subsequent research will also explore this problem more deeply based on multisource
satellite data and multiple machine learning algorithms.

4.3. Future Perspectives

Although this study maps the spatial distribution of the forage N:P ratio in the vigorous growth
period and the senescing period on a regional scale, it is also necessary to understand the potential
limitations of this method. The empirical estimation model of vegetation biochemical parameters is
susceptible to the spatial heterogeneity of the study area, which reduces the generalization performance
of the model in other regions, and therefore still faces many challenges in practical application [19,72].
Due to the cloudy and rainy weather in summer, the grass canopy spectrum and the cloud cover of the
optical satellite images are seriously limited by the weather conditions, which confines the remote
sensing monitoring of vegetation growth in the study area to a certain extent.

For vegetation applications, hyperspectral sensors (i.e., HYMAP, Hyperion, AISA Eagle and
Gaofen-5) can provide abundant spectral information and detect minute spectral features that are
masked by the broad bands of satellites [73]. In addition, spectral bands are favorable to the
calculation of the red-edge position and narrow band indices, important for vegetation biochemical
parameters assessments [74]. Moreover, hyperspectral data have received extensive attention for
species discrimination and mapping subtle variations in vegetation biochemical information. However,
the high cost and the small swath width involved limits its usage to small spatial extents [14,27].
The recent trend is that hyperspectral data is gradually shifting towards to affordable multispectral
sensors with strategic bands (i.e., RapidEye, WorldView-2, Sentinel-2A/B and Gaofen-6), which capable
of retrieving plant macronutrients [75–77]. Near-surface unmanned aerial vehicle (UAV) remote
sensing systems have the advantages of a small size, wide applications and high flexibility, which can
overcome the limitations of conventional ground observation-based methods [78,79]. Therefore,
exploring integrated monitoring technology for grass biochemical parameters based on near-surface
UAV images and multisource, multitemporal and high-resolution satellite data will be the focus of
future research.

As RTMs are capable of explaining the interaction and transfer of radiation inside the canopy
according to the laws of physics, they offer a specific connection between the canopy reflectance and
the vegetation biochemical parameters [80]. A physically based models (i.e., PROSPECT and LIBERTY)
have the advantages that a large simulated spectra database can be generated by changing the input
parameters [81], which may be applied to other areas. Many studies show that the model inversion
has certain potential for estimating vegetation biophysical parameters in heterogeneous grasslands
applying hyperspectral data [17,82]. The combination of empirical and physically based models is a
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reliable approach for estimating forage N and P, although its generalization performance needs to be
verified by other data sets.

5. Conclusions

Based on high-resolution multispectral satellite data and an RF machine learning algorithm,
this study evaluates the feasibility of using Sentinel-2 MSI spectral bands and VIs to retrieve the
forage N:P ratio of alpine grassland on a regional scale. The results indicate that combining optimized
spectral bands and VIs increases the accuracy of the forage N:P ratio estimation in comparison with
that of models using spectral bands or VIs alone. In addition, the Sentinel-2 spectral bands are mainly
distributed in the NIR and SWIR regions have a valuable contribution toward estimating the forage
N:P ratio, and some spectral bands located in the red and red-edge regions greatly influence the forage
N:P ratio in the senescing period. This study demonstrates the practicality and feasibility of using
Sentinel-2 spectral bands and VIs to directly estimate the forage N:P ratio at regional scales. Moreover,
airborne and satellite data can be integrated to diagnose the seasonal variations of nutrition limitation
at a landscape level in the alpine grassland ecosystem of the Tibetan Plateau and thus represents a
promising future development trend.
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